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Ion-acoustic Gardner Solitons in electron-positron-ion plasma
with two-electron temperature distributions
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The ion–acoustic solitons in collisionless plasma consisting of warm adiabatic ions, isothermal

positrons, and two temperature distribution of electrons have been studied. Using reductive

perturbation method, Korteweg-de Vries (K-dV), the modified K-dV (m-KdV), and Gardner

equations are derived for the system. The soliton solution of the Gardner equation is discussed in

detail. It is found that for a given set of parameter values, there exists a critical value of b ¼ Tc=Th;
(ratio of cold to hot electron temperature) below which only rarefactive KdV solitons exist

and above it compressive KdV solitons exist. At the critical value of b, both compressive and

rarefactive m-KdV solitons co-exist. We have also investigated the soliton in the parametric regime

where the KdV equation is not valid to study soliton solution. In this region, it is found that below

the critical concentration the system supports rarefactive Gardner solitons and above it compressive

Gardner solitons are found. The effects of temperature ratio of two-electron species, cold electron

concentration, positron concentration on the characteristics of solitons are also discussed. VC 2016
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4939802]

I. INTRODUCTION

Recently, the study of linear and nonlinear wave phe-

nomena in electron-positron-ion plasma is a field of current

research investigation. The electron-positron plasmas are

generated naturally in space environments such as the pulsar

magnetosphere,1,2 early universe3,4 or neutron stars, active

galactic nuclei,5 and in sun atmosphere.6 The electron posi-

tron plasma has also been created in the laboratory.7–9 Most

of the astrophysical6,10 and laboratory plasmas11–13 are

admixture of electrons, positrons, and small fraction of ions.

The study of the electron-positron-ion (EPI) plasmas is im-

portant to understand the behavior of both space scenarios

and laboratory.

The physics of EPI plasmas has received a great deal of

attention in investigating the nonlinear structures, e.g., soli-

tons, double layers, and modulational instability. The enve-

lope solitons associated with the electromagnetic waves in

EPI plasmas have been studied by Rizzato14 and Berezhiani

et al.15 Ion-acoustic solitons in EPI plasmas have been

reported by Popel et al.16 Nejoh17 studied the effects of the

ion temperature on large amplitude ion-acoustic waves in an

EPI plasma. Ion-acoustic compressive and rarefactive double

layers in a warm multicomponent plasma have been studied

by Mishra et al.18 and Jain and Mishra.19 The obliquely

propagating ion-acoustic double layers in magnetized elec-

tron-positron-ion plasma have been studied by Chawla and

Mishra.20 Large amplitude solitary electromagnetic waves in

EPI plasmas have been studied by Verheest and Cattaert.21

The double layers associated with the kinetic Alfven wave in

a magnetized electron-positron-ion plasma have been studied

by Kakati and Goswami.22 Ion-acoustic envelope solitons in

electron-positron-ion plasmas have been studied by

Salahuddin et al.23 Chawla et al.24 have studied the modula-

tion instability of ion-acoustic waves in EPI plasma. Tiwari

et al.25 have studied the effects of positron density and

temperature on ion-acoustic dressed solitons in electron-

positron-ion plasma. Recently, Jain and Mishra26 have

studied the arbitrary amplitude ion-acoustic solitons in elec-

tron-positron-ion plasma having warm ions. Ion-acoustic

periodic waves have been studied in electron-positron

plasma using reductive perturbation method by Chawla and

Mishra.27

Two electron temperature distributions are very com-

mon in the laboratory28–30 as well as in space plasmas.31

Earlier missions GEOTAIL and POLAR (MacFadden

et al.32) in the magnetosphere have also reported the coexis-

tence of such electron populations. Ion–acoustic waves in

two electron temperature plasma have been studied by Jones

et al.33 and Nishihara and Tajiri.34

Ion-acoustic soliton in a multi-species plasma consisting

of positive ions, electrons, and negative ions has been stud-

ied by Das and Tagare,35 Tagare,36 and Mishra et al.37 These

studies show that owing to the presence of negative ions, the

system also supports rarefactive solitons above the critical

concentration. The KdV equation describing the solitary

waves (SWs) in a multicomponent plasma is not valid for

parametric regime corresponding to: (i) A ¼ 0 and (ii) A� 0,

where A is coefficient of the nonlinear term of the KdV equa-

tion. In the first case (i.e., A¼ 0) for given set of fixed

parameter values if we increase b, then at a critical value of

b, A becomes zero (i.e., A¼ 0) and in this case KdV equation

is no longer valid to study soliton solution. To discuss the

soliton solution at this critical value, one must consider

higher-order nonlinearity to derive modified K-dV (m-KdV)

equation. In the second case, near the critical value of b
where the coefficient A is of the order of e (very small), the
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KdV equation gives infinitely large amplitude structure,

which is physically not valid. Therefore, in this parametric

regime also, the KdV equation is physically not valid to

study soliton solution. To study the finite amplitude ion-

acoustic solitary waves beyond this KdV limit, one must

consider the other type of nonlinear dynamic equation that

can be valid for this case. In this case, Gardner equation is

used to study soliton solution.

Recently, there has been a great deal of interest in the

study of Gardner solitons (GS) in plasma. Many researchers

started studying the Gardner (mixed modified KdV equation)

or modified Gardner (MG) soliton structures and solutions

on different plasma systems by Wazwaz,38 Vassilev et al.,39

Hossain et al.,40 and Ghosh et al.41 The dust-ion-acoustic

Gardner solitons in dusty plasma have been investigated by

Masud et al.42 and Mamun et al.43 The dust ion-acoustic

(DIA) waves were first reported by Shukla and Silin.44 Small

amplitude DIA SWs in a dusty plasma by reductive perturba-

tion method have been studied by Alinejad and Mamun.45

Large amplitude DIA solitary waves in a multicomponent

dusty plasma whose constituents are warm ions, two-

temperature trapped electrons, and negatively charged dust

grains have been investigated by Alinejad.46

The aim of the present paper is to study ion–acoustic

solitons in a multicomponent electron-positron-ion plasma in

the parametric regime where KdV equation is not valid to

study soliton solution. It is found that there exist two para-

metric regimes in which KdV equation is not applicable to

study soliton solution. Using reductive perturbation method,

we have derived KdV, m-KdV, and Gardner equations47 to

study ion-acoustic solitons in the different parametric

regimes. It is found that for a given set of parametric values,

there exists a critical value of b, below which only rarefac-

tive KdV solitons exist and above it compressive solitons

exist. At the critical value of b, both compressive and rare-

factive m-KdV solitons co-exist. It is also investigated that

the near the critical value of b;A� 0ðeÞ, below the critical

value of b rarefactive Gardner solitons exist, and above it

compressive Gardner solitons are found.

The manuscript is organized as follows: The basic set of

equations are given in Sec. II. The KdV, m-KdV, and stand-

ard Gardner (sG) equations are derived in Secs. III, IV, and

V, respectively. The solitary wave solution of sG equation is

given in Sec. VI. The brief discussion is given in Sec. VII

and conclusions have been summarized in Sec. VIII.

II. BASIC EQUATIONS

We consider a plasma consisting of warm adiabatic

ions, isothermal positrons, and two-temperature electrons.

The nonlinear behavior of ion-acoustic waves may be

described by the following set of normalized fluid equations:

@ni

@t
þ @

@x
niuið Þ ¼ 0; (1)

@ui

@t
þ ui

@ui

@x
¼ � @/

@x
� 5

3
dni
�1=3 @ni

@x
; (2)

@2/
@x2
¼ �q ¼ nh þ nc � 1� að Þni � anp; (3)

nc ¼ l exp
1

lþ �b /

� �
; (4)

nh ¼ � exp
b

lþ �b/

� �
; (5)

np ¼ exp f�c/g; (6)

ne ¼ nh þ nc ¼ 1þ/þ lþ �b2
� �
2 lþ �bð Þ2

/2 þ lþ �b3
� �
6 lþ �bð Þ3

þ.......

(7)

Here

b ¼ Tc

Th
; a ¼ npo

neo
; l ¼ nco

neo
; � ¼ nho

neo
; d ¼ Ti

Tef f
;

c ¼ Tef f

Tp
; and Tef f ¼

ThTc

lTh þ �Tcð Þ :

In the above equations, ni;ui are the density and fluid veloc-

ity of the ion-species, respectively. nco; nho, and nio, are the

equilibrium densities of two electron components and of the

ion component, respectively, / is the electrostatic potential,

a is the equilibrium density ratio of positron to electron spe-

cies, l is the equilibrium density ratio of cold electron to

electron species, and d is the ratio between temperature of

ion and electron effective temperature.

In Eqs. (4) and (5), the electron density distributions are

considered to be Maxwell-Boltzmann. In the above equa-

tions, ni is the ion density normalized by its equilibrium

value ni0; ui is the ion fluid speed normalized by ion acoustic

speed Ci ¼ ðTef f=miÞ1=2
; potential ð/Þ, time ðtÞ, and space

coordinate ðxÞ have been normalized with respect to thermal

potential
Tef f

e , inverse of the ion-plasma frequency in the

mixture x�1
pi , and Debye length kD, respectively; whereas

electron densities nh and nc are normalized by neo. In the

mixture, the ion-acoustic speed Ci, the ion plasma frequency

xpi, and the Debye length kD are given by

Ci ¼
Tef f

mi

� �1
2

; x�1
pi ¼

4pneoe2

mi

� ��1
2

; and

kD ¼
Tef f

4pneoe2

� �1
2

:

The charge-neutrality condition is expressed as lþ �
¼ aþ nio

neo
:

III. DERIVATION OF K-dV EQUATION

We first derive the K-dV equation from the basic set of

equations, viz., Eqs. (1)–(7). For KdV equation, we introduce

the following stretching of coordinates ðnÞ and ðsÞ as:

n ¼ e1=2ðx� VptÞ (8)

and

s ¼ e3=2t; (9)

where e is a small parameter and Vp is the phase velocity of

the wave to be determined later. Now we expand the field
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quantities in Eqs. (1)–(7) around the unperturbed uniform

state in powers of e in the following form:

ni

ui

/

q

2
66664

3
77775 ¼

1

0

0

0

2
66664

3
77775þ e

nð1Þ
1

u
ð1Þ
i

/ð1Þ

qð1Þ

2
666664

3
777775þ e2

nð2Þ
1

u
ð2Þ
i

/ð2Þ

qð2Þ

2
666664

3
777775þ e3

nð3Þ
1

u
ð3Þ
i

/ð3Þ

qð3Þ

2
666664

3
777775þ :::

(10)

On substituting the expansion (10) into Eqs. (1)–(7),

using Eqs. (8) and (9), and equating terms with the same

powers of e, we obtain a set of equations for each order in e.
The set of Eqs. (1)–(3) at the lowest order, i.e., o ðeÞ, give

ui
1ð Þ ¼ 3Vp

3Vp
2 � 5d

� �w; (11)

ni
1ð Þ ¼ 3

3Vp
2 � 5d

� �w; (12)

Vp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� að Þ
1þ acð Þ þ

5d
3

s
; (13)

where w ¼ /ð1Þ. Eq. (13) gives the dispersion relation for

ion-acoustic solitary waves. For next higher order, i.e., o

(e2), we obtain a set of equations, which, after using Eqs.

(11)–(13), can be simplified as

@ni
1ð Þ

@s
� Vp

@ni
2ð Þ

@n
þ @ui

2ð Þ

@n
þ @ ni

1ð Þui
1ð Þ

� �
@n

¼ 0; (14)

@ui
1ð Þ

@s
� Vp

@ui
2ð Þ

@n
þ ui

1ð Þ @ui
1ð Þ

@n
þ @/

2ð Þ

@n

� 5

9
dni

1ð Þ @ni
1ð Þ

@n
þ 5

3
d
@ni

2ð Þ

@n
¼ 0; (15)

@2w

@n2
� ac/ 2ð Þ þ 1

2
ac2w2 � / 2ð Þ � 1

2

lþ �b2
� �
lþ �bð Þ2

w2

þ 1� að Þni
2ð Þ ¼ 0: (16)

Now combining Eqs. (14)–(16), we get the following KdV

equation:

@w
@s
þ Aw

@w
@n
þ B

@3w

@n3
¼ 0; (17)

where

A ¼ 3Vp
2 � 5d

� �2

18 1� að ÞVp

" #
81 1� að ÞVp

2

3Vp
2 � 5d

� �3
þ ac2

"

� lþ �b2
� �
lþ �bð Þ2

� 15 1� að Þd
3Vp

2 � 5d
� �3

#
(18)

and B ¼ 3Vp
2 � 5d

� �2

18 1� að ÞVp
: (19)

The soliton solution of KdV equation is given by

w ¼ wm sec h2½f=d1�; (20)

where f ¼ n� Uos. The amplitude wm and width d1 are

given by wm ¼ 3U0=A and d1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B=U0

p
.

For the typical plasma parameters l¼ 0.15, d¼ 0.01,

c¼ 0.1, a ¼ 0:1, and U0¼ 0.01, Eq. (20) indicates that

(i) hump shape (positive potential) soliton exists if b
� 0:07215; (ii) small amplitude solitary waves with w< 0

dip shaped (negative potential) soliton exists if b� 0.07215,

and (iii) no solitons can exists at b ¼ 0:07215: It is found

that KdV soliton exists with positive potential far above the

critical value (shown in Fig. 2) and negative potential far

below the critical value (shown in Fig. 3).

IV. DERIVATION OF THE m-KdV EQUATION

The nonlinear coefficient of the KdV equation (i.e., A)

vanishes at the critical value of b (i.e., bc). The vanishing of

the nonlinear coefficient in the KdV equation (i.e., A ¼ 0 in

(18)) determines the critical value of b

b ¼ bc ¼
�Ll�6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ll�2 þ Ll2� � l�

p
� L� � 1ð Þ ; (21)

where L ¼ 3 1þ acð Þ2

1� að Þ þ 5d
1þ acð Þ3

1� að Þ2
þ ac2 � 5

9
d

1þ acð Þ3

1� að Þ2
:

(22)

To discuss the soliton solution at this critical value bc,

one has to consider higher order nonlinearity. Accordingly,

we use different stretching of co-ordinates and time to derive

the appropriate equation. To derive the m-KdV equation, we

adopt the same expansion (Eq. (10)) of all the dependent

quantities and we introduce the following stretching of coor-

dinates ðnÞ and ðsÞ as:

n ¼ eðx� VptÞ (23)

and

s ¼ e3t: (24)

By using Eqs. (23) and (24) in Eqs. (1)–(4) and (10), we will

get the same values of ni
ð1Þ;ui

ð1Þ, and Vp as in the case of

KdV equation. For the next higher order, i.e., o(e2), we get a

set of equations, after using the values of ni
ð1Þ;ui

ð1Þ, and Vp

can be simplified as

ui
2ð Þ ¼ 81Vp

3w2

2 3Vp2�5dð Þ3
þ 3/ 2ð ÞVp

3Vp2�5dð Þ�
15dw2Vp

2 3Vp2�5dð Þ3

� 9Vpw
2

3Vp2�5dð Þ2
; (25a)

ni
2ð Þ ¼ 81Vp

2w2

2 3Vp2�5dð Þ3
þ 3/ 2ð Þ

3Vp2�5dð Þ�
15dw2

2 3Vp2�5dð Þ3
; (25b)

q 2ð Þ ¼ � 1

2
Aw2 ¼ 0: (26)

It should be noted that the above equation is satisfied identi-

cally owing to the criticality condition, i.e., A¼ 0.

To the next higher order of e, we get a set of equations
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@ni
1ð Þ

@s
� Vp

@ni
3ð Þ

@n
þ @

@n
ui

2ð Þni
1ð Þ

� �

þ @

@n
ni

2ð Þui
1ð Þ

� �
þ @ui

3ð Þ

@n
¼ 0; (27)

@ui
1ð Þ

@s
� Vp

@ui
3ð Þ

@n
þ ui

1ð Þ @ui
2ð Þ

@n
þ ui

2ð Þ @ui
1ð Þ

@n

þ @/
3ð Þ

@n
� 5

9
dni

2ð Þ @ni
1ð Þ

@n
þ 5

3
d
@ni

3ð Þ

@n

� 5

9
dni

1ð Þ @ni
2ð Þ

@n
þ 10

27
dni

1ð Þ2 @ni
1ð Þ

@n
¼ 0; (28)

@2w

@n2
þ 1� að Þni

3ð Þ � ac/ 3ð Þ � 1

6
ac3w3 þ ac2w/ 2ð Þ

� / 3ð Þ � lþ �b2
� �
lþ �bð Þ2

w/ 2ð Þ � 1 lþ �b3
� �

6 lþ �bð Þ3
w3 ¼ 0: (29)

Differentiating Eq. (29) with respect to n and using Eqs. (27)

and (28), we get the following m-KdV equation:

@w
@s
þ BCw2 @w

@n
þ B

@3w

@n3
¼ 0; (30)

where

C ¼

6561 1� að ÞVp
4

2 3Vp
2 � 5d

� �5
� 2565 1� að ÞdVp

2

2 3Vp
2 � 5d

� �5
� 486 1� að ÞVp

2

3Vp
2 � 5d

� �4
þ 225d2 1� að Þ

2 3Vp
2 � 5d

� �5

þ 30 1� að Þd
3Vp

2 � 5d
� �4

� ac3

2
� 1

2

lþ �b3
� �
lþ �bð Þ3

2
66664

3
77775: (31)

It may be noted that the coefficient B is the same as in

the case of the KdV equation.The soliton solution of m-KdV

equation is given by

w ¼ wm sec h½f=d2�; (32)

where the amplitude wm and width d2 are given by

wm ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6U0=BC

p
; (33)

d2 ¼
ffiffiffiffiffiffi
B

U0

r
: (34)

The two values of the amplitude wm show that for the

modified KdV equation (30), both compressive and rarefac-

tive solitons exist in the plasma at the critical value of bc. In

the case of negative ion plasma, this has been confirmed

experimentally by Nakamura and Tsukabayashi.48 The m-

KdV solitons are valid at critical value of bc whose ampli-

tude and width are given by Eqs. (33) and (34), respectively.

Here m-KdV solitons have finite value at the critical value

(b ¼ 0:07214899). Here we found m-KdV hump shape

soliton at the critical value with positive amplitude (i.e.,

wm ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6U0=BC

p
) shown in Fig. 4 and m-KdV negative

dip type soliton with negative potential (i.e.,

wm ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6U0=BC

p
) shown in Fig. 5.

V. DERIVATION OF GARDNER (sG) EQUATION

Near the critical value of bc, for a parametric regime

corresponding to the coefficient of nonlinear term of KdV

equation, i.e., A� 0(e), if we use the KdV equation to study

soliton solution, then it is found that it gives rise to infinitely

large amplitude soliton. This breaks down the validity of the

reductive perturbation method. Therefore, to study the finite

amplitude solitons beyond this KdV limit, one must consider

the other types of nonlinear dynamical equation, which can

be valid for b�b c. We use Gardner equation which is valid

for A� 0(e), where e is a smallness parameter.

We have the small amplitude solitary waves with a posi-

tive potential for b>bc. So, for b around its critical value

(bc), A¼A0 can be written as

A0 ffi s
@A

@b

� �
jb� bcj ¼ c1se; (35)

where c1 is a constant depending the parameters b, l, and �.

jb� bcj is the small and dimensionless parameter and can be

given as expansion parameter e, i.e., jb� bcjffi e and s¼ 1

for b> bc and s¼� 1 for b< bc. So, qð2Þ can be expressed

as

e2q 2ð Þ ffi �e3 1

2
c1sw2 (36)

which, therefore, must be included in the third order

Poisson’s equation. To the next higher order in e, we get the

following equation:

@2w

@n2
þ 1

2
c1sw2 þ 1� að Þni

3ð Þ � ac/ 3ð Þ � 1

6
ac3/ 3ð Þ

� / 3ð Þ � lþ �b2
� �
lþ �bð Þ2

w/ 2ð Þ � 1 lþ �b3
� �

6 lþ �bð Þ3
w3 ¼ 0: (37)

After simplification, we can write Eq. (37)

@w
@s
þ sc1Bw

@w
@n
þ BCw2 @w

@n
þ B

@3w

@n3
¼ 0: (38)

Equation (38) is a sG equation. It contains both w-term of

KdV and w2 term of m-KdV equation. It may be noted that

when A¼ c1s¼ 0;, Eq. (38) reduces to mKdV equation (30).
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This Gardner equation is valid for b�bc. It may also be

noted that the coefficients B and C are the same as in the

cases of KdV and m-KdV equations.

VI. SOLITON SOLUTION OF sG EQUATION

Here we first analyze stationary GS solution of Gardner

equation (38). For that, we first consider a transformation

f ¼ n� U0s, which allows us to write Eq. (38) under steady

state condition, as

1

2

@w
@f

� �2

þ V wð Þ ¼ 0; (39)

where the pseudo-potential V ðwÞ is

V wð Þ ¼ �U0

2B
w2 þ c1s

6
w3 þ C

12
w4 þ :::::::::::::::::::::::: (40)

We note here that U0 and a2 are always positive. It is obvious

from (39) that

V wð Þjw¼0 ¼
dV wð Þ

dw

				
w¼0

¼ 0; (41)

d2V wð Þ
dw

				
w¼0

< 0: (42)

Conditions (40) and (41) imply that soliton solutions of (39)

exist if

VðwÞjw¼wm
¼ 0: (43)

The latter can be solved as

U0 ¼
c1sB

3
wm1;2

þ BC

6
w2

m1;2
; (44)

wm1;2
¼ wm 16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ U0

V0

r" #
; (45)

where wm ¼ �c1s=C and V0 ¼ c1
2s2B=6C. Now using (40)

and (45) in (39), we have

dw
dn

� �2

þ pw2 w� wm1

� �
w� wm2

� �
¼ 0; (46)

where p ¼ a1=6. The soliton solution of the sG equation can

be given by

w ¼ 1

wm2

� 1

wm2

� 1

wm1

� �
cosh2 f

W


 �" #
; (47)

wm1;2
are given by Eq. (45), and soliton width W is given by

W ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pwm1

wm2

p ; (48)

where p¼C=6.

Eq. (47) represents the soliton solution of Gardner (Eq.

(38)). Here we can see that the solitary structures represented

by the soliton solution of Gardner, Eq. (47), are different

from that represented by soliton solution of the KdV equa-

tion, Eq. (20). It may also be noted that for A� 0 (i.e.,

b � 0:07215), KdV theory is not valid. The results, got from

Gardner solution, are shown in Figures 6–9. From these fig-

ures, it can be noted that both positive and negative Gardner

solitons exist around the critical value bc ¼ 0:07215:
We can see from Fig. 6 the compressive solitary waves

above the critical value (say 0.0722) and rarefactive solitary

waves below the critical value (say 0.0720). We have also

found that the amplitude of compressive (rarefactive)

Gardner soliton decreases (increases) with the increase of b
(shown in Fig. 9). Fig. 9 also shows that when the tempera-

ture ratio between population of two electrons is increased,

the amplitude of the soliton also decreases.

VII. DISCUSSION

The notable information from our current numerical

study can be summarized as follows: In Fig. 1, we have plot-

ted the variation of the b with respect to l, for the different

values of equilibrium density ratio of positron to electron

species (a)¼ 0.09 (dotted green line), 0.10 (solid blue line),

and 0.11 (solid red line). We also note from Fig. 1 as the

equilibrium density ratio of positron to electron species (a)

increases the critical value of b decreases. In Fig. 2, we have

shown the profile of positive KdV soliton (w) with cold to

hot electron temperature ratio (b), for the equilibrium density

ratio of positron to electron species (a)¼ 0.1, the equilibrium

density ratio of cold electron to ion species (l)¼ 0.15, the ra-

tio between temperature of ion and electron effective temper-

ature (d)¼ 0.01, and U0¼ 0.01. We also note from Fig. 2

that K-dV soliton exists with positive potential above the

critical value (bc). In Fig. 3, we have shown the profile of

amplitude of negative KdV soliton (w) with cold to hot elec-

tron temperature ratio (b), for the equilibrium density ratio

of positron to electron species (a)¼ 0.1, the equilibrium den-

sity ratio of cold electron to ion species (l)¼ 0.15, the ratio

between temperature of ion and electron effective

FIG. 1. The plot between the b (ratio of cold to hot temperature) and l
(equilibrium density ratio of cold to ion species) at the different values of

a(the equilibrium density ratio of positron to ion species)¼ 0.09, 0.10, and

0.11.
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temperature (d)¼ 0.01, and U0¼ 0.01. We note from Fig. 3

that K-dV soliton exists with negative potential below the

critical value (bc). In Fig. 4, we have plotted the variation of

positive potential m-KdV soliton for two critical values of

bc: (i) b¼ 0.07215 (l¼ 0.15) and (ii) b¼ 0.080272

(l¼ 0.12), for fixed values of d¼ 0.01, c¼ 0.1, a ¼ 0:1; and

U0¼ 0.01. Here mKdV solitons have finite value at the criti-

cal value so we got compressive mKdV soliton at critical

concentration.

In Fig. 5, we have plotted the variation of negative

potential m-KdV soliton for two critical values of bc: (i)

b¼ 0.07215 (l¼ 0.15) and (ii) b¼ 0.080272 (l¼ 0.15), for

fixed values of d¼ 0.01, c¼ 0.1, a ¼ 0:1, and U0¼ 0.01. We

also note from Fig. 5 that at critical value with negative am-

plitude, rarefactive m-KdV soliton exists. In Fig. 6, we have

plotted the variation of positive potential Gardner soliton (w)

with (b), for l¼ 0.15, d¼ 0.01, c¼ 0.1, and U0¼ 0.01. We

also note from Fig. 6 that the hump shape (positive potential)

solitary waves exist just above the critical value 0.07215, say

0.0722. In Fig. 7, we have plotted the variation of negative

potential Gardner soliton with cold to hot electron tempera-

ture ratio (b), for l¼ 0.15, d¼ 0.01, c¼ 0.1, and U0¼ 0.01.

We also note from Fig. 7 that the dip type (negative poten-

tial) solitary waves exist just below the critical value

0.07215, say 0.0720. In Fig. 8, we have plotted the variation

of positive potential Gardner soliton with l, for d¼ 0.01,

c¼ 0.1, b¼ 0.07215, and U0¼ 0.01. We found the

FIG. 2. Variation of the positive KdV soliton potential (w) with b for

l¼ 0.15, d (the ratio between temperature of ion and electron effective tem-

perature)¼ 0.01, c (the ratio between effective temperature of electron and

positron)¼ 0.1, a (the equilibrium density ratio of positron to ion spe-

cies)¼ 0.1, and U0¼ 0.01.

FIG. 3. Variation of the negative KdV soliton potential (w) with b for

l¼ 0.15, d (the ratio between temperature of ion and electron effective tem-

perature)¼ 0.01, c (the ratio between effective temperature of electron and

positron)¼ 0.1, a (the equilibrium density ratio of positron to ion spe-

cies)¼ 0.1, and U0¼ 0.01.

FIG. 4. Plot of compressive m-KdV soliton potential (w) at two different

values of b¼ 0.07215 (l¼ 0.15) and 0.080272 (l¼ 0.12), on positive am-

plitude ðwm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6U0=B 	 C

p
Þ, for d¼ 0.01, c¼ 0.1, a ¼ 0:1, and U0¼ 0.01.

FIG. 5. Plot of rarefactive m-KdV soliton potential (w) at two different val-

ues of b¼ 0.07215 (l¼ 0.15) and 0.080272 (l¼ 0.12), on negative ampli-

tude ðwm ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6U0=B 	 C

p
Þ, for d¼ 0.01, c¼ 0.1, a ¼ 0:1, and U0¼ 0.01.

FIG. 6. Plot of positive Gardner soliton potential (w) with (b), for l¼ 0.15,

d¼ 0.01, c¼ 0.1, a ¼ 0:1, and U0¼ 0.01.
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compressive (positive potential) solitary waves for l¼ 0.15

to 0.16. In Fig. 9, we have plotted the variation of positive

potential Gardner soliton for l¼ 0.15, �¼ 0.85, d¼ 0.01,

c¼ 0.1, and U0¼ 0.01 at different values of b. We also note

from this figure that when the temperature ratio between

population of two electrons is increased, the amplitude of the

soliton decreases. In Fig. 10, we have plotted the variation of

positive potential Gardner soliton and KdV soliton for com-

parison. This figure clearly shows that for the set of parame-

ters having A� 0, the amplitude of KdV equation becomes

greater than one. Hence, KdV equation cannot be used for

these set of parameter values.

We have derived the Gardner equation (which is valid

beyond the KdV limit) in an unmagnetized plasma system

consisting of an adiabatically warm ion with two electron

temperature distribution in the presence of positrons. The

reductive perturbation method has been used to derive the

Gardner equation. We have shown the existence of both

hump and dip type ion-acoustic Gardner solitons, which exist

beyond the KdV limit, i.e., for b ¼ 0:07215. The ion-

acoustic Gardner solitons are completely different from KdV

solitons. It is also investigated that the characteristics of fi-

nite amplitude Gardner solitons (polarity, amplitude, width,

etc.) strongly depend on the temperature ratio of two electron

species and density ratio. The implication of our results may

be useful in understanding the electrostatic perturbations

observed in laboratory and space plasmas.

VIII. CONCLUSIONS

Our main conclusion in electron-positron ion plasma

with two electron temperature distribution is as follows:

(i) It is found that in the case of multicomponent plasma

for the given set of parameter values (l; �; d, a, and

c), there exists a critical value of bC below which rar-

efactive ion-acoustic KdV solitons exist and above it

compressive solitons exist. It is also found that KdV

solitons exist only far above or far below the critical

value (i.e., when b�bC or b� bC).

(ii) It is also found that in the case of multicomponent

plasma, the KdV equation does not support solitary

wave for parametric regime corresponding to A¼ 0

and A� 0(e) where A is the coefficient of nonlinear

term of the KdV equation.

(iii) For parametric regime corresponding to A ¼ 0, it is

found that at the critical value of b, both compressive

and rarefactive m-KdV solitons co-exist.

FIG. 7. Plot of negative Gardner soliton potential (w) with (b), for l¼ 0.15,

d¼ 0.01, c¼ 0.1, a ¼ 0:1, and U0¼ 0.01.

FIG. 8. Plot of positive Gardner soliton potential (w) with (b), for

l¼ 0.15–0.16, d¼ 0.01, c¼ 0.1, a ¼ 0:1, and U0¼ 0.01.

FIG. 9. Plot to show the effect of two electron temperatures on the ampli-

tude of the ion acoustic positive Gardner solitons for different b¼ 0.0725

(upper), 0.0735 (middle), and 0.0745 (lower).

FIG. 10. Plot to show the variation of positive potential GS and KdV soliton

for different b¼ 0.0735 and¼ 0.0745.
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(iv) It is also found that near the critical value of bC for

parametric regime corresponding to A� 0 (e), the sys-

tem supports Gardner solitons. In this case, it is also

found that for b<bC, rarefactive Gardner soliton

exists, whereas for b>bC, compressive Gardner soli-

ton exists.

(v) It is also investigated that the amplitude of compres-

sive (rarefactive) Gardner soliton decreases

(increases) with b.
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