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“Supersolitons,” the structures associated with the stationary solitary solutions with the Mach

number greater than those associated with the double layers, were introduced in 2012. Later,

many researchers have reported the existence domain of the supersolitons in different plasma

constituents. However, their evolutionary dynamical behavior and stability were main concerns

and were not yet explored. We performed fluid simulation of ion acoustic supersolitons in a plasma

containing two-temperature electrons having kappa distributions in the presence of cold fluid ions.

Our simulation shows that a specific form of the initial perturbation in the equilibrium electron

and ion densities can evolve into ion acoustic supersolitons, which maintain their shape and size

during their propagation. This is first-ever simulation to confirm the stability of the supersolitons

that opens a new era in the field of solitary wave structures in space and laboratory plasmas.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4969078]

The concept of a new form of solitary waves, i.e., “super

solitary waves,” was proposed by Dubinov and Kolotkov.1

Subsequently, several plasma models have been explored to

show the existence/nonexistence of these structures in multi-

component plasmas, which termed them as “supersolitons.”2–20

Supersolitons are characterized by having subsidiary extrema

on the sides of a typical bipolar electric field signature or by

association with the Mach numbers beyond the Mach number

associated with double layer in the fully nonlinear Sagdeev

pseudopotential description. This analysis is done in a sta-

tionary frame, which propagates with the solitary wave, for

one mode at a time. This analysis gives solutions that repre-

sent stationary solitary waves, such as solitons, double layers,

and supersolitons. The Sagdeev formalism cannot give time

evolutionary information of both solitary and supersolitary

structures. Hence, it excludes all discussion of the stability

and interaction properties of the supersolitons. To address

these issues, we carry out one-dimensional fluid simulations

for one of the plasma models that support ion acoustic (IA)

supersolitons.3

We consider a homogeneous unmagnetized plasma con-

sisting of cold and hot electrons and cold positive fluid ions

in a one-dimensional system.3 The electrons are assumed as

superthermal particles regulated by the kappa distribution

function21–25
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In the above equation, C is the gamma function, and n0s and

vs are the density and velocity of the cold electrons (s¼ ce)

and hot electrons (s¼ he). h2
s ¼ ½ðjs � 3=2Þ=js�v2

th;s is the

most probable speed, where vth;s ¼ ð2kBTs=msÞ1=2
is the ther-

mal speed of the electrons, and kB is the Boltzmann constant.

Ts and ms are temperature and mass of the electrons. The

spectral index js decides the slope of the tail of the distribu-

tion function, and it is always greater than 1.5. The cold and

hot electron densities can be obtained by taking the first

moment of Equation (1)

Nce ¼ f 1� U
s jce � 3=2ð Þ

� ��jceþ1=2

; (2)

Nhe ¼ 1� fð Þ 1� U
jhe � 3=2ð Þ

� ��jheþ1=2

: (3)

In the above equations, f ¼ nce0=ni0; s ¼ Tce=The, the densi-

ties of cold (nce) and hot (nhe) electrons are normalized as

Nce ¼ nce=ni0 and Nhe ¼ nhe=ni0, respectively. The electro-

static potential (/) is normalized as U ¼ e/=kBThe. The jce

and jhe are the spectral indices associated with the cold and

hot electrons, respectively.

The ions are governed by the fluid equations of continu-

ity and momentum
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where Ni and Ui are normalized density and velocity of the

ions in the x-direction, respectively. At the equilibrium state,

the plasma follows quasi-neutrality, under which the ion den-

sity is equivalent to the electron density, i.e., ni0 ¼ nce0 þ nhe0.

Here, nce0; nhe0, and ni0, respectively, are the cold electron

density, hot electron density, and the ion density at the equilib-

rium. The electron and ion equations are coupled by the

Poisson equation
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¼ Nce þ Nhe � Ni: (6)

In the above equations, the ion fluid velocity vi and the ion

density ni are normalized as Ui ¼ vi=CIA and Ni ¼ ni=ni0,

respectively. The space and time are normalized by the hot

electron Debye length kDhe ¼ ðkBThe�0=ni0e2Þ1=2
and inverse

of the ion plasma oscillation frequency x�1
pi ¼ ð�0mi=

ni0e2Þ1=2
, respectively. It gives xn ¼ x=kDhe and tn ¼ xpit.

The characteristic IA sound speed used in the velocity nor-

malization is CIA ¼ ðkBThe=miÞ1=2
.

We modified the one-dimensional fluid code of Lotekar

et al.25 for the plasma model considered in this paper. In this

case, for the numerical solution of the set of Equations (4),

(5), and (6), the system is fragmented into the equidistance

grid points in space and time. All the plasma quantities are

calculated on the grid points. In this discretized system, the

first order differential operator is replaced by its correspond-

ing difference formula. The spatial derivatives in Equations

(4) and (5) are replaced by the fourth order central finite dif-

ference formula.26–29 The time integration of Equations (4)

and (5) is done by using the leap-frog method,27 which is sec-

ond order accurate in time. To remove the high-frequency

errors introduced due to the spatial discretization, we use the

compensating filter.27 A necessary condition for the conver-

gence of the explicit finite difference method used in our sim-

ulation is that it has constrained by the Courant condition,

UmaxDt=Dx � 1. This condition states that for any given time-

step (Dt), the maximum velocity in the system (Umax) must

not be greater than that which would allow fluid to travel

more than one grid-step (Dx). The Dx and Dt in our simulation

are chosen in such a way that the Courant condition is always

fulfilled.

In the simulation, initially, the background equilibrium

densities of all three plasma constituents are superimposed

by Gaussian type perturbation25

dn ¼ Dn exp � x� xc

l0

� �2
" #

: (7)

In the above equation, Dn is the amplitude of the perturba-

tion, x is the position on the x-axis, xc is the center of the sys-

tem, and l0 controls the width of the perturbation. We

consider the initial density perturbation (IDP) with Dn¼ 1.9

ni0 and l0¼ 10kDhe. We set the following parameter values in

the simulation run: grid spacing: Dx¼ 0.2 kDhe, time interval:

Dt¼ 0.1 x�1
pi , and system length: Lx¼ 40,000kDhe. The fluid

simulation was performed in a one-dimensional system with

periodic boundary conditions. We performed simulation for

the case of moderately superthermal electrons as discussed

by Verheest et al.3 The parameters considered in the simula-

tion are f¼ 0.055, s¼ 0.12, jce¼ 10, and jhe¼ 10. The flow

velocities of the plasma species at t¼ 0 are assumed to be

zero.

We first undertake a discussion of the generation and

evolution of IA supersolitons, when the long wavelength

IDP is used to perturb the background electron and ion densi-

ties in the fluid simulation. The long wavelength IDP consid-

ered here is the same as that described in the study of Kakad

et al.28 The schematics of the different steps involved in the

evolution of the IA supersolitons in terms of electrostatic

potential (upper panels) and associated electric field (bottom

panels) are shown in Figure 1. The quasi-neutrality at the

equilibrium causes the electrostatic potential in the system to

be zero. As cold and hot electrons follow the kappa distribu-

tions, it leads to the generation of the finite electrostatic

potential at the first time step in the simulation system. The

normalized electrostatic potential (U) and electric field (En)

associated with it are shown at xpit¼ 0.1 in Figure 1(a).

Here, t is a product of the number of simulation time steps

and Dt. It is observed that the amplitude of the electrostatic

potential in the system decreases with time. This decrease of

the potential eventually stops after some time, and the pulse

starts splitting from its top point through formation of the

trough (not shown here). Once the value of the U approaches

to zero at the centre of the trough, two identical solitary

pulses in the potential and electric field are formed in the

system. Further, these two pulses propagate with the speed

Vs in a direction opposite to each other, i.e., towards the

boundaries of the simulation system. Both pulses are

FIG. 1. Schematic diagrams illustrate

some of the stages during formation of

the IA supersolitons in the simulation.
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identified as long wavelength ion acoustic solitary wave

(IASW) pulses and are found to be weakly dispersive. One

of the snapshots of these propagating pulses at xpit¼ 90 is

shown in Figure 1(b). Later, during their propagation the

amplitude and speed of IASW pulses gradually increase.

Consequently, the trailing edges of both pulses tend to

steepen with time. One of such pulses propagating towards

the right-side boundary of the simulation system at xpit
¼ 1200 is shown in Figure 1(c). In the course of steepening

of the pulses, some oscillations are generated at the trailing

edge of both pulses. These oscillations are identified as IA

oscillations. The IA oscillations propagate with the speed,

Vs0, such that the IA oscillations lag behind the IASW pulses

(i.e., Vs0 < Vs) with time. Because of the steepening, the

amplitude and speed of the IASW pulse increase. Generally,

the evolution of the long wavelength weakly dispersive

IASW pulse can lead to its steepening followed by the wave

breaking.28,30 However, we observed a different process in

the present simulation. The amplitude of the pulse increases

because of steepening; however, the IASW pulse does not

break in the simulation. Instead, the pulse becomes wider at

the bottom-side. Subsequently, the IA oscillations detached

from the trailing edge of the pulses after sufficiently long

time and the stable supersoliton form in the system (see sup-

plementary material for the evolution of supersoliton, which

is created from the simulation data). One of the snapshots of

the supersoliton pulse propagating towards the right-side

boundary of the simulation system at time xpit ¼ 17,880 is

shown in Figure 1(d).

The dispersion characteristics of the evolving plasma

system will help us to identify different wave modes sup-

ported by the plasma system. We have obtained the power

spectrum from the Fourier transformation of the electrostatic

potential over space and time. Figure 2 shows the power

spectra of the potential (U) from the simulation run. These

power spectra are taken over the period of xpit ¼ 0–200. In

this plot, the black and white dashed curves are plotted from

the linear dispersion relations derived from Equations (4),

(5), and (7). Among these two lines, the white dashed lines

are plotted from the linear dispersion equation that is

obtained without considering the plasma approximation of

the quasi-neutrality, i.e., Ni 6¼ Ne, which is given as

x2 ¼ k2

k2 þ f
jce � 1=2ð Þ

s jce � 3=2ð Þ þ 1� fð Þ jhe � 1=2ð Þ
jhe � 3=2ð Þ

� � ; (8)

where x is the frequency and k is the wave number. The

dashed black line is from the linear dispersion equation with

the consideration of the plasma approximation ðNi ¼ NeÞ
and it reads as

x2 ¼ k2

f
jce�1=2ð Þ

s jce � 3=2ð Þ þ 1� fð Þ jhe � 1=2ð Þ
jhe � 3=2ð Þ

� � : (9)

In Figure 2, two types of dispersion curves are clearly visible.

It is found that one dispersion curve follows the white line

while another follows the dashed black line. The dispersion

that follows the dashed white line is diagnosed as nondisper-

sive IA supersoliton pulses, which propagate with constant

wave speed. The other dispersion that follows the dashed

black line is identified as the dispersive IA oscillations.

We examine the evolution and propagation of different

wave structures through spatial and temporal evolution of

their electrostatic potentials, which is depicted in Figure 3.

In Figure 3, we show only part of the simulation system, i.e.,

from Lx � xc¼�6000 to 6000kDhe for the simulation run. In

this plot, x� xc ¼ 0 represents the center of the simulation

system at which the IDP is introduced at xpit ¼ 0. Figure 3

shows two identical sets of band structures that represent the

IASW pulses and the IA oscillations propagating along both

positive and negative x–directions. The small window at the

center of the plot shows the magnified image, where some

region of the IA waves propagating in the positive x–direc-

tion is illustrated. The amplitude of the electric field associ-

ated with the IASW pulses in the system is higher as

compared to that of the IA oscillations. Therefore, the dark

red bands in Figure 3 represent the IASW pulses, whereas

the alternate blue yellow and light blue bands represent the

IA oscillations. The inverse of the slope of the red bands in

Figure 3 gives the speed of the IA supersolitons. The positive

FIG. 2. x-k diagram during xpit ¼ 0–200 from the simulation. FIG. 3. Spatio-temporal evolution of the electric field in the simulation.
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(negative) value of the inverse of the slope indicates the IA

supersoliton pulse propagating in the positive (negative)

x–direction.

To demonstrate the stability of the IA supersolitons, we

have shown snapshots of the supersolitons propagating in the

positive x–direction at xpit1 ¼ 14,550 and xpit2 ¼ 15,550 in

Figure 4. The snapshots at two different times show that the

amplitude of the potential and electric field associated with

each supersoliton is nearly the same, which reveals the sta-

bility of the supersolitons in the system.

We compare the supersoliton profile from the simulation

with the profile obtained from the nonlinear fluid theory.3

For this, we obtained the speed (i.e., Mach number) of the

supersoliton in the stability region as suggested in Figure 4.

We observed that the supersoliton characteristics are

unchanged between xpit ¼ 14,100 and 16,100. We obtained

the speed of the supersoliton in this stability region from its

spatial and temporal variation as shown in Figure 3. The nor-

malized speed (i.e., Mach Number, M) of the supersoliton

obtained from the simulation is 0.80294. We used this speed

in the energy integral equation, i.e., Equation (5) of Verheest

et al.3 to obtain the supersoliton profile from their model.

Figure 5 shows the comparison of the profiles of the (a) elec-

trostatic potential and (b) associated bipolar electric field of

the IA supersolitons obtained from theory with those in the

simulation (at xpit ¼ 16,000). The amplitude and width of

the supersolitons from the simulation are 0.2182 and 28.14,

respectively, whereas the amplitude and width from the the-

ory are found to be 0.2178 and 29.19, respectively. This

shows that both potential and electric field associated with

the supersolitons obtained from theory and simulation are

comparable.

In conclusion, we report the first-ever computer simula-

tion of the evolution of IA supersolitons in the plasma com-

posed of cold and hot superthermal electrons and cold fluid

ions. We found that the specific form of perturbation in the

equilibrium densities of the plasma constituents evolved into

the IA supersolitons. The generated ion acoustic supersoli-

tons in the simulation are longitudinal density perturbations,

driven by electric field that arises from the space charge

developed by the slight displacements between the ion and

electron due to the density perturbations. The speed, ampli-

tude, and width of these structures depend on the perturba-

tion parameters, the electron temperature ratio (s), and

density ratio (f) considered in the simulation. This simulation

has made it possible to follow the detailed evolution of IA

supersolitons and its stability over few thousands of xpi in

the plasma.

The presence of plasma constituents and the form of

IDP in the simulation both decide whether the pair of soli-

tons or chains of solitons or supersolitons will be evolved.

For the plasma model considered in this paper, all three types

of structures are possible with different IDP forms (i.e., with

different widths and amplitudes). In this paper, we have pre-

sented evolution of the specific form of the IDP that evolves

as only supersolitons. However, why this IDP evolves into

pair of supersolitons and not into chain of IA solitons needs

to be understood. In the evolution of supersoliton, it is seen

that the amplitude of the initially developed IASW pulse

increases because of the steepening; however, this pulse do

not break. Instead, the pulse becomes wider at the bottom-

side and evolved as a supersoliton. This indicates that the

nonlinearity and the dispersion got balanced to maintain the

shape and size of the supersoliton structures in the system,

before reaching at the critical amplitude required for the

wave breaking.

Recently, there has been a great deal of interest in the

study of supersoliton structures. In these studies, the nonlin-

ear fluid theory of the standard arbitrary amplitude solitons

has allowed researchers to discover characteristics of the

supersolitons in different plasma constituents. These theories

have shown that the supersolitons are characterized by sub-

sidiary extrema on the sides of a typical bipolar electric field

signature or by association with a Mach number beyond dou-

ble layers’ Mach number. The potential profiles of supersoli-

tons superficially look like those of traditional solitons.

However, its close view shows two small bulges at both sides

of the potential pulse of the supersoliton. Our fluid simula-

tion also shows the same features of supersolitons as pre-

dicted by the fully nonlinear Sagdeev pseudopotential

description. The width, amplitude, and speed of the IA super-

solitons obtained from the simulations are comparable with

those obtained from the theory.

The IA solitons, electron acoustic solitons, IA double

layers, and electron acoustic double layers constitute a sub-

class of nonlinear electrostatic modes in the fluid description

FIG. 4. Snapshots of the (a) potential and (b) electric field associated with

the IA supersoliton at xpit1 ¼ 14,550 (blue curve) and xpit2 ¼ 15,550 (red

curve) from the simulation.

FIG. 5. The (a) potential (U) and (b) electric field (En) profiles of the IA

supersoliton from the simulation and theory.
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of the plasma. These structures are found under laboratory

conditions in current carrying and voltage driven plasmas as

well as in plasmas driven by beam particle injection or by

wave launching. Experimental evidence is furthermore pro-

vided by observations in the boundary layer regions of the

Earth’s magnetosphere.31,32 With confirmation of the forma-

tion and stability of the supersolitons in the simulation, we

proposed that the IA supersolitons are part of the subclass of

nonlinear electrostatic modes. This has open up new ques-

tions as: whether supersolitons exist in kinetic description? If

so, how different will be the dynamics of the hump/hole

associated with the supersoliton in comparison with the regu-

lar hump/hole in the plasma? Whether hole/hump associated

with the supersolitons will transport/accelerate more charge

particles than the usual hump/hole in the plasma? Do super-

soliton type structures exist in space and laboratory plasmas?

In conclusion, the simulation of supersolitons has opened a

new era in the field of solitary wave structures in space and

laboratory plasmas.

See supplementary material for the animation of the evo-

lution of supersolitons, which is created from the simulation

data. In this animation, we have shown one of the supersoli-

tons propagating toward the right-side boundary of the simu-

lation system.

The model computations were performed on the High

Performance Computing System at the Indian Institute of

Geomagnetism. Authors are grateful to Professor D. S.

Ramesh, Director, Indian Institute of Geomagnetism (IIG)

for his encouragement and support in establishing new high

performance computing facility at IIG.
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