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The generation of nonlinear electrostatic solitary waves (ESWs) is explored in a
magnetized four component two-temperature electron–positron plasma. Fluid theory is
used to derive a set of nonlinear equations for the ESWs, which propagate obliquely
to an external magnetic field. The electric field structures are examined for various
plasma parameters and are shown to yield sinusoidal, sawtooth and bipolar waveforms.
It is found that an increase in the densities of the electrons and positrons strengthen
the nonlinearity while the periodicity and nonlinearity of the wave increases as the
cool-to-hot temperature ratio increases. Our results could be useful in understanding
nonlinear propagation of waves in astrophysical environments and related laboratory
experiments.

1. Introduction
In the last few decades, electron–positron (e–p) plasmas have attracted significant

interest amongst researchers. The study of nonlinear effects in e–p plasmas is
important since it is known that these plasmas exists in pulsars (Goldreich & Julian
1969; Michel 1982), active galactic nuclei (Miller & Witta 1987), gamma-ray bursts
(GRBs) (Piran 2005), white dwarfs (Kashiyama, Ioka & Kawanaka 2011) and have
also been studied in laboratory experiments (Greaves & Surko 1995). In these
plasmas, there exists only one frequency scale, due to the same charge-to-mass ratio
for the oppositely charged species. Hence they are different from their electron–ion
counterparts and thus exhibit different wave phenomena.

It is thought that most of the e–p plasmas produced in astrophysical settings are of
relativistic nature. The process by which a pulsar magnetosphere is populated with
relativistic e–p plasma is assumed to be the decay of photons emitted by primary
particles into secondary pairs. Synchrotron emission from these secondary pairs is
then assumed to contribute to the high-energy emission from some pulsars. The
choice of a relativistic or non-relativistic character for the distribution function of
the involved particles is intimately related to the process of formation of the pairs
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(Asseo & Riazuelo 2000; Weise & Melrose 2002). It is, therefore, plausible that
non-relativistic astrophysical e–p plasmas may exist, given the effect of efficient
cooling by cyclotron emissions (Zank & Greaves 1995; Bhattacharyya, Janaki &
Dasgupta 2003). There is a vast body of literature dealing with linear and nonlinear
wave propagation in e–p plasmas which are non-relativistic (Iwamoto 1993; Zank &
Greaves 1995; Verheest et al. 1996; Esfandyari-Kalejahi, Kourakis & Shukla 2006). A
simple two-fluid model was used to study the linear and nonlinear wave phenomena
in electrostatic and electromagnetic solitary waves by Zank & Greaves (1995). This
linear study showed that many wave phenomena found in conventional electron–ion
plasmas exist in a modified form in e–p plasmas. In their nonlinear analysis they
found that only subsonic solutions exist, while the pulse width, rather than its
amplitude, is related to the wave speed. Their results also showed that increasing
the Mach number narrows the pulse width significantly, without any change in the
amplitude.

Lu et al. (2010) investigated nonlinear electrostatic waves in an e–p plasma
in the presence of background ions. They found that both smooth and spiky
quasistationary waves were found to exist. They reported that as the wave speed
increases, the nonlinearity of the wave decreases. They also pointed out that their
results may be useful in understanding astrophysical and laboratory wave phenomena
involving pair production and positron emissions. Liu & Liu (2011) investigated the
formation of large-amplitude electromagnetic solitons with spiky structures in e–p
plasmas. They pointed out that the localized electric field structures are important in
understanding astrophysical objects, which could account for pulsar radio emissions.
Spiky Langmuir solitons in a dense ultrarelativistic e–p plasma have been studied by
Mofiz & Mamun (1992) and Mofiz & Amin (2013). Mofiz & Amin (2013) used the
two-fluid magnetohydrodynamic (MHD) equations to describe the e–p plasma, and
found spiky Langmuir solitons that propagated along the open field lines of a pulsar
magnetosphere, indicating that there is some association with pulsar radio emissions.
Stark et al. (2007) investigated a possible emission mechanism through the coupling
of electrostatic oscillations with propagating electromagnetic waves using an e–p
plasma model relevant to pulsar magnetospheres.

On the other hand, satellite observations in the Earth’s magnetosphere have also
shown the existence of electrostatic solitary waves as part of broadband electrostatic
noise (BEN). The (GEOTAIL (Matsumoto et al. 1994, 1997; Kojima et al. 1999),
POLAR (Franz, Kintner & Pickett 1998) and FAST (Ergun et al. 1998)) satellites
frequently observed BEN and ESWs in various regions of the Earth’s magnetosphere.
The characteristic feature of ESWs is solitary bipolar pulses and consist of small scale,
large amplitude, parallel electric fields. These large-amplitude spiky structures have
been interpreted in terms of either solitons (Temerin et al. 1982) or isolated electron
holes in the phase space corresponding to positive electrostatic potential (Omura et al.
1994). Given that e–p plasmas are increasingly observed in astrophysical environments,
as well as in laboratory experiments, the above mentioned satellite observations also
lead us to explore if such nonlinear structures are also possible in e–p plasmas.

There is a distinct possibility that a pulsar magnetosphere can support the
coexistence of two types of cold and hot e–p populations (Sturrock 1971; Bharuthram
1992; Lazarus et al. 2012). Linear electrostatic waves (Lazarus et al. 2012) and
solitary waves (Lazarus, Bharuthram & Hellberg 2008) have been studied in such
a system. Here, we will investigate the possibility of nonlinear electrostatic spiky
structures in a magnetized four component two-temperature e–p plasma. The paper is
structured as follows. In § 2, the basic equations for the e–p plasma are presented. In
§ 3 we present the numerical results. A summary of our findings is presented in § 4.
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2. Basic theory

The model considered here is a homogeneous magnetized, four component,
collisionless, e–p plasma, consisting of cool electrons (ec) and cool positrons (pc)
with equal temperatures Tc and initial densities (nec0 = npc0), and hot electrons (eh)
and hot positrons (ph) with equal temperatures Th and densities (neh0 = nph0). Wave
propagation is taken in the x-direction at an angle θ to the magnetic field B0, which
is assumed to be in the x–z plane.

The continuity and momentum equations for the four species are given by

∂nj

∂t
+ ∂(njvjx)

∂x
= 0 (2.1)

∂vjx

∂t
+ vjx

∂vjx

∂x
+ 1

njm
∂pj

∂x
=−εje

m
∂φ

∂x
+ εjΩvjy sin θ (2.2)

∂vjy

∂t
+ vjx

∂vjy

∂x
= εjΩvjz cos θ − εjΩvjx sin θ (2.3)

∂vjz

∂t
+ vjx

∂vjz

∂x
=−εjΩvjy cos θ, (2.4)

where εj=+1(−1) for positrons (electrons) and j= ec,pc, eh,ph for the cool electrons,
cool positrons, hot electrons and the hot positrons, respectively.

The density of the cool electrons (positrons) is nec (npc), and that of the hot electrons
(positrons) is neh (nph).

The general equation of state for the four species is given by

∂pj

∂t
+ vjx

∂pj

∂x
+ 3pj

∂vjx

∂x
= 0. (2.5)

The system is closed by the Poisson equation

ε0
∂2φ

∂x2
=−e(npc − nec + nph − neh). (2.6)

In the above equations, nj, vj and pj are the densities, fluid velocities and pressures,
respectively, of the jth species. Ω = Ωe = Ωp = eB0/m is the cyclotron frequency.
Here m=me =mp is the common mass of the electrons and the positrons. Adiabatic
compression, γ = (2 + N)/N = 3, is assumed, where N = 1 implies one degree of
freedom.

2.1. Linear analysis
Linearizing and combining equations (2.1)–(2.6) yields the following general
dispersion relation for a four component e–p plasma:

ω2 = 2ω2
pc(ω

2 −Ω2 cos2 θ)

ω2 −Ω2 − 3k2v2
tc

ω2
(ω2 −Ω2 cos2 θ)

+ 2ω2
ph(ω

2 −Ω2 cos2 θ)

ω2 −Ω2 − 3k2v2
th

ω2
(ω2 −Ω2 cos2 θ)

, (2.7)

where ωpc,ph= (n0c,he2/ε0m)1/2 are the plasma frequencies of the cool and hot species,
respectively.
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In the limit vtc � ω/k � vth, where vth = (Th/m)1/2 and vtc = (Tc/m)1/2 are the
thermal velocities of the hot (cool) species, the dispersion relation (2.7) becomes,

ω4 −ω2(Ω2 + 2ω2
s + 3k2v2

tc)+ 2ω2
sΩ

2 cos2 θ = 0, (2.8)

where ωs =ωpc/(1+ 2/3k2λ2
Dh)

1/2 and λDh = (ε0Th/nohe2)1/2.
Equation (2.8) yields

ω2 = 1
2
(Ω2 + 2ω2

s + 3k2v2
tc)

[
1±

√
1− (8ω2

sΩ
2 cos2 θ)

(Ω2 + 2ω2
s + 3k2v2

tc)
2

]
. (2.9)

In the limit (8ω2
sΩ

2 cos2 θ) � (Ω2 + 2ω2
s + 3k2v2

tc)
2, (2.9) yields two modes. The

positive sign gives the cyclotron mode,

ω2
+ = (Ω2 + 2ω2

s + 3k2v2
tc)−

2ω2
sΩ

2 cos2 θ

Ω2 + 2ω2
s + 3k2v2

tc

(2.10)

and the negative sign gives the acoustic mode,

ω2
− =

2ω2
sΩ

2 cos2 θ

Ω2 + 2ω2
s + 3k2v2

tc

. (2.11)

2.2. Nonlinear analysis
In the nonlinear regime, a transformation to a stationary frame s= (x− Vt)(Ω/V) is
performed, and v, t, x and φ are normalized with respect to vth, Ω−1, ρ = vth/Ω , and
Th/e, respectively. V is the phase velocity of the wave. In (2.1)–(2.5), ∂/∂t is replaced
by −Ω(∂/∂s) and ∂/∂x by (Ω/V)(∂/∂s), and the diving electric field amplitude is
defined as E=−(∂ψ/∂s), where ψ = eφ/Th.

Integrating equation (2.1) and using the initial conditions nec0 = n0 and vecx = v0 at
s= 0, yields the normalized velocity for the cool electrons in the x-direction.

vecx =−
(

neco

nec

)
(V − v0)+ V. (2.12)

Similarly the cool positron, hot electron and hot positron velocities are determined.
Substituting these into the normalized form of (2.2)–(2.5) gives the following set of
nonlinear first-order differential equations in the stationary frame.

∂ψ

∂s
=−E (2.13)

∂E
∂s
= R2M2(npcn − necn + nphn − nehn) (2.14)

∂necn

∂s
= n3

ecn[E+M sin θvecyn](
nec0

n0

)2

(M − δc)
2 − 3

Tc

Th
pecnnecn

(2.15)

∂vecyn

∂s
=
(

n0

nec0

)
Mnecn

(M − δc)

[
−
(

M − (M − δc)

necn

(
nec0

n0

))
sin θ + veczn cos θ

]
(2.16)
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∂veczn

∂s
=−

(
n0

nec0

)
necnvecynM cos θ
(M − δc)

(2.17)

∂pecn

∂s
= 3pecnn2

ecn[E+M sin θvecyn](
nec0

n0

)2

(M − δc)
2 − 3

Tc

Th
pecnnecn

(2.18)
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∂s
= n3

pcn[−E−M sin θvpcyn](
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n0

)2

(M − δc)
2 − 3

Tc

Th
ppcnnpcn

(2.19)
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∂s
=
(

n0
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)
Mnpcn

(M − δc)

[(
M − (M − δc)

npcn

(
npc0

n0

))
sin θ − vpczn cos θ

]
(2.20)
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∂s
=
(

n0

npc0

)
npcnvpcynM cos θ

(M − δc)
(2.21)

∂ppcn

∂s
= 3ppcnn2

pcn[−E−M sin θvpcyn](
npc0

n0

)2

(M − δc)
2 − 3

Tc

Th
ppcnnpcn

(2.22)

∂pphn

∂s
= 3pphnn2

phn[−E−M sin θvphyn](
nph0

n0

)2

(M − δh)
2 − 3pphnnphn

(2.23)

∂nphn

∂s
= n3

phn[−E−M sin θvphyn](
nph0

n0

)2

(M − δh)
2 − 3pphnnphn

(2.24)

∂vphyn

∂s
=
(

n0

nph0

)
Mnphn

(M − δh)

[(
M − (M − δh)

nphn

(
nph0

n0

))
sin θ − vphzn cos θ

]
(2.25)

∂vphzn

∂s
=
(

n0

nph0

)
nphnvphynM cos θ

(M − δh)
(2.26)

∂pehn

∂s
= 3pehnn2

ehn[E+M sin θvehyn](
neh0

n0

)2

(M − δh)
2 − 3pehnnehn

(2.27)

∂nehn

∂s
= n3

ehn[E+M sin θvehyn](
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n0

)2

(M − δh)
2 − 3pehnnehn

(2.28)

∂vehn

∂s
=
(

n0

neh0

)
Mnehn

(M − δh)

[
−
(

M − (M − δh)

nehn

(
neh0

n0

))
sin θ + vehzn cos θ

]
(2.29)

∂vehzn

∂s
=−

(
n0

neh0

)
nehnvehynM cos θ
(M − δh)

. (2.30)

In (2.13)–(2.30), the velocities are normalized with respect to the thermal velocity
of the hot species vth = (Th/m)1/2 and the densities with respect to the total density
n0. The equilibrium density of the cool (hot) electrons is nec0 (neh0), and that of the
cool (hot) positrons npc0 (nph0), with nec0 + neh0 = npc0 + nph0 = n0. R = ωp/Ω , where
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(a)

(b)

(c)

(d)

FIGURE 1. Numerical solution of the normalized electric field for the parameters M= 3.5,
θ = 2◦, R = 10.0, δc = δh = 0.0, nec0/n0 = npc0/n0 = 0.5, Tc/Th = 0.0, and E0 = (a) 0.05
(linear waveform), (b) 0.5 (sinusoidal waveform), (c) 1.5 (sawtooth waveform) and (d) 3.5
(bipolar waveform).

ωp = (n0e2/ε0m)1/2 is the total plasma frequency, M= V/vth is the Mach number and
δc,h = v0c,0h/vth is the normalized drift velocity of cool (hot) species at s= 0.

3. Numerical results
The system of nonlinear first-order differential equations (2.13)–(2.30) are solved

numerically using the Runge–Kutta (RK4) technique (Press et al. 1996). The initial
values were determined self-consistently. All figures illustrate the actual normalized
electric fields Enorm =−(1/M)(∂ψ/∂s).

Figure 1(a–d) shows the evolution of the system for various driving electric field
amplitudes E0. The fixed parameters are M = 3.5, R = 10.0, θ = 2◦, δc = δh = 0.0,
nec0/n0 = npc0/n0 = 0.5 and Tc/Th = 0.0. Note that wave propagation is taken almost
parallel to the ambient magnetic field B0. As E0 increases, the electric field structure
evolves from a sinusoidal wave to a sawtooth structure. For a higher E0 value of
3.5, the potential structure has a spiky bipolar form. As E0 increases, the period of
the wave increases and the frequency decreases. The period of oscillations is given
by 1S = (1x − V1t)(Ω/V). Typically for 1x = 0, 1S = |Ω1t|. Hence for the
linear wave in figure 1(a), with a small driving amplitude of E0 = 0.05, the period
of the wave is calculated to be Tw = 0.995τc (frequency fw = 1.0fc), displaying the
cyclotron mode, where τc= 2π/Ω . In figure 1(b), for E0= 0.5, Tw= 1.12τc (frequency
fw = 0.89fc). Figure 1(c) shows a sawtooth waveform for E0 = 1.5, with the period of
the wave being Tw = 1.53τc (frequency fw = 0.66fc). For E0 = 3.5 (figure 1d), a spiky
bipolar waveform is shown, where the period of the wave is Tw = 2.62τc (frequency
fw = 0.38fc). It is noted that the period of the spiky structure is about two and a half
times the cyclotron period and is consistent with the associated acoustic mode.
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(a)

(b)

(c)

(d)

FIGURE 2. Numerical solution of the normalized electric field for the parameters E0= 2.0,
R=10.0, θ =2◦, δc= δh=0.0, nec0/n0=npc0/n0=0.5, Tc/Th=0.0, and M= (a) 3.0, (b) 3.5,
(c) 4.0 and (d) 5.0.

Figure 2(a–d) shows the effect of the Mach number on the electrostatic waves. Here
M is varied from 3.0 to 5.0 with the fixed parameters, E0 = 2.0, R = 10.0, θ = 2◦,
δc = δh = 0.0, nec0/n0 = npc0/n0 = 0.5 and Tc/Th = 0.0. As the Mach number increases,
the wave structure changes from a sharp spiky form to a more sawtooth-like form.
This indicates that the level of nonlinearity decreases with increasing M given the
sequence observed when E0 is increased in figure 1(a–d). A similar behaviour of the
structures going from spiky to becoming sinusoidal with increasing Mach number is
also found by Lu et al. (2010) for e–p plasma (see figures 2 and 3 of their paper).
Hence for larger values of M, a stronger E0 is required to generate the spiky structures.
Also noted is that the period of the wave decreases with an increase in the Mach
number. For M = 3.0, which is the minimum value for which a periodic nonlinear
waveform exists for the above fixed parameters, the wave has a period of Tw= 2.62τc

(frequency fw = 0.38fc), implying an associated driven acoustic mode. As the Mach
number increases to 5.0, the period of the wave decreases to 1.15τc (frequency
fw = 0.87fc), exhibiting a sawtooth type structure.

The effect of the drift velocities for the hot electron and positron components are
shown in figure 3(a–e). The fixed parameters are E0= 3.5, M= 3.5, R= 10.0, θ = 2◦,
δc = 0.0, nec0/n0 = npc0/n0 = 0.5 and Tc/Th = 0.0. The period of the spiky structures
decreases from 3.83τc for δc = −0.3 to 3.06τc for δc = +0.3. Here the hot electron
and positron flow anti-parallel (parallel) to B0 increases (decreases) the period of the
spiky structure. Previous studies on electron–ion plasmas showed a similar behaviour
for the hot electron drift velocities (Reddy et al. 2002; Moolla et al. 2003). For the
ESWs observed in the Earth’s magnetosphere, it was found that the period of the
ESWs changed rapidly (Kojima et al. 1994). Given the above found dependence of
the periodicity on the hot electron drift speed, it has been suggested that the observed
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(a)

(b)

(c)

(d)

(e)

FIGURE 3. Numerical solution of the normalized electric field for the parameters M= 3.5,
E0 = 3.5, R= 10.0, θ = 2◦, nec0/n0 = npc0/n0 = 0.5, Tc/Th = 0.0, δc = 0 and δh = (a) −0.3,
(b) −0.1, (c) 0.0, (d) 0.1 and (e) 0.3.

rapid changes in the period of the ESWs could be due to electrons being accelerated
in bursts (Moolla et al. 2003). Our results show that a similar phenomenon could
occur in an e–p plasma where, due to the symmetry of the system, both species
(electrons and positrons) are drifting.

Figure 4(a–e) show the variation of the drift velocities for the cool electron and
positron components. The fixed parameters are E0 = 3.5, M = 3.5, R = 10.0, θ = 2◦,
δh = 0.0, nec0/n0 = npc0/n0 = 0.5 and Tc/Th = 0.0. Here we observe that the period of
the spiky structures increases from 2.89τc for δc =−0.3, to 4.17τc for δc =+0.3, i.e.
as the cool beam flow becomes more parallel to the ambient magnetic field. Therefore,
for anti-parallel flow to B0, the period of the spiky structure for the cool electrons and
positrons decrease and for parallel flow it increases. It is noted that the effect of the
cool electron and positron drift velocity on the ESWs is opposite to that compared to
the hot electron and positron drift velocity on the waves, indicating that the period of
the ESWs depends only on the relative velocity between the cool and hot species.

Figure 5(a–d) show the effect of the electron and positron densities on the
normalized electric field. The fixed parameters are, E0= 1.5, M= 3.5, R= 10.0, θ = 2◦,
δc = δh = 0.0 and Tc/Th = 0.0. As the densities neco and npco increase, the oscillations
becomes more nonlinear, with increasing periodicity. With neco = npco = 0.1, a linear
waveform of period 1.01τc (frequency fw = 0.99fc) is observed. As the densities are
increased (neco = npco = 0.4), the waveform tends to a sawtooth structure of period
1.22τc (frequency fw= 0.82fc). For even larger densities (neco= npco= 0.7), the electric
field evolves into a spiky structure of period 2.66τc (frequency fw= 0.38fc). It is noted
that a smaller driving electric field is required to drive the nonlinearity of the wave
for larger density values. Since the periods of the waves are greater than 1.0τc, these
waves are associated with a driven acoustic mode.
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(a)

(b)

(c)

(d)

(e)

FIGURE 4. Numerical solution of the normalized electric field for the parameters M= 3.5,
E0 = 3.5, R= 10.0, θ = 2◦, nec0/n0 = npc0/n0 = 0.5, Tc/Th = 0.0, δh = 0 and δc = (a) −0.3,
(b) −0.1, (c) 0.0, (d) 0.1 and (e) 0.3.

(a)

(b)

(c)

(d)

FIGURE 5. Numerical solution of the normalized electric field for the parameters M= 3.5,
E0 = 1.5, R = 10.0, θ = 2◦, δc = δh = 0.0, Tc/Th = 0.0, and nec0/n0 = npc0/n0 = (a) 0.1,
(b) 0.3, (c) 0.5 and (d) 0.7.
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(a)

(b)

(c)

(d)

FIGURE 6. Numerical solution of the normalized electric field for the parameters with
M = 3.5, E0 = 3.5, R = 10.0, θ = 2◦, δc = δh = 0.0, nec0/n0 = npc0/n0 = 0.5, and
Tc/Th = (a) 0.0, (b) 0.25, (c) 0.5 and (d) 0.75.

In figure 6(a–d) we examine the effect of the cool-to-hot electron and positron
temperature ratio on the waves. The fixed parameters are, E0= 3.5, M= 3.5, R= 10.0,
θ = 2◦, δc= δh= 0.0 and nec0/n0= npc0/n0= 0.5. Here the periodicity and nonlinearity
of the wave increases with an increase in the cool-to-hot temperature ratio. The period
of the wave increases from 3.42τc (frequency fw = 0.29fc) for Tc/Th = 0.0 to 4.02τc

(frequency fw = 0.25fc) for Tc/Th = 0.75. This effect may be seen from the linear
dispersion relation (2.11), where as the temperature increases, ω decreases and hence
the period of the wave increases.

In figure 7(a–d), we have varied the propagation angle θ . The fixed parameters are
E0 = 3.5, M = 3.5, R = 10.0, δc = δh = 0.0, nec0/n0 = npc0/n0 = 0.5 and Tc/Th = 0.0.
The oscillations are of a spiky nature and the periodicity of the wave remains
unchanged with a period of 2.75τc (frequency fw = 0.36fc), representing an associated
acoustic mode. As the propagation angle increases with respect to B0, the wave
becomes increasingly more distorted with a double-humped feature. The maximum
propagation angle that produced a reasonably periodic waveform of this type was
found to be 35◦.

An examination of the critical driving electric field amplitudes for the onset of spiky
electrostatic waves as a function of the Mach number for various density ratio values
was conducted for the fixed parameters R= 10.0, δc= δh= 0.0, Tc/Th= 0.0 and θ = 2◦.
It is noted that as the Mach number increases, a larger driving electric field amplitude
is required for the onset of the spiky electrostatic waves. The increase of E0 with M
is much sharper for lower values of nec0 (= npc0). Also as the density ratio increases
for a fixed Mach number, the critical driving electric field amplitude for the onset of
spiky ESWs decreases. Further, with an increase in the density ratio, the minimum
value required for the wave speed decreases for the onset of spiky ESWs.
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(a)

(b)

(c)

(d)

FIGURE 7. Numerical solution of the normalized electric field for the parameters M= 3.5,
E0 = 3.5, R = 10.0, nec0/n0 = npc0/n0 = 0.5, δc = δh = 0.0, Tc/Th = 0.0, and θ = (a) 2◦,
(b) 10◦, (c) 20◦, (d) 35◦.

An examination of the period and pulse width of the electrostatic wave as a function
of the drift velocities for the cold electron and positron components (δc) was also
conducted for the fixed parameters M= 3.5, E0= 3.5, R= 10.0, nec0/n0= npc0/n0= 0.5,
δh = 0.0, Tc/Th = 0.0 and θ = 2◦. It is noted that as the drift velocities for the cold
electron and positron component goes from anti-parallel to parallel flow, the period
and pulse width of the ESWs increases. This effect is opposite for the drift velocities
of the hot electron and positron components, i.e. as you go from anti-parallel to
parallel for the hot drift velocities δh, the period and pulse width decrease. Similar
behaviour from satellite observations was reported, i.e. the period and pulse width
decreased (Kojima et al. 1994). In their measurements, they found that the ratio w/T
was a constant for the ESWs, with w/T = 0.3, where w is the pulse width and T
is the period of the wave. In our studies, we found that the ratio w/T was also a
constant, with w/T ≈ 0.96.

4. Discussion
In this paper, we have investigated the evolution of nonlinear electrostatic solitary

waves in a two-temperature magnetized e–p plasma. In the model considered, spatial
variation is restricted to the x-direction, while the external magnetic field is in the
(x, z) plane. In the nonlinear analysis, the associated cyclotron wave and acoustic
wave are coupled through the convective derivative terms vjx(∂vjy/∂x) and vjx(∂vjz/∂x)
in the momentum equations. These two modes are decoupled in the linear analysis.
A transition from linear sinusoidal to sawtooth to spiky waveforms is observed as
the amplitude of the driving electric field increases. The results found here for an
e–p plasma are very similar to those found by other researchers for electron–ion
plasmas. On the other hand, as the Mach number is increased (figure 2a–d) the
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nonlinearity is suppressed to the point where the bipolar ESWs are no longer excited.
For the onset of spiky ESWs, it is noted that as the wave speed increases, a larger
driving electric field is required. The periods of the waves are found to be affected
by the relative drift between the hot and cold electrons and positrons. Also, the onset
of nonlinear structures is affected by the density ratio of the cool-to-hot particle
species. As the density ratio increases, the critical value for the driving electric field
amplitude for the onset of spiky ESWs decreases and the minimum value required
for the wave speed for the onset of spiky ESWs also decreases. The ESWs are
therefore more easily excited where the cool species dominate. The results further
show that ESWs exists for almost parallel propagation, but as the propagation angle
increases with respect to the ambient magnetic field B0, the signature waveform
becomes more distorted, with a double-humped feature. The ratio of the pulse widths
and periods (w/T) of the electrostatic waves was found to be a constant, which is
consistent with experimental observations (Kojima et al. 1994) and as found for a
plasma consisting of cold and hot electrons and ions (Moolla et al. 2007). When
finite temperature effects are included, an increase in the temperature ratio of the
cool-to-hot electrons and positrons causes the broadening out of the waveforms,
which variation is associated with an increase in the wave frequency with Tc. The
nonlinear electrostatic spiky structures studied here may have important implications
for pulsars radiation and their microstructure. Firstly, these ESW can modulate the
pulsar electromagnetic radiation with a periodicity of Tw (varying from 1 to 5 times
the cyclotron period) leading to some microstructures via modulational instabilities
(Hasegawa 1975; Luo 1998). These fine structures could have a constant w/T = 0.96.
Secondly, the ESWs can couple with the electromagnetic waves and produce a new
source of pulsar radiation as discussed by Stark et al. (2007).

Here, we have not included the electromagnetic and relativistic effects in this paper.
However, in the non-relativistic plasma case discussed here, these effects are not
expected to be important as both the cyclotron and acoustic modes are electrostatic.
The general case of the coupling between electrostatic and electromagnetic modes is
quite complex and beyond the scope of this paper.
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