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One-dimensional fluid simulation is performed for the unmagnetized plasma consisting of cold

fluid ions and superthermal electrons. Such a plasma system supports the generation of ion

acoustic (IA) waves. A standard Gaussian type perturbation is used in both electron and ion

equilibrium densities to excite the IA waves. The evolutionary profiles of the IA waves are

obtained by varying the superthermal index and the amplitude of the initial perturbation. This

simulation demonstrates that the amplitude of the initial perturbation and the superthermal

index play an important role in determining the time evolution and the characteristics of the

generated IA waves. The initial density perturbation in the system creates charge separation

that drives the finite electrostatic potential in the system. This electrostatic potential later

evolves into the dispersive and nondispersive IA waves in the simulation system. The density

perturbation with the amplitude smaller than 10% of the equilibrium plasma density evolves

into the dispersive IA waves, whereas larger density perturbations evolve into both dispersive

and nondispersive IA waves for lower and higher superthermal index. The dispersive IA waves

are the IA oscillations that propagate with constant ion plasma frequency, whereas the

nondispersive IA waves are the IA solitary pulses (termed as IA solitons in the stability

region) that propagate with the constant wave speed. The characteristics of the stable

nondispersive IA solitons are found to be consistent with the nonlinear fluid theory. To the

best of our knowledge, this is the first fluid simulation study that has considered the

superthermal distributions for the plasma species to model the electrostatic solitary waves.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4964478]

I. INTRODUCTION

Electrostatic solitary waves (ESWs) is a topic of consid-

erable interest in space1–3 and laboratory4,5 plasma physics.

The ESWs contribute to the broadband electrostatic noise,

which is observed in different regions of the Earth’s magneto-

sphere.6,7 These waves are also linked with the interplanetary

shocks,1 magnetic reconnection,3 and particle acceleration2,8

processes in space plasma.

Numerous works have been done to model ESWs with

the electron and ion acoustic (IA) soliton models, which are

based on the multi-fluid approach. In these fluid models, the

reductive perturbation and the Sagdeev’s pseudopotential

methods are used to model the ESWs. The reductive pertur-

bation technique is used to study the small amplitude ion/

electron acoustic solitons in which the Korteweg-de Vries

(KdV) equation is solved in the model.9–13 The arbitrary

amplitude ion/electron acoustic solitons are studied by the

Sagdeev’s pseudopotential method, in which the stationary

solution from the fluid equations is derived, and the Mach

number range is obtained for existence of the solitons.14–20

Most of these models are studied for the plasma having ther-

mal distribution, i.e., Maxwellian distribution. However, sat-

ellite observations suggest that the particles often follow

non-Maxwellian (superthermal) type velocity distribution,

where the tail of the distribution function decreases as a

power law of the velocity. This type of distribution occurs

due to the population of the superthermal particles with the

velocity greater than the average thermal velocity of the

particles.

Spacecraft observations have confirmed the presence of

superthermal particle distribution in near Earth’s plasma

environment (e.g., Earth’s plasma sheet region,21–23 Earth’s

magnetosheath region,24 Earth’s radiation belt region,25,26

and in solar wind27,28) and in laboratory29,30 plasma. Such

distributions are well fitted by the so called kappa distribu-

tion function.29,30 Olbert,31 in 1968, first used the empirical

form of the kappa velocity distribution function to describe

free electron distribution in the satellite frame,31 followed by

Vasyliunas32 who used three-dimensional isotropic kappa

velocity distribution function to explain the low-energy elec-

tron population in the Earth’s magnetosphere.32 The three-

dimensional isotropic kappa velocity distribution function

has the following form:32,33

fj vsð Þ ¼
n0s

pjh2
s

� �3=2

C jþ 1ð Þ
C j� 1=2ð Þ 1þ v2

s

jh2

� �� jþ1ð Þ

: (1)

In the equation above, C is the gamma function, and n0s and

vs are, respectively, the density and velocity of plasma spe-

cies s. h2
s ¼ ½ðj� 3=2Þ=j�v2

th;s is the most probable speed or

characteristic speed, where vth;s ¼ ð2kBTs=msÞ1=2
is the
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thermal speed of the plasma species, kB is the Boltzmann

constant. Ts and ms are temperature and mass of the plasma

species. The spectral index j decides the slope of the tail of

the distribution function, and it is always greater than 0.5.

The smaller value of j enhances the superthermal population

in the system, which leads to decrease in the slope of the tail.

As the kappa index j!1, the kappa distribution function

converges to Maxwellian distribution function. For space

plasma, the kappa index is observed in the range,34

2 < j < 6. The one-dimensional form of the kappa distribu-

tion function can be obtained by integrating Equation (1)

over two velocity space coordinates as33

fj vsð Þ ¼
n0s

pjh2
s

� �1=2

C jð Þ
C j� 1=2ð Þ 1þ v2

s

jh2

� ��j

: (2)

The presence of superthermal particles in space and labora-

tory plasma suggests their role in the existence of ESWs,

which is confirmed by different theoretical models.35–37 In

this context, recently, there has been many theoretical stud-

ies carried out for understanding the effect of superthermal

particles on the existence conditions and the characteristics

of the ion acoustic solitary waves (IASWs) for different

plasma compositions.35–40 However, the conclusions

drawn in these studies are based on the theoretical analysis

of different plasma models using either reductive perturba-

tion or the Sagdeev’s pseudopotential techniques. These

approaches provide the existing domain of stationary soli-

tary wave solution that gives ESW profile for the given

set of parameters. However, these methods are not capable

of giving the evolutionary information of the ESWs.

Moreover, various assumptions considered in these models

to get an analytical solution suppress the nonlinear effects

in the system. To overcome such problems, a numerical

simulation technique can be a good supplementary tool,

which can be used to get evolutionary information of the

ESWs. Recently, Kakad et al.41–43 used fluid simulation to

study the characteristics of IASWs in electron-ion plasma

by treating these species as fluid. They have successfully

validated the Sagdeev’s pseudopotential technique, which

has been used in modeling the ESWs from past few

decades.

In this study, we focus on the consequence of the super-

thermal electron population on the evolution of IASWs.

Considering the ambiguity of the kappa distribution and its

involvement in the formation of the ESWs, the numerical

simulation of the model would be the suitable approach for

the study. Hence, we have developed one-dimensional fluid

code for the unmagnetized collisionless plasma, which con-

sists of cold fluid ions and the superthermal electrons. To the

best of our knowledge, this is the first fluid simulation study

where the superthermal distribution is considered in model-

ling the ESWs. In Section II, we discuss the plasma model

along with the numerical methods used in the simulation.

The simulation results are explained in Section III. We

validate the theoretical results by comparing them with the

simulation in Section IV. Finally, we conclude the results in

Section V.

II. SIMULATION MODEL

We consider homogeneous two-component unmagne-

tized plasma, which consists of cold ions (charge qi¼ e,

mass mi) and hot electrons (charge qe ¼ �e, mass me) in the

one-dimensional system. The ions are governed by the fluid

equations of continuity and momentum

@ni

@t
þ
@ nivið Þ
@x

¼ 0; (3)

@vi

@t
þ vi

@vi

@x
¼ � qi

mi

@/
@x

; (4)

where ni and vi are density and velocity of the ions in the x-

direction, respectively, / is the electrostatic potential in the

system. In the model, electrons are assumed as superthermal

particles regulated by the kappa distribution function given

by Equation (2). The electron density can be obtained by tak-

ing the first moment of the one-dimensional kappa velocity

distribution function as,

ne ¼ ne0 1� e/
j� 3=2ð ÞkBTe

� ��jþ1=2

: (5)

In the equation above, Te is the temperature of the electrons.

The electron and ion fluids are coupled by Poisson equation

@2/
@x2
¼ � qini þ qeneð Þ=�0: (6)

At the equilibrium state, plasma follows quasi-neutrality,

under which the ion density is equivalent to the electron den-

sity, i.e., ni0 ¼ ne0. Here ni0 and ne0 are ion and electron den-

sity at the equilibrium, respectively. For simplicity, we

normalized Equations (3)–(6) with appropriate scaling quan-

tities. So Equations (3), (4), and (6) can be written as

@Ni

@tn
þ @ NiUið Þ

@xn
¼ 0; (7)

@Ui

@tn
þ Ui

@Ui

@xn
¼ � @U

@xn
; (8)

@2U
@x2

n

¼ �Ni þ 1� U
j� 3=2

� ��jþ1=2

: (9)

In the equation above, the ion fluid velocity vi, the ion den-

sity ni, and the electrostatic potential / are normalized as

Ui ¼ vi=CIA; Ni ¼ ni=ni0, and U ¼ e/=kBTe, respectively.

The space and time are normalized by the electron Debye

length kDe ¼ ðkBTe�0=ne0e2Þ1=2
and inverse of the ion plasma

oscillation frequency x�1
pi ¼ ð�0mi=ni0e2Þ1=2

, respectively. It

gives xn ¼ x=kDe and tn ¼ xpit. The characteristic ion acous-

tic sound speed used in the velocity normalization is

CIA ¼ ðkBTe=miÞ1=2
.

For the numerical solution of the set of Equations

(7)–(9) the system is fragmented into the equidistance grid

points in space and time. All the plasma quantities are calcu-

lated on the grid points. In this discretized system, the first

order differential operator is replaced by its corresponding

difference formula. The spatial derivatives in Equations (7)
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and (8) are replaced by the central finite difference

formula41,44,45

@Fh

@x
¼ 8 Fhþ1 � Fh�1ð Þ � Fhþ2 þ Fh�2

12Dx
þ O Dx4ð Þ: (10)

Here, Fh can be any quantity where spatial derivative intends

to find at h-space grid point. The accuracy of this method is

up to the fourth order of grid size ðDxÞ. The time integration

of Equations (7) and (8) are done by using leap-frog

method,45 which is second order accurate in time. To remove

the high-frequency errors introduced due to the spatial dis-

cretization, we use the compensating filter45

F�h ¼
5

8
Fh þ

1

4
Fh�1 þ Fhþ1ð Þ � 1

16
Fh�2 þ Fhþ2ð Þ: (11)

In the equation above, F�h is the filtered quantity at h grid point.

We have performed simulation for the one-dimensional system

with periodic boundary conditions. For all simulation runs, the

ion velocity at t¼ 0 is zero, i.e., viðxÞ ¼ 0. In addition, there is

no electric field initially present in the system, which gives

/ ¼ 0 at t¼ 0. The background electron and ion densities are

set as ni0 ¼ ne0 ¼ n0 ¼ 1. The background equilibrium densi-

ties of the species are superimposed by Gaussian type

perturbation

dn ¼ Dn exp � x� xc

l0

� �2
" #

: (12)

In the equation above, Dn is the amplitude of the perturba-

tion, x is the position on x-axis, xc is the center of the system,

and l0 controls width of the perturbation. Hence, the form of

the perturbed density at the equilibrium is ns ¼ ns0 þ dn,

with making the substitution from Equation (12) it reads as

ns ¼ ns0 þ Dn exp � x� xc

l0

� �2
" #

: (13)

Here s ¼ e; i for electrons and ions, respectively. All simula-

tion runs are performed for the grid spacing Dx ¼ 0:2kDe, time

interval xpiDt ¼ 0:1, and width of the perturbation l0 ¼ 2kDe.

The system length, Lx, is varied as per the requirement of the

propagation of IASWs to achieve stability before reaching at

the boundaries of the system. The details of the input parame-

ters of all the simulation runs are given in Table I.

In this model, the electrons do not have any time depen-

dent equation to update its density value to the next time

step. The electrostatic potential dependency of the electron

density makes Poisson equation numerically unstable with

an implication of the conventional method for the solution.

Hence, we use the iterative approach with successive-over-

relaxation (SOR) method proposed by Lotekar et al.46 for

such kind of Poisson equation. In this approach, the approxi-

mate value of potential can be obtained by giving an initial

guess, suitable relaxation parameter ðfÞ, and tolerance ðsÞ so

that the simulation code runs numerically stable. In this sim-

ulation, we have taken f ¼ 1:7 and s ¼ 10�10 for all the sim-

ulation runs.

III. SIMULATION RESULTS

We have used a total of 56 simulation runs for the differ-

ent combination of the values of j and Dn. The value of j
index varies as j ¼ 2, 4, 6, 8, 10, and 20. For the fixed value

of the j index, the amplitude of initial density perturbation

(IDP) varies from Dn ¼ 0:05� 1 (i.e., 5%–100% of the

equilibrium density). These combinations of the j and Dn
are given in Table I. For the appropriate values of the IDP, it

is found that the perturbation evolved into two IASW pulses

and two wave packets of IA oscillations. The IASW pulses

become significantly stable after some time of their forma-

tion, where they are referred as IA solitons and the region is

called as the stability region. The evolutionary process of

these structures in different simulation runs is discussed in

Subsec. III A.

A. Generation and evolution of IA waves

Figure 1 shows the schematic of the formation and the

evolution of the IA solitons, when the short wavelength IDP

TABLE I. Table contains the input parameter information of 56 Runs given

for the different combination of j and Dn. The information of the specific

simulation run reads as, e.g., Run-1(I) has input parameters j¼ 2, Dn ¼ 5%,

L¼ 50, 000, l0 ¼ 2; Dx ¼ 0:2, and Dt ¼ 0:1. For Run-1(II), only the j value

will be changed, i.e., j¼ 4 in this case and the other parameters will be

same as Run-1(I).

j

Run Sub run number Dn L ½kDe� l0 Dx½kDe� Dt½x�1
pi �

1 0.05 50 000 2 0.2 0.1

2 0.1

3 0.15

4 2 4 6 8 10 15 20 0.2

5 I II III IV V VI VII 0.35 30 000

6 0.5 20 000

7 0.75

8 1

FIG. 1. Schematic diagram shows the evolution of the ion acoustic solitons

and ion acoustic oscillations in the system. (a) Finite potential pulse forma-

tion at first time step. (b) Formation of two IA solitary pulses and their prop-

agation toward the left and right boundaries of the simulation. (c)

Generation of IA oscillations at the trailing edge of both pulses. (d)

Formation of two IA solitons and the IA oscillations.

102108-3 Lotekar, Kakad, and Kakad Phys. Plasmas 23, 102108 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  14.139.123.135 On: Fri, 04 Nov

2016 09:26:46



is superimposed on the background electron and ion densi-

ties. The short wavelength perturbations considered here are

same as described in Kakad et al.41 The quasi-neutrality at

the equilibrium causes the electrostatic potential in the sys-

tem to be zero. As electrons follows the kappa distribution, it

leads to the generation of the finite electrostatic potential at

the next time step in the simulation system. In Figure 1(a),

the pulse shown is the finite electrostatic potential at the first

time step in the system. It is observed that the amplitude of

the electrostatic potential in the system reduced with time.

This decrease of the potential eventually stops after some

time and the pulse starts splitting from its top point through

formation of the trough as shown in Figure 1(b). Once the

value of the U approaches to zero at the centre of the trough,

two identical solitary pulses are formed in the system as seen

in Figure 1(c). Further these two pulses propagate with the

speed Vs in a direction opposite to each other, i.e., towards

the boundaries of the simulation system as shown in Figure

1(d). These pulses are identified as IASW pulses. In the

propagation, the amplitude of these IASW pulses slowly

decreases, and some oscillations are generated at the trailing

edge of both pulses. These oscillations are identified as IA

oscillations. The amplitude of the IA oscillations is consider-

ably smaller than the amplitude of the IA solitary pulse. The

IA oscillations along with the IASW pulses are shown in

Figure 1(d). The IA oscillations propagate with the speed,

Vs0 such that the IA oscillations lag behind the IASW pulses

(i.e., Vs0 < Vs). Later, after sufficient time, the IA oscilla-

tions get detached from IASW pulses and these pulses

become adequately stable. During this stage, both IASW

pulses propagate with nearly constant amplitude, width, and

speed. These stable structures are shown in Figure 1(e) and

are termed as IA solitons. From the overall 56 simulation

runs of different j and Dn, we find that the superthermal

population and the amplitude of the IDP govern the evolu-

tionary characteristics of the IASWs and the IA oscillations,

which is discussed in Subsecs. III B–III D.

B. Spatio-temporal variation of the IA waves

To study the effect of the superthermal population on

the formation and evolution of the IA oscillations and

IASWs, we investigate the spatio-temporal variation of the

electrostatic potential U in the system. Figure 2 shows four

panels of the evolution of U in space and time for kappa

index j¼ 2 and 20 with the low (Dn¼ 0.05) and high

(Dn¼ 0.5) amplitudes of IDP. The low (high) value of the

kappa corresponds to the higher (lower) population of the

superthermal electrons. The simulation system length for

the run with Dn¼ 0.05 is 50000kDe, and that for the Dn¼ 0.5

it is 20000kDe. In Figure 2, we show only part of the simula-

tion system, i.e., from Lx� xc¼�6000 to 6000kDe for all

the runs. In all the plots, x� xc ¼ 0 represents the center of

the simulation system at which the IDP is introduced at

xpit ¼ 0. Figure 2 shows the spatio-temporal variation of U
in the simulation for (a) Run-1(I): Dn ¼ 0:05, j¼ 2, (b)

Run-1(VII): Dn ¼ 0:05, j¼ 20, (c) Run-6(I): Dn ¼ 0:5,

j¼ 2, and (d) Run-6(VII): Dn ¼ 0:5, j¼ 20.

In general, all four panels of Figure 2 show two identical

sets of band structures that represent the IASW pulses and

FIG. 2. Spatiotemporal evolution of the electrostatic potential in the system for different combination of j and �n: (a) Run-1(I), (b) Run-1(VII), (c) Run-6(I),

and (d) Run-6(VII). In all the four plots, intense red band is due to the IASW pulse and the other alternate blue and light red color bands are due to the IA

oscillations.
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the IA oscillations propagating along both the positive and

negative x-directions. The small window at the center of the

respective plots shows the magnified image, where some

region of the IA waves propagating in the positive x-direc-

tion is illustrated. The IASW pulses in the system are associ-

ated with positive potential and its amplitude is higher as

compared with that of IA oscillations, which possess both

positive and negative potentials. Therefore, the dark red

bands in all four panels of Figure 2 represent the IASW

pulse, whereas the alternate blue color bands represent the

IA oscillations. The inverse of the slope of the red bands in

each panel of this figure gives the speed of the IA solitary

pulse in the corresponding run. The positive (negative) value

of the inverse of slope indicates the IA pulse propagating in

the positive (negative) x-direction. From this figure, it is

clear that in each simulation run, there are two sets of the IA

solitary pulse and IA oscillations that are propagating oppo-

site to each other in the system.

The difference in the spatio-temporal characteristics of

the electrostatic potential at the same time interval is clearly

seen in Figure 2 for the different perturbations. Comparison

of Figure 2(a) with 2(c), and Figure 2(b) with 2(d), yields

that the increase in the amplitude of IDP results in the higher

amplitudes of both IASW pulse and IA oscillations. It is

noticed that the spread in the IA oscillations is increased for

the higher amplitude IDPs and larger superthermal index j,

which indicates the wider spatial extent of these IA oscilla-

tions. Hence, more number of alternate blue colour bands are

visible in the lower panels of Figure 2 as compared with the

upper panels. The other interesting feature is the bands asso-

ciated with the IA pulse and the IA oscillations are found to

be well separated for higher amplitude IDPs. For example, in

Figures 2(a) and 2(b), where Dn ¼ 0:05, it is observed that

the IASW pulses and IA oscillations did not detach from

each other even after a very long time during the course of

evolution. This indicates that the IASW pulses and the oscil-

lations propagate at almost comparable speed.

It is also observed that the speeds and amplitudes of

IASW pulses and oscillations in case of lower value of the

kappa are smaller as compared with higher j, while the same

IDP is used to perturb the system. This is because the lower

(higher) kappa index corresponds to the presence of consider-

ably higher (lower) superthermal population. This indicates

that the system with more number of superthermal electrons

has smaller most probable thermal speed. Generally, the most

probable thermal speed of the particles decides the amplitudes

and speeds of different wave modes in the system. Therefore,

for the system with the superthermal electrons (i.e., lower j)

the wave speed is found to be smaller as compared with the

wave speeds in the Maxwellian system (higher j).

C. Dispersive and nondispersive IA waves

It is known that the waves that exist in the plasma are

nonlinearly coupled. The free energy given initially in the

form of IDP to the system is transferred to the different wave

modes. In such case, the dispersion characteristics of the

evolving plasma system will help to identify the different

wave modes supported by the plasma. We have obtained the

power spectrum from the Fourier transformation of the elec-

trostatic potential over space and time. Figure 3 shows the

power spectra of the four different simulation runs that are

depicted in Figure 2. These power spectrums are taken over

the period of xpit ¼ 0� 200. In all four plots, gray and white

dashed curves are plotted from the linear dispersion relations

derived from Equations (7)–(9). Among these lines, the white

dashed lines are plotted from the linear dispersion equation

that is obtained without considering the plasma approxima-

tion of the quasi-neutrality, i.e., Ni 6¼ Ne, which is given as

x2 ¼ k2

k2 þ j� 1=2ð Þ= j� 3=2ð Þ ; (14)

where x is the frequency and k is the wave number. The

dashed gray line is from the linear dispersion equation with

the consideration of the plasma approximation ðNi ¼ NeÞ
and it reads as

x2 ¼ k2

j� 1=2ð Þ= j� 3=2ð Þ : (15)

Figure 3(a) shows the power spectra of the electrostatic

potential taken for the simulation Run-1(I), Dn ¼ 0:05 and

j¼ 2. This plot shows the strong dispersion curves that fol-

low the white dashed line and the weak dispersion curves

that follow the gray lines. The strong dispersion curves are

diagnosed as the IA oscillations, which propagate with the

constant frequency. The gray line indicates the constant

velocity wave mode that appears as nondispersive IASW

pulses. This shows that the energy given to the system in

terms of the IDP is mainly transferred to the dispersive IA

oscillations mode in the system. Figure 3(b) also shows simi-

lar mode characteristics for the simulation Run-1(VII), Dn ¼
0:05 and j¼ 20. The major difference between these two

cases is that the dispersion curve associated with the disper-

sive mode in Fig. 3(b) has more power than that in Figure

3(a). Second, the speed of the IA oscillations in the case of

Fig. 3(b) is higher than that in Fig. 3(a).

The dispersion plot shown in Figure 3(c) for the Run-6(I)

(Dn ¼ 0:5, j¼ 2) and in Figure 3(d) for the Run-6(VII)

(Dn ¼ 0:5, j¼ 20) are the cases of the higher amplitude IDPs.

In these figures, two types of dispersion curves are clearly visi-

ble. It is found that the one dispersion curve follows the white

line while another follows the dashed gray line. The dispersion

which follows the dashed gray line is diagnosed as nondisper-

sive IASW pulses, which propagate with constant wave speed.

The other dispersion follows the dashed white line, which is

identified as the dispersive IA oscillations. From the dispersion

plots of these four simulation runs, it is observed that the

increase in the j index and IDP amplitude results in the higher

speed of the dispersive and nondispersive IA wave modes.

These observations are consistent with the observations from

the spatio-temporal evolution plots shown in Figure 2.

D. Kinetic and potential energies during evolution
of the IA waves

Figure 4 shows the evolution of the average kinetic

hKEi and potential energies hUi of the system during
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xpit ¼ 0� 30 for j¼ 2 and 20 with different amplitude of

IDP (a) Dn ¼ 0:05 and (b) Dn ¼ 0:5. In case of all four sim-

ulation runs, both energies are zero at the equilibrium for

xpit ¼ 0. In each run, both potential and kinetic energies ini-

tially increase and attend the maximum value in the evolu-

tion of the finite electrostatic potential in the form of single

pulse in the system. Later, the potential energy decreases

from the maximum. This decrease is due to the decrease in

the amplitude of the potential pulse. As soon as the potential

energy goes to its minimal, the corresponding electrostatic

potential amplitude will stop decreasing further. This time is

shown in the figure by the vertical dashed lines t1 for j¼ 20

and t2 for j¼ 2. At these times, the trough is formed at the

top point of the potential pulse, which breaks the pulse into

FIG. 4. The evolution of the average electrostatic energy hUi and kinetic energy hKEi of the ions in the system for the different kappa index and the amplitude

of IDP for the runs discussed in Figure 2. The vertical dashed lines at time t1 (for j¼ 20) and t2 (for j¼ 2) show the time at which the trough formation begins

at the top point of the potential pulse.

FIG. 3. x-k diagram during xpit ¼ 0� 200 for simulation runs: (a) Run-1(I), (b) Run-1(VII), (c) Run-6(I), and (d) Run-6(VII). The dashed gray lines are from

the linear dispersion of the IA waves which is derived by considering plasma quasi-neutrality approximation, whereas white dashed lines are from the disper-

sion relation of IA waves which is derived without consideration of the plasma quasi-neutrality approximation.
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two identical solitary pulses. In the formation of two IASW

pulses, the potential energy gradually increases, whereas the

kinetic energy decreases. The major difference we observed

is that the first minima of the potential energy comes early

for j¼ 20 as compared with the simulation runs of j¼ 2.

Furthermore, both kinetic and potential energies remain con-

stant after the formation of stable IA solitons. We also

observed that the order of the potential and kinetic energies

is higher (lower) for the higher (lower) amplitude of the IDP

in the equilibrium densities. Similar trend is observed for the

j values. For large j index, both energies have larger ampli-

tudes in comparison with the small j index.

To emphasize the contribution of the superthermal index

j in the formation of the IASW pulses, we have obtained the

IASW pulse formation time for different simulation runs. In

Figure 5, we have plotted the time at which the two IASW

pulses formed in the system as a function of j index for

Dn ¼ 0:05 and 0:5. From this figure, it is seen that the pulse

formation time decreases with the increase of j index for

both IDPs. This decrease in time is considerably high for

j � 8, which then saturates for beyond j > 8. Furthermore,

it is seen that the formation of two IASW pulses occurs early

in the system with smaller IDP than the system with larger

IDP for fixed j index.

IV. CHARACTERISTICS OF IA SOLITONS: THEORY VS
SIMULATION

The nonlinear fluid theory of IA solitons uses the

Sagdeev’s pseudopotential technique. This theory is used in

many studies to model the ESWs in plasmas. Saini et al.35

have used this approach to model the IA solitons for the

plasma consisting of fluid ions and superthermal electrons.

Equations (7)–(9) can be transformed to the stationary frame

moving with the solitary wave speed Vs, i.e., n ¼ xn �Mtn,

where M ¼ Vs=CIA is the Mach number with respect to the

ion thermal velocity. Then, solving Equations (7) and (8) for

perturbed density of ions and putting it in the Poisson equa-

tion, and assuming appropriate boundary conditions for the

localized disturbances along with the conditions that U¼ 0,

and dU=dn¼ 0 at n! 61, one can obtain the following

energy integral35

1

2

dU
dn

� �2

þ w Uð Þ ¼ 0: (16)

In the equation above, wðUÞ is the pseudopotential, which is

given as

w Uð Þ ¼ M2 1� 1� 2U
M2

� �1=2
" #

þ 1

� 1� U
j� 3=2

� ��jþ3=2

: (17)

The lower limit of the Mach number Mmin, above which the

solitary solutions exist is given as

Mmin ¼
j� 3=2

j� 1=2

� �1=2

: (18)

The upper limit of Mach number Mmax, below which the sol-

itary solutions exist is obtained by solving the following

equation numerically

M2
max þ 1� 1� M2

max

2j� 3

� ��jþ3=2

¼ 0: (19)

By using Equations (18) and (19), we have calculated the

lower and upper Mach number range for the existence of IA

solitons by varying the superthermal index j, and it is shown

with shaded region in Figure 6. Saini et al.35 have also

obtained the parametric range for the existence of the sta-

tionary solitary solution for the model considered here. We

tried to validate the range of Mach numbers obtained from

the nonlinear theory with our fluid simulations. Figure 6

shows the variation of the Mach numbers with respect to j
index. The asterisks with different colours in this figure cor-

respond to the IA pulse speed obtained from the simulations

FIG. 6. Variation of Mach numbers with j. The solid black line represents

the lower (Mmin) and the solid blue line represents the upper (Mmax) Mach

number limit predicted by nonlinear fluid theory for the existence of the IA

solitons. Shaded region shows Mach number range for the existence domain

of the IA solitons predicted by the nonlinear fluid theory. The different aster-

isk color points are the Mach numbers obtained from the simulation for dif-

ferent combinations of kappa and the amplitude of the IDP.

FIG. 5. The variation of the IASW pulse formation time (see Figure 2(c))

with the kappa index. The blue color is for the perturbation Dn ¼ 0:05 and

the red color lines represent the case of the Dn ¼ 0:5 perturbation in ion and

electron equilibrium densities.
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for different amplitude of the IDP. The speed of the IASW

pulses is calculated in the region where these pulses are suffi-

ciently stable. The stability region is chosen by observing the

propagation of solitary pulse with nearly constant width and

amplitude in the system. From Figure 6, it is observed that

the Mach numbers associated with the lower amplitude IDPs

are very close to the lower limit of the Mach number that is

supported by the nonlinear fluid theory.

Our fluid simulation shows that the Mach number asso-

ciated with the IA solitons increases with the increase of the

amplitude of the IDP for the fixed value of the j index. For

the fixed amplitude of IDP, it is found that the speed of IA

solitons quickly increases with the increasing of j index up

to 6. For j > 6, the Mach numbers of the solitons are almost

constant, which is in accordance with the nonlinear fluid the-

ory. However, it is noticed that the speed of the IA solitons

obtained from the simulation for �n ¼ 0:05� 1 is narrower

than the range predicted by the nonlinear fluid theory.

We have also obtained the maximum amplitude and

width of the stable IA solitons in the stability region from all

simulation runs. These amplitudes and widths are verified

with the amplitudes and widths obtained from the theory. To

do so, we take the speed of IA pulse obtained from the simu-

lation as an input to solve Equation (16) numerically. The

numerical solution of this equation gives the profile of the U,

from which the corresponding amplitude and width of the IA

soliton is calculated.

Figure 7 shows the variation of the maximum amplitude

Umax estimated from the theory and simulation with kappa

index. The amplitude represented by asterisks in this figure

is from the simulation data, while the circles represent the

amplitudes obtained from the theory. This figure shows that

the simulation results are in agreement with the results from

the nonlinear fluid theory for Dn > 0:1. It is also observed

that the maximum amplitude of the IA soliton increases with

the increase of j index. The increase in the amplitude after

j > 6 is not significant, which is in agreement with the the-

ory. The increase in the amplitude of the IDP increases the

maximum amplitude of the solitons in the system for the

fixed value j index.

Figure 8 shows the variation of the width of the IA soli-

tons with the kappa index from the theory and simulation.

The points represented by the asterisks in this figure are from

the simulation data and the circles are from the theory. In

this case, the simulation results are well matching with the

theoretical results for the IDPs with amplitude Dn > 0:1.

This figure shows that the widths of the solitons increase

with the increase of the j index. For any fixed j index, the

widths are larger for lower amplitude IDPs, whereas for large

amplitude IDPs, the soliton widths are smaller. In all simula-

tion runs, the soliton widths beyond j¼ 6 are nearly the

same.

For the lower amplitude perturbations (Dn � 0:1), there

are differences in the amplitudes (Umax) and width of IA

pulse obtained from the theory and simulation. It should be

noted that nonlinear theory gives the information about sta-

ble solutions supported by the plasma system. The present

fluid simulation shows that apart from stable IA pulses, the

IA oscillations are also present in the plasma system. When

the amplitude of IDP is smaller (Dn � 0:1), the IA oscilla-

tions and IA pulse are found to be moving with nearly same

speed. Hence, the IA oscillations in these cases did not

detach from the IA pulse. The near presence of dispersive IA

oscillations affects the characteristics like width and ampli-

tude of the IA pulse. Thus, for lower amplitude perturbations

(Dn � 0:1), there is disagreement in the characteristics of IA

pulse obtained from simulation and theory. It suggests that

the solitary solutions obtained from the nonlinear fluid the-

ory for the Mach numbers very close to the lower limit of the

Mach number range, i.e., Mmin is not appropriate to model

the ESWs supported by the plasma system.

V. CONCLUSIONS

In this paper, we have studied the evolution and propa-

gation of the IA waves in a plasma composed of cold fluid

ions and superthermal electrons following the kappa velocity

distribution function. To the best of our knowledge, this is

the first simulation that includes electrons following nonther-

mal kappa velocity distribution, which is often observed in

space plasmas.

FIG. 8. Figure shows the variation of the maximum full width at half maxi-

mum for different combinations of the j and IDP amplitude. The circles rep-

resent the Umax obtained from the theory, whereas the asterisks represent the

soliton widths obtained from the simulation.

FIG. 7. Figure shows variation of the maximum electrostatic potential sup-

ported for different j values and the different amplitude of the IDP. The

circles represent the Umax obtained from the theory, whereas the asterisks

represent the Umax obtained from simulation.
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We found that the IDP introduced in the plasma system

evolves into two indistinguishable sets of IA oscillations and

IASW pulses. The IA oscillations follow the IASW pulses

such that Vs0 � Mmin < Vs. The IA oscillations are found to

be dispersive mode that propagates in a system with constant

ion plasma frequency, whereas the IASW pulses are found to

be nondispersive and they propagate in the system with con-

stant speed. The simulation runs performed by varying the

amplitude of the IDP indicates that the IDP evolves into the

strong dispersive IA waves along with very weak nondisper-

sive IA waves, when the IDP amplitude Dn < 0:1. On the

other hand, when the amplitude of IDP is above 10%, strong

dispersive and nondispersive IA waves are generated in the

system.

From the spatio-temporal evolution analysis, we con-

clude that the decrease in the population of superthermal

electrons (i.e., higher j index) generates more dispersive

IA oscillations than the system with lower j index. The IA

oscillations become more dispersive and cover wider spa-

tial extent for the higher amplitude IDPs and the superther-

mal kappa index. The fluid simulation shows that the IDP

with higher (smaller) amplitude generates large (small)

amplitude IASWs in the system. It is concluded that the

increase of superthermal index increases the speeds of the

IA oscillations and IASWs, for the fixed amplitude of the

IDP in the system. In case of the fixed superthermal index,

as the amplitude of the IDP increases the speed of the IA

oscillations and IASWs increased. It is seen that the time

required for the formation of IA mode is lesser for higher

kappa index. It suggests that the IASWs are generated

faster in the plasma that follows the thermal distribution.

From the estimation of the average kinetic and potential

energies during evolution of the IASWs, it is observed that

the energies remain constant when the nonlinearity and the

dispersion in the system get balanced. Furthermore, it is

found that the formation of IA solitons evolved earlier for

the simulation runs with large kappa index and the IDP

with large amplitude.

It is observed that the IA pulses become significantly

stable during the course of their propagation and their char-

acteristics like width, amplitude (Umax), and speed (Vs) are

nearly constant in this stability region. The IA soliton char-

acteristics obtained from the fluid theory and simulations are

compared. The existence of the two identical IA solitons

moving in opposite directions with the constant speed is pre-

dicted by the nonlinear fluid theory, which is consistent with

the simulation results. It is observed that the Mach numbers

of the IA solitons obtained from the simulation for different

amplitude of the IDP are found to be in the existence region

predicted by the nonlinear fluid theory. However, our simu-

lation suggests that the IA soliton characteristics obtained

from the nonlinear fluid theory closer to the lower limit of

Mach number range (i.e., Mmin) are not appropriate. For the

fixed width of the perturbation, the maximum Mach number

predicted by the nonlinear theory is not achievable with the

IDP with 100% amplitude. In reality, it is not possible to

have the 100% perturbation. These observations manifest the

overestimation of the existence limit given by the nonlinear

theory.
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