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Abstract A new model is proposed to forecast the peak sunspot activity of the upcom-
ing solar cycle (SC) using Shannon entropy estimates related to the declining phase of the
preceding SC. Daily and monthly smoothed international sunspot numbers are used in the
present study. The Shannon entropy is the measure of inherent randomness in the SC and is
found to vary with the phase of an SC as it progresses. In this model each SC with length
Tcy is divided into five equal parts of duration Tcy/5. Each part is considered as one phase,
and they are sequentially termed P1, P2, P3, P4, and P5. The Shannon entropy estimates for
each of these five phases are obtained for the nth SC starting from n = 10 – 23. We find that
the Shannon entropy during the ending phase (P5) of the nth SC can be efficiently used to
predict the peak smoothed sunspot number of the (n + 1)th SC, i.e. Sn+1

max . The prediction
equation derived in this study has a good correlation coefficient of 0.94. A noticeable de-
crease in entropy from 4.66 to 3.89 is encountered during P5 of SCs 22 to 23. The entropy
value for P5 of the present SC 24 is not available as it has not yet ceased. However, if we
assume that the fall in entropy continues for SC 24 at the same rate as that for SC 23, then
we predict the peak smoothed sunspot number of 63±11.3 for SC 25. It is suggested that the
upcoming SC 25 will be significantly weaker and comparable to the solar activity observed
during the Dalton minimum in the past.
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1. Introduction

Prediction of an upcoming solar cycle has always been a topic of great interest to space
scientists and technologists. As the Sun is the source of energy for our planet, the vari-
ability in the solar energy emitted in the form of radiation and highly energetic particles
affects our life and near-Earth environment, including space-based communication systems
and technology (McComas et al., 2008; Emmert, Lean, and Picone, 2010; de Toma et al.,
2010; Ermolli et al., 2013; Solomon, Qian, and Burns, 2013; Hajra et al., 2014; Hao et al.,
2014). It would not be an exaggeration to call the Sun the master controller of our space
weather. Solar cycles (SCs) with extremely low solar activity for prolonged periods, such
as the Maunder minimum and Dalton minimum, have been observed in the past. Several
studies using proxies for solar activity have suggested the presence of grand minima in the
SC (Usoskin, Solanki, and Kovaltsov, 2007, 2011). Curiosity about future solar activity re-
sulted in a number of studies proposing various models to forecast peak solar activity. Some
of the prediction models were based on data that used various proxies of solar activity, viz
F10.7 cm solar flux, sunspot number, and aa index (Ohl, 1966; Feynman, 1982; Wilson,
1990; Thompson, 1993; Hathaway and Wilson, 2006; Kane, 2007; Pesnell, 2014). Other
models were based on dynamo theory (Dikpati and Charbonneau, 1999; Dikpati, De Toma,
and Gilman, 2006; Dikpati and Gilman, 2008). In addition to this, the strength of the so-
lar polar magnetic field was also used as one of the indicators to forecast the level of an
upcoming solar cycle (Svalgaard, Cliver, and Kamide, 2005; Muñoz-Jaramillo et al., 2013;
Svalgaard and Kamide, 2012). The forecast from the above-mentioned methods are either
available before or close to the solar minimum or after initiation of a SC.

Although many prediction models are available today, their usage depends upon the reli-
ability of their forecast. For instance, Clilverd et al. (2006) predicted the smoothed sunspot
number (SSN) to be 42 for SC 24. Based on the solar polar magnetic field, Svalgaard,
Cliver, and Kamide (2005) forecast the SSN to be 75, and Pishkalo (2014) gave a pre-
diction of SSN 90±12 for SC 24. Kakad (2011) suggested that the SSN for SC 24 could
be 74. Later, an expert panel of NASA predicted a peak SSN of 101 late in 2013 for SC 24
(https://solarscience.msfc.nasa.gov/predict.shtml). Gkana and Zachilas (2015) used monthly
sunspot numbers and gave a forecast of 92.4 for the peak SSN of SC 24, which is in close
agreement with the observed SSN. Comparison of predictions for SC 24 using fifty different
available methods were presented by Pesnell (2008, 2016). Now we know that the current
SC 24 reached a peak of 102.3 in monthly and 81.9 in monthly smoothed sunspot numbers
close to February 2014 and April 2014, respectively. This suggests that the forecasts by
some of the models were close to the observed SSN for SC 24, whereas other model predic-
tions either underestimated or overestimated the peak SSN for SC 24. Thus, it is essential to
develop precise prediction models to forecast solar activity with the least errors.

Earlier studies demonstrated that sunspot time series possess chaotic behavior (Mundt,
Maguire, and Chase, 1991; Price, Prichard, and Hogenson, 1992; Zachilas and Gkana,
2015). In such chaotic systems, prediction of the present state is difficult because of the
very high dependence on the initial conditions. Application of a technique based on the
Shannon entropy, which represents the inherent randomness in the system, could be a good
candidate to understand such systems. In the present study, we develop a new model based
on the Shannon entropy to forecast the peak SSN of an upcoming SC. This model uses the
sunspot observations from SCs 10 – 23. The method adopted to construct the model is de-
scribed in Section 2. The results are discussed and the proposed model equation is validated
in Section 3. Conclusions from the present study and the forecast for SC 25 are given in
Section 4.

https://solarscience.msfc.nasa.gov/predict.shtml
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2. Method

In this study, we use the daily and monthly smoothed international sunspot numbers Ver-
sion 1 dataset, which is available at http://www.sidc.be/silso/. Before we proceed with the
model development, the characteristics of each SC, namely, ascent time (Ta), descent time
(Td), length (Tcy), maximum sunspot number (Smax), and minimum sunspot number (Smin)
are estimated using the monthly smoothed sunspot number (SSN) data. In order to obtain
these characteristics, it is important to establish the start time (ts), peak (tp), and end (te) for
each SC. The start and peak times of the nth SC are associated with the occurrence of the
minimum and maximum in the SSN for the nth SC, respectively. The end time for the nth
SC is the same as the start time for the (n + 1)th SC (i.e. tne = tn+1

s ). The occurrence of the
minimum and maximum for a given SC is obtained by taking the mathematical minimum
and maximum in the monthly SSN. If the same value of minimum/maximum is encountered
in the monthly SSN more than once, then its first occurrence is treated as the time of mini-
mum/maximum for the corresponding SC. Thus, the characteristics for the nth SC are given
by the ascent time T n

a = tnp − tns , descent time T n
d = tne − tnp , and length T n

cy = T n
a + T n

d . The
monthly SSN at the time of tnp and tns are represented by Sn

max and Sn
min, respectively, for each

nth SC. We present these characteristics for SCs 1 – 24 in Table 1. Details of the estimated
characteristics of each SC using other methods can be found in the review article by Hath-
away (2010). The SC characteristics obtained from three different methods were compared
by Kakad (2011), and their study suggested very small deviation among them. Thus, we
chose to use the method based on mathematical minimum/maximum in the monthly SSN to
derive the SC characteristics.

The second step is to obtain the estimates of the Shannon entropy from the daily sunspot
numbers. We apply the technique of the Shannon entropy to SCs 10 – 24 as the daily sunspot
number data do not have major data losses during this period. The concept of the Shannon
entropy is well known and was introduced by Shannon (1948) in the information theory sev-
enty years ago. However, its application, particularly to space weather, climate, and Earth-
related studies has certainly increased during recent decades. It is used as an important tool
to understand the link between various phenomena involving cause-and-effect relationships
(Materassi, Wernik, and Yordanova, 2007; De Michelis et al., 2011; Bapanayya et al., 2011;
Das Sharma et al., 2012; Zhao and Qin, 2013; Vichare, Bhaskar, and Ramesh, 2016). Re-
cently, Kakad, Kakad, and Ramesh (2015) computed the Shannon entropy associated with
each SC and used it to predict the descent time of the forthcoming SC. In the present study,
we have explored the possibility of using information of the Shannon entropy from preced-
ing SCs to develop a forecasting model for the peak activity of the upcoming SC.

The Shannon entropy is a measure of randomness present in a system, which is described
by the given data series. When computing the Shannon entropy from daily sunspot numbers,
one has to obtain the information on variations present in the original time series. This is
accomplished by applying a moving average filter to the original data (Carbone, Castelli,
and Stanley, 2004). We denote these variations by �S, and for each j th day it is estimated
using

�S(j) = S(j) − 1

L

k=j+(L−1)/2∑

k=j−(L−1)/2

S(k), (1)

where S(j) is the daily sunspot number for the j th day and L is the size of the smoothing
window. For each j th day, we estimate the average value of the sunspot number over a length
of window [L] centered on that j th day. We then remove this mean from the corresponding

http://www.sidc.be/silso/
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value of the sunspot number on the j th day. It should be noted that estimates of �S are
sensitive to the choice of the length of the smoothing window (L) used in Equation (1).
A larger or smaller window size can smooth the data too much or too little. Therefore ad-
equate caution should be exercised while choosing a smoothing window in order to draw
statistically meaningful information on inherent variation present in the daily sunspot num-
ber. This point was taken into account in an earlier study by Kakad, Kakad, and Ramesh
(2015) using different smoothing windows on daily sunspot numbers. Their study suggested
that a smoothing window of nine days is reasonable to retrieve a meaningful value for �S,
therefore we take L = 9 days in this study. The estimated �S is treated as a random variable
to compute the Shannon entropy, and it is given by

E = −
l=m∑

l=1

p(yl) log2

[
p(yl)

]
, (2)

where y is a random variable with m the number of outcomes, and p(yl) is the probability
of yl . It is clear from Equation (2) that one requires information on the probability distri-
bution function of the random variable yl in order to estimate the Shannon entropy. We
obtained the probability distribution function using the histogram technique (Wallis, 2006).
The Shannon entropy can now be obtained using

E = −
k=N∑

k=1

pk log2(pk) + log2(wk), (3)

where pk is the probability, wk is the width of the kth bin of the histogram, and N is the
total number of bins in the histogram. The estimated probability density function is such that∑k=N

k=1 pk = 1. We determine the bin width using Scott’s method, where wk = 3.49σ/m1/3

(Scott, 1979). Here σ and m indicate the standard deviation in �S and the number of random
observations, respectively.

It may be noted that Kakad, Kakad, and Ramesh (2015) computed the entropy associated
with each SC, and it was found to vary with the SC number. It is well documented that solar
activity changes within a SC. For example, the rate at which it increases in the ascending
phase or decreases in the descending phase are not same. The duration of the ascending
and descending phases is not the same either. It is known that SC 23 had an extended min-
imum that resulted in a longer descending time for that SC. Although not yet verified, it is
possible that the association of a variable degree of randomness with these different phases
of SCs could be one reason for the above observation. Thus, we examine the entropy re-
lated to different phases of a given SC. For this purpose, we divide each SC into five parts
of equal length. These partitions are illustrated in Figure 1 superposed with the daily (red)
and monthly averaged (blue) sunspot number of SC 21. Here each part of the nth SC has a
length of T n

cy/5, and we treat them as different phases of the SC, starting from Phase 1 (P1)
to Phase 5 (P5). Phase 1 (P1) of the nth SC starts at tns and ends at tns +T n

cy/5. Consequently,
Phase 5 (P5) of the nth SC starts at tne − T n

cy/5 and ends at tne .
As an example, the �S (upper panels) and corresponding probability distribution func-

tion (lower panels) during P5 for (a) SC 21 and (b) SC 22 are shown in Figure 2. This figure
indicates that the shapes of the probability distribution function during the ending phase of
SC 21 and SC 22 are different, and the corresponding entropy values are 4.59 and 4.67,
respectively. For each SC, we have five entropy values corresponding to P1 to P5. We have
displayed the time variation of the entropy in the different phases of an SC in Figure 3a for
SC 10 – 24. The vertical black dashed-dotted line and red dotted line indicate the time of the
start (tns ) and peak (tnp ) for each SC, respectively. It is clearly evident that the entropy does
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Figure 1 Variation of daily (red) and monthly average (blue) sunspot numbers are shown for SC 21. The SC
is divided in to five parts of equal length (i.e. T 21

cy /5) as marked by vertical column of different colors. Each
part is considered as one phase and they are respectively termed as Phase 1 to Phase 5.

Figure 2 Variations in daily sunspot numbers (�S) are shown in the upper panel with their corresponding
probability distribution function in the lower panel for Phase-5 of (a) SC 21 and (b) SC 22. The entropy values
during P5 are mentioned in the corresponding subplot.
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Figure 3 (a) Variation of entropy during different phases for SCs 10 – 24 are shown as a function of time.
Each filled dot represents the entropy value during one of the phases corresponding to P1 to P5. (b) The
average sunspot number during each phase is plotted with its corresponding value of entropy for SCs 10 – 24.
It is found that the higher (lower) values of entropy are associated with maximum (minimum) average sunspot
number.

change with the phase of solar activity. In Figure 3b we show the plot of the average sunspot
number (〈S〉) during different phases as a function of corresponding entropy values for each
solar cycle (SCs 10 – 24). Thus, it is clearly evident that the distinct phases (P1 – P5) of the
solar cycle yield varied entropy values. Lower (higher) entropy values are associated with
periods of lower (higher) sunspot numbers.

3. Results and Discussion

With the understanding that the degree of randomness varies with the phases of an SC, we
prefer to use this information in developing a prediction scheme for estimating the peak
smoothed sunspot number. In other words, our aim is to forecast the peak SSN for the
(n + 1)th SC using the available information of the preceding SCs in terms of entropy,
ascent time, descent time, length, etc. In particular, we proceed to test whether the entropy
information in different phases of past SCs can be employed to predict the peak SSN of
the (n + 1)th SC. In order to develop such a prediction model, the dependence of the peak
SSN of the (n + 1)th SC on the entropy values in different phases of the preceding four
SCs, i.e. cycles n, n − 1, n − 2, and n − 3, is examined. In this preliminary analysis, it is
noted that Sn+1

max correlates well with two parameters, namely i) the entropy during phase P5
of SC n, and ii) the descent time of the SC n− 2. This yields correlation coefficients of 0.60
and 0.76, respectively. When these two parameters are combined in the form En

P5/T n−2
d ,

the correlation significantly improves to 0.87. Thus, En
P5/T n−2

d is designated as parameter
X and used further in the development of the forecasting model. Several tests reveal that
when a dimensionless quantity [T n−3

a /T n−1
cy ] is used to scale Sn+1

max , this correlation improves
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Figure 4 We define two
parameters (X = En

P5/T n−2
d and

Y = Sn+1
max [T n−3

a /T n−1
cy ]) for the

model. Y is plotted as a function
of X. The correlation coefficient
is 0.94 and it is based on the
entropy estimates for SCs 10 – 23
i.e. N = 14. The linear
least-square fit equation is shown
in the plot.

substantially to 0.94. Therefore, we define Sn+1
max [T n−3

a /T n−1
cy ] as our parameter Y and use it

in the forecast model development.
Based on the above analysis, it is found that of the different phases, entropy values cor-

responding to P5 of SC n (i.e. En
P5) best predict the peak SSN of SC n+ 1. In addition to the

entropy estimates of P5 of the nth SC, we use the ascent time, descent time, and length of the
preceding SCs in the present prediction model. The model parameters are X = En

P5/T n−2
d

and Y = Sn+1
max [T n−3

a /T n−1
cy ]. Figure 4 depicts the relation between parameter Y and X for

SCs 10 – 23. It shows a strong dependence between these parameters, with a correlation co-
efficient of r = 0.94. Thus the correlation coefficient is based on N = 14 data points and is
statistically above the 99% significance level. The obtained linear fit between X and Y gives
rise to the following regression:

Sn+1
max

[
T n−3

a

T n−1
cy

]
= 137.34

[
En

P 5

T n−2
d

]
− 43.11. (4)

This equation indicates that the forecast for the peak SSN of SC n + 1 becomes possible
when the entropy toward the end of the preceding SC (SC n), i.e. during P5, is available. We
used this prediction equation to obtain the peak SSNs for SCs 10 – 23, and these estimates
are compared with the observed peak SSN of the corresponding SCs. Figure 5a illustrates
the comparison of observed (red) and predicted (black) peak SSNs for SCs 10 – 23. The
peak SSN predictions for the past SCs i.e. n = 11 – 24 are in general agreement with the ob-
served peak SSNs for the corresponding SCs. The absolute difference between the predicted
and observed peak SSNs is given in the last column of Table 1. Overall, the difference in
observed and predicted peak SSN values lies in the range of 1 – 26, with an average value
〈ζerror〉 = 11.3. The absolute errors for SCs 12, 17, 18, and 22 are relatively high (ζerror > 20)
compared to other SCs.

With the present prediction model, the forecast of the peak SSN for the immediately
following SC is possible only after the end of the preceding SC. Our aim is to enable fore-
casting of the peak SSN for SC 25. Keeping this in view, we plot the entropy during P5
for SCs 10 – 23 as shown in Figure 5b. It may be noted that SC 24 is in its declining phase
and has not yet ceased. As the entropy value of P5 related to SC 24 is not available yet, the
forecast of the peak SSN of SC 25 using Equation (4) is not feasible. However, we attempt
to circumvent this situation using information available for SCs 22 and 23 as follows. If we
assume that the obtained decreasing entropy trend of P5 (from 4.66 to 3.89) related to SC 22
and SC 23 is to continue at the same rate during SC 24, then the entropy of P5 for SC 24
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Figure 5 (a) Observed (red) and predicted peak smoothed sunspot number for SCs 10 – 24. It suggests that
the observed and predicted SSN are in good agreement and the average absolute error in the predicted SSN
is 11.3. The forecast of peak SSN for SC 25 of S25

max = 63 ± 11.3 is marked by a circle. (b) Shannon Entropy
during the ending phase of each SC (i.e. Phase 5) as a function of SC number for SCs 10 – 23. The value of
entropy is approximated for SC 24 using the trend of entropy from SC 22 – 23. This approximate estimate of
E24

P5 = 3.1 is shown by the red circles.

is 3.1. This is shown as the red circle in Figure 5b and is also mentioned in Table 1. By
considering this derived entropy value to be correct, the proposed prediction equation yields
an estimate of 63±11.3 as the peak SSN of SC 25. This predicted value of S25

max is marked as
a dotted circle in Figure 5a. Several other studies provided peak SSN values in the range 63
to 100 from different approaches. While a study by Hathaway and Wilson (2004) suggested
a peak SSN of 70±30, Janardhan et al. (2015) used photospheric magnetic field data and
provided an estimate of 62±12 for the peak SSN of SC 25. In addition to these, there were
other studies that suggested that the peak SSN of SC 25 would be greater than 100 (Tripathy,
2016).

A careful examination of Equation (4) indicates that the peak SSN of a forthcoming SC is
dependent on the degree of randomness present during the ending phase of the preceding SC.
If the right-hand side of Equation (4) becomes smaller than zero, then mathematically it will
give negative values for the peak sunspot number, which is a nonphysical situation. Thus,
one can find the critical entropy value that is required to maintain the positive peak sunspot
number by equating the right-hand side of Equation (4) to zero. It should be noted that the
descent time term T n−2

d that appears on the right side of Equation (4) varies from one SC
to another. While computing the critical entropy, we use the average estimate of the descent
time for SCs 1 – 23, which is 〈Td〉 = 6.75 ± 1.33 years. Adopting this simple procedure, we
obtain the critical entropy for P5 as EC

P5 = 43.11〈Td〉/137.34. These calculations suggest that
if the entropy value during P5 of the preceding SC falls below a critical limit of 1.7±0.40,
then the following solar activity can enter into a physically non-realizable situation that
cannot be explained using the proposed prediction equation.
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4. Conclusions

In the present study a new model was developed to predict the peak smoothed sunspot of a
forthcoming SC. This model uses estimates of the Shannon entropy, a measure of inherent
randomness, in the ending phase of a preceding SC termed Phase 5. In addition to this,
the ascent time, descent time, and length of the preceding SCs are also used in the model.
The prediction model is represented by Equation (4) in the previous section. This model
prediction equation is based on the entropy estimates for SCs 10 – 23. The parameters X =
En

P5/T n−2
d and Y = Sn+1

max [T n−3
a /T n−1

cy ] defined for the models have a correlation coefficient
of 0.94. The average absolute error in the predicted and observed SSN is found to be 11.3.
It may be noted that the prediction using the proposed model is available at the start of a
new SC. As SC 24 has not yet ceased, we derived the approximate entropy value for SC 24
based on the trend of entropy from SCs 22 – 23. By assuming the estimated entropy value
of E24

P5 = 3.1 to be correct, we predict the peak SSN for SC 25 to be 63±11.3. Although the
prediction of the peak SSN for SC 25 is based on some approximations, it suggests weaker
solar activity similar to the well-known Dalton minimum. In contrast, if the entropy value
during P5 of SC 24 does not fall drastically, as speculated in Figure 5b, and remains closer
to the corresponding entropy value of SC 23, then the prediction for SC 25 is 116±11.3. We
also obtained the limiting or critical entropy value during the ending phase of the preceding
SC, which is required to maintain a positive SSN for an upcoming SC. If the entropy during
the ending phase of the nth SC falls below the critical value of EC

P5 = 1.7 ± 0.4, then the
following solar activity cannot be sustained to yield a positive SSN. A few other recent
studies have suggested a weaker activity for SC 25. Notably, Zachilas and Gkana (2015)
concluded that the next 90 years are likely to witness a significant reduction in solar activity
resembling the Maunder minimum. These authors have also tested their neural network-
based model that incorporates the newly revised sunspot number series (Version 2) and
arrived at the same conclusions as above that the upcoming solar activity is indeed going to
be low (Gkana and Zachilas, 2016).
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