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This paper studies thefefts of galactic cosmic rays on clouds and snow-fall ratéstarctica using nine years of data
(2001-2009) covering the long deep solar minimum (2007-2009) for the first time. Measurements of the fair-weather air
earth currentX) at the IndiarAntarctic station Maitri (70°45'S1943'E), and equivalent galactic cosmic ray (GCR) flux

from the neutron monitor measurements made aAtherican station McMurdo (77°51'S, 166°40’E) are used for the

study Meteorological data from thntarctic stations Maitriyostok (78°27'S,106°52’E), Scott Base (77°51'S, 166°46'E)
andAntarctic Data base are also us€be results show that low level cloud coverage (pressure >680 hPa) is positively
correlated to GCR flux with the maximum correlation (31%) being at the long solar minimum (2007-2009) when snow-fall
increased by 1493 he observed link between cosmic rays and climafatarctica is discussed in terms of ion-aerosol
clear-sky hypothesis and ion-aerosol near-cloud hypothesis. GCR enhanced the cloud formation, and the increased low
level clouds have invigoration to reflect more heat back to space.

Keywords: Global Electric Circuit; Cosmic Rays, Antarctic Cloud Anomalies; Cloud-Microphysics; | on-mediated
Nucleation

Introduction formation (Tinsley and Deen, 199Tinsley 1996) etc.

. ... Cosmic rays of galactic and solar origin are difficult
The studies to understand the effects of solar activity, | Jitarentiate. They are prime sources of ionization

ﬁ.nd cosr\r;\ilf rayslc;régl_imate Srr:d, Wlegljfg(.arRhave a l?nQn the troposphere which is the main source region of
istory (Wison, ; Sarabhal, » Rao et al - imate and different kinds of weather including

1972; Harrisor! ané!plin, 2001_;Rycr9ft etal, 2012_)' lightning clouds and snow-fall. The intensity of galactic
The total solar irradiance provides first order (variable) cosmic rays (GCR) consisting mainly of high energy
enzrgﬁ/_ :jnpu('; to the lower atmosphere.l Thel Se(_:olndradiation of sub-atomic particles is known to decrease
anc t.|r order energy sources are solar uitraviolet, increasing solar activity due to the heliospheric
radiations that vary by several percentages over afnagnetic field (HMF) opposing the propagation of
solar cycle (Frohlich and Lean, 199_8) and cosmic raysscr (e.g.Achterbeg, 1981 Potgiete013). During
((I:_arslawet C?l" 2005). The cosmr:c rayheffects ON solar active periods, highly irregular HMF causes
¢ |mz|:1tg an Wgat er comes f roug b prgcessessudden modulation of GCR flux, known as Forbush
Involving condensation nucleus abundances g, .ase The GCRs are complex in nature, and their

(E ickingon, 1975)’ tthmderstgrm meglggtri_ﬁcation alnd effects on eartls'atmosphere are further complicated
thermodynamics (Markson and M ). ice crysta by the orientation of geomagnetic field. The intensity
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of solar cosmic rays (SCR) consisting of high energy are small between solar minimum and solar maximum
protons (>0.1 GeV), heavier ions and relativistic (Pierce andddams, 2009). Usoskin and Kovaltsov
electrons increase with increasing solar activity (e.g.,(2006) explored ionization rate which implies that,
Kamiyama, 1966; Roble, 1985;insley, 1996; stronger than usual high energy particle fluxes are
Papaioannou, 2@). At high latitudes where the required for an appreciable change in the weather
geomagnetic field lines are open and nearly vertical _ _ _
to the eartts surface, SCRs can penetrate deep into The modeling studies of Lucas aA#imoto

the atmosphere, and strong transient changes of théZOOG) calculated aerosol nucleation rafes0sols

fluxes of energetic particles can occur there due toCan change th_e earshradiatio_n budge_t d_irectly
solar flares and solar events (Schrateal, 2006 through scattering and absorption and indirectly by
Plainakiet al, 2007) ’ ’ modifying cloud microphysics. Meteorological

community has quantified the characteristics of

Both GCRs and SCRs have meteorological aerosols to assess their effects on weather (e.g.,
importance mainly because of their ionizing power Nakajimaet al, 2001; Deshpande and Kamra, 2004;
(e.g., Sarabhai, 1942; Bazilevskaya, 2000; Rad,;201 Curtiuset al, 2006). In recent years, considerable
Mironovaet al, 2015). GCRs cause ionization mainly progress has been made in understanding the chemical
in the lowest part of the atmosphere, where they ionizecomposition ofAntarctic aerosols, and their
N,, NO,, HO,, SQ, and Q. SCRs cause ionization microphysical properties and the factors that enable
of O, and hydroxyl-radicals mainly at tropopuase and them to act as Cloud Condensation Nuclei (CCN)
stratosphere altitudes (e.g., Calist@l, 2011). The and Ice Nuclei (IN) (e.g., Koponetal, 2003 Asmi
ionization rate varies from ~2 ions cierl close to et al, 2010). Clouds are condensed drops or ice
earths near space to ~40 ions 81 at tropopause  crystals formed from atmospheric water vapor
(e.g., Carslavet al, 2002). The ionization (or ions) Generally clouds are formed by the rising and lowering
and aerosols (or dust particles) lead to cloud formationof air by convection, topographgonvegence and
by (1) acting as centers for aerosol nucleation frontal lifting in which cosmic rays seem to have
(Svensmarlet al, 2007, Kirkbyet al.,2011) for water ~ third order (less) effect for the formation of CCN/
vapor condensation and (2) modulating the IN.
atmospheric resistance for air-earth electric current
flow through global electric circuit with ions aiding in
ice nucleation (e.g., Markson and Mui®80; Rrcroft
et al, 2000;Tinsley, 2000; Harrisoret al, 2012);
processes (1) and (2) are known as clear-sky
hypothesis and ion-aerosol near-cloud hypothesis
respectively

Important studies of the effects of cosmic rays
on clouds have been reported (e.g., Svensmark, 1998;
Rycroft et al, 2000; Harrisoret al, 2012). Review
articles presented blinsley (2000); Bazilevskaya,
(2000); Carslavet al, (2002); Smart and Shea, (2009)
Marsh and Svensmark, (2000) noticed a good
correlation between low level clouds and cosmic rays,

The role of ions and aerosols in acting as nucleiand proposed that GCR and lower—tropospheric cloud
should enable the formation of more cloud coverage are positively correlated. Latéris
condensation nuclei/ice nuclei (IN), under critical hypothesis was supported by several other research
super-saturation, for activation for cloud formation, groups (e.g. Carslawt al., 2002; Kirkby 2007;
seems the link between cosmic rays and weather (e.gHarrisonet al, 2012). The data from the Indian
Yu, 2002) A small change in aerosol number density Antarctic station Maitri for short periods have been
seems to affect cloud properties because it modifiesused earlier to study mainly the diurnal variation of
the rate of ice crystallization (e.g. Krissansen and air-earth current density and electric field. Siirggh
Roger 2013).This has been proposed to occur via al. (2013) reported the data for 12 days in January-
the ion-assisted formation of ultra-fine aerosols which February 2005. Deshpande and Kamra
can grow to Cloud Condensation Nuclei (CCN) or (2001) reported the data for 34 days in 1997.
through increased ice crystallization (e, 2002). Panneerselvarat al (2007b) analyzed the data in
Laboratory experiments seem to support this 2001-2004.
suggestion (e.g., Hansenal, 1983). Modeling study

showed that the changes in cloud condensation nuclei Using the rainfall data obtained from different
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locations in 1860-1917Clayton (1923) reported a =

general decrease in the rainfall at solar maximum at

mid-latitudes and to some extent at high latitudes while g 1

the rainfall increased at equatorial latitudes. In a study . O\ =8 o

of the effects of solar variability on lower atmosphere, 5 MAITREZ SR U
Dickinson (1975) suggested that noticeable changes ( )
in the lower atmosphere are possible through (i)
changes in the distribution of clouds which is linked to 179 2,5/ ‘
solar activity and (ii) significant variations in the 1 1 : VOSTOK (78°27'3, 106152 E)
absorption of solar radiation or emission of infra-red Ul
radiation by the lower atmosphere and eahiface. V- N 7
Kirkby (2007) reported that an increased GCR flux Do e s 3RS
appears to be associated with a cooler climate anc B horr nask g R
southerly shift of ITCZ (Intefropical Convegence >

Zone). The influence of ITCZ may imply significant

changes of upper tropospheric water vapour in the

tropics and sub-tropics potentially affecting both long

V\(ave absorptlon and ava”ablllty of water vgpour fO-I‘ Fig. 1: Locations of Antarctic research stations Maitri
cirrus clouds. Sourabh and Boss (2010) applied Fourier (Indian), Vostok (Russian), Scott Base (New Zealand)
and wavelet analysis to the precipitation, temperature and McMurdo (American) from where the data used
and sunspot number (solar activity) data from a

number of locations in different continents during _ _ _
1901-2000; they noticed periodicities of 8-fears ~ current and atmospheric electric potential measured

conditions are important proxies for studying the global

In this paperwe investigate the fects of  electric circuit (GEC). The fair-weather days
cosmic rays on clouds and snow-fall ratitarctica  considered have full 24-hour observations. Fair-
using long data sets for nine years (2001-2009)weather days are days without snowfall, wind speed
covering the long deep solar minimum (2007-2009) |ess than 10 m—$ and cloud coverage less than 3
for the first time. The study uses the atmosphericoctas at Maitri. Days with less than 24-hour
electrical and meteorological parameters measurethbservations are not considered.
mainly at the Indian station Maitri, and GCR flux
measured at thémerican Antarctic station At Maitri, air-earth current is measured using
(McMurdo). The experiments at Maitri and data long wire antenna, and_ ambient e_Iectric field is
sources are described in section 2. The results ar&heasured using an Electric Field Monitor (EFivp:/

presented and discussed in sections 3 and 4. /www.boltek.com/).The signals from long wire
antenna used for Maxwell current measurements and
Materials and Methods passive wire antenna used for electric potential

: , . I , measurements are fed throdgflon-insulated cables
The IndianAntarctic station Maitri (70°45'S 12 43'E) to a PC-based data acquisition system. The sensors
is located in the Schirmacher oasis in the Dronning ;. installed on bare land: and the sensors and

Maud Land (Fig. 1) and occupies an area of 3% km
at an altitude of 17 m above mean sea level (AMSL).
Summer temperature at Maitri is —4 to —5°C, and it
falls below —25°C in winteMaitri station experiences

insulations are cleaned at least once atdigi quality
components which maintain their characteristics in
subzero temperatures are used in all electronic
) _ o circuitry. The atmospheric electricity measuring
moderate wmds with a mean speed of SM Maitri instrumentations used are long wire antenna, passive
the surface is flat and void of obstructions; and the ;,ienna and electric field mill, which are similar to

ice-cov'e_red surface has very high electrical the standard ones used (e.g., Ruhnke, 196Gt
conductivity The surface can be considered as a plane, Bailey 1983; Tammetet al, 1996; Harrison,

plate of infinite electrical conductivityfhe airearth 1997). Instruments are calibrated at the highly
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sophisticated electronic laboratories in India and weather air-earth current density,)(at Maitri,
described in Dhanorkar and Kamra (1997), modulation of cosmic rays due to HMfnally
Deshpande and Kamra (2001) and Panneerselvanconnects the putative GCR effect on clouds in
et al (2007a)An Automated/NVeather &tion (ANS) Antarctica. Figure 2 shows the diurnal variation of
is operated at Maitri for monitoring meteorological half hourly average air-earth current density (n
parameters. Thia-situ winds are characterized by 2001-2009; vertical bars represent standard deviations
high directional constancgamely the southea3he at hourly intervals. The data are presented in three
sea level pressure is approximately 970 hPa, andbanels a, b and ¢ corresponding to solar maximum
overcast sky occurs mainly due to the influence of phase (2001-2003), declining phase (2004-2006) and
sub-polar low-pressure systefmtarctic clouds dfer long deep minimum phase (2007-20@% shown by
from the deep convective clouds of low latitudes. panels a and b the air current den3jtyn the whole
Snowflakes mainly form in clouds that contain both decreasd, by ~1.75 pA/m from solar maximum to
liquid drops and ice crystals. The ice crystals that areminimum and can be understood in terms of: (i)
present within these clouds will grow rapidly until they variation of the ionization by solar cosmic rays, solar
are large enough to fall. energetic protons and bremmstrahlung electrons
reaching the middle and lower polar atmosphere

Thel at_mcl)(sjpherikc): E?Iectric pitigﬂa;l?gsatfoggd (Rishbeth and Garriott, 1969; Curties al, 2006;
meteorological data obtainedvatstok ( ' Schroteret al, 2006), and (ii) reduction in the solar

52'E) (http://globalcircuit.phys.uh.edu)_ano_l Scott Base wind-magnetosphere dynamo mechanism, discussed
(77°51'S, 16846'E)) are used for _verlflcanon_. Cloud in section 4The conduction current density however
coverage noted from the International Satellite Cloud peaks with respect to lightning at different times in

_CIimathogy Project (ISCCP) d"_"ta basg (http: different continents. The conduction current density
isccp.gisa.nasa.gov) and cloud information and peak increases from ~3.0 pAZin 2002 to 3.75 pA/

change-in-_snowfall are obtained froﬁntarctic m?in 2009 may be due lightning activity (enhancement
meteorological record (ftp://amrc.ssec.wisc.edu). TheOf 17% in GCR flux noted)

duration and number of blizzards, rate of snow fall
and cloud coverage are also manually noted by the Over the solar activity trend, variationshows
members of the Indian Scientific Expedition in peaks at around specific UT hours corresponding to
Antarctica (ISEA) from time-to-time. the thunderstorm times mainly in continents. For
, . example, the prominent peak occurring at around
N(_eu'Fron r_nomtors are generally used for studying 18:00-19:00 UT almost every year seems to
the varla.tl_ons'ln'ground Ievgl GCR flux be'cause th_eycorrespond to the global lightning activifyhe
are sensitive indicators of primary GCRs with energ'essecondary peak at, around 20:00, bRy be mainly

in the range 9'5’5 GeVhe ground level GCR flux . due to a lage contribution from SoutAmerican
data are obtained from the measurements made using. . 4or cloudsA flat peak during 08:00-09:00 U

the neutron moonlto,rs at tnegenF amAntarctic §tat|on some years corresponds to the thunderstorm times in
McMurdo (77°51'S, 166°40 E,) and available at g, ) Faepsia/Australia maximizing at ~08:00 UT
(ftp.bartol.udel.edu). McMurds'data are one of the g hsiantial peak in air-earth current happens with
sources and |nd|catpr ofthe 9“’“”0' Ievel' GCR flux & African thunderstorm contribution at 14:00-15:00. UT
Antarctica. It provides a vital three dimensional 1y,q ojectrical storms occur mainly over the continents
per;pectlve on the shower of equwalenr_mtarctm because the updraft intensities of clouds are higher in
regional GCR count. The hourly time series of GCR |54 than in ocean. THevariations have been studied
flux during the period of study (2001-2009) are earlier by a number of scientific groups (Israel, 1973;

obtained and analyzedime-domain method is Deshpande and Kama01: Harrison 2005:yRroft
adopted to characterize the data series, in the samg, ., "5515. Siinglet al 2'013) oS is diséussed .
ways in which neutrons were observed. y ’ X '

section 4.
Results The number of fair-weather days of observations

This section presents the observations and results. [t'S€d is shown in Fig. 3. In general, 20 to 60 days of
observations are available in all months except in the

inter-connects the series of measurements of fair



Investigation of the Influence of Galactic Cosmic Rays on Clouds and Climatstarctica 635

winter months of June and July when the observations Figure 4 shows the variation of GCR flux £10
are available for less than 10 days each. Thecounts/hour). The GCR flux increases with decreasing
difference in the number of days, howewlres not  solar activity in 2001-2009, with the increase being
seem to have any significant effect on the meanslightly faster during the declining phase of solar
atmospheric current density as understood from theactivity (2004-2006). The flux increases from about
small standard deviations from average values (Fig.8.75 (x 1 counts/hour) in 2001 to 10 (x 3€ounts/

2). The long duration (9 years) data presented for thehour) in early 2006. The flux then remains nearly
first time, though not very large, seem valuable in steady (or increases by a small amount of 0.5 {x 10
understanding the geosciences of the remotecounts/hour) during the long deep solar minimum
continent. The satellite recorded meteorological fair- (2007-2009). The observed increase of GCR flux
weather days, which provide information only of the seems positively correlated to thunder storm activity
cloud conditions, howevgtiffer from those in Fig. 3.  (conduction current) or low altitude clouds as
discussed below he correlation between GCR flux
and low level clouds has also been noted in earlier
studies (Svensmark and Friis-Christensen, 1997;
Marsh and Svensmark, 2000; Kristjanssinal.,
2008), and is discussed in section 4.

>
N W A o

In addition to the overall GCR flux variation
described above, the GCR data (Fig. 4) showed large
fluctuations during 2001-2006. In order to determine
the periods (and causes) of the fluctuations, the data
were subjected to wavelet analysis. Figure 5 shows
the wavelet spectra of the data in 2001, 2003, 2008
and 2009. It may be noted that the data (Fig. 4) are
BB i3 98 I B A% 98 o B @ 45 b not fully available for the year in 2001 and 20AS.

o Hur e — shown (Fig. 5) the dominant periods are ~27 days
and its sub-harmonic (13.5 days) in all years though
the periods are centered during certain windows of

Air earth current density (pA/m’)
- N w A

= N W &

Fig. 2: Diurnal variation of half hourly average atmospheric
air-earth current density (J,) on fair weather days in

2001-2009 measured at Indian Antarctic station the years. The spectra show that the dominant periOdS
Maitri. Vertical bar indicates standard deviations at are stronger at higher levels of solar activifjhe
half-hourly intervals spectra seem to reveal that the GCR flux is could be
modulated by solar wind periodicities. The dominant
100 period is also broad (~40-15 days) especially in solar
i ] active years (2001 and 2003), which may be due to

the occasional occurrence of coronal mass ejections
I (CME) and high speed solar wind streams (SWS).
- ] SWS interact with the background slow solar wind
60 - . . and produce CIRs (co-rotating interaction regions).
s0 L - - ] The accelerated particles in CMEs and CIRs in turn
modulate the GCR flux (Reamesal, 1997). The
Forbush decreases due to CMEs and corresponding
I ] decreases in low level clouds during this period are
20 - . well-documented (Svensmagk al., 2009). The
I H H H | satellite data suggest that the decrease of GCR flux
0 ﬂl A B i i B B B m is associated with a decrease in low altitude clouds,
Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun which are known to exert a global net radiative cooling
Months effect (Kirkby, 2007; Harrison andmbaum, 2010).
Fig. 3: Histograms of fair-weather days of observations at The periOdiCitieS observed in the GCR time series
Maitri in different months during 2001-2009 and spectra (Figs. 4-5) agree well with that reported

80 |- -

40 -

30 —

Number of days of observations

10 -




636 C P Anil Kumar et al.

activity. Extensive amount of low level clouds are
observed at solar minimum as shown in Fig. 6C. The
yearly average amount of low level and high level
clouds reduce by 3% and 1%, during the declining
phase. The monthly snow-fall rate (top panels),
however does not show clear solar activity
dependence though the snow-fall rate is lowest at
declining phase (2004-2006, Fig. 6B) and 1% higher
towards the end of the long deep solar minimum in
early 2009 (Fig. 6C).

w

Cosmic ray flux (x 10° counts/hour)

(2]

L T T I T Table 1 provides statistical evidence for high

Jan Apr Jul  Oct Jan Apr Jul Oct Jan Apr Jul Oct levels of GCR flux enhancing the formation of low
Honths In years 2001-2009 level clouds, (r = 0.31, iffable 1, it shows a third

order relation between GCR and low level clouds).

For example, Figure 6¢ shows most extensive low

Fig. 4: Variation of hourly average counts of Galactic Cosmic
Ray (GCR) flux in 2001-2009 measured at the
American Antarctic station McMurdo. Months of the

years are noted along the X-axis for convenience level cloud coverage at the long deep solar minimum
(2007-2009, green histograms) when GCR flux is
earlier (\Wiculescu and Usoskin, 2012). highest (Fig. 4). 280 days of low level cloud condition

_ _ _ per year were noticed during this period (2007-2009),

The complexity of cloud microphysics results 5 y'show fall rate was maximum in 2009. In the (2004-

from both the different particle size and compositions 2006) years the high level cloud coverage reduced
in atmospheric clouds and the phase change ofwateé% and low level cloud decreased to 4% while

moIecuIesAgrosoI electrification in the g_tmosphe.re snowfall rate reduced to 2%dfle 1) discussed in
occurs from ion-aerosol attachment facilitated by ion section 4

transport in the electric field. The aerosol charge
distribution can affect aerosol coagulation rates, which The data in Fig. 6B show scatter in both cloud
in turn may change the particle size distribution. coverage and snowfall rate. For example, the snowfall
Hence, the electric field caused by global electric rate shows high values in 2005 and low values in 2006,
circuit could affect aerosol charging by modifying the and an extensive heterogeneous cloud coverage was
ion environment on the boundaries of the clouds wherenoticed during 2004-2006 (Fig. 6B). The correlation
ion concentrations are profoundly high and the electriccoefficient indicates that the changes in cosmic rays
fields are enhanced. flux may tertiary importance for the changes in the
_ amount of cloud coverage. The cloud data may also

The cloud type and change-in-show-fall data 56 some uncertainties because cloud observation
are anglyzed. The d_ata obtained from different is not easy and has shortcomingéeather station
Antarctic bases (section 2) are averaged for eaChbbservations (on land) are contaminated by the

month in 2001-2009, separately for high level clouds , osence of widespread and migrated ocean clouds.
(cloud pressure cp, <440 hPa, above 3 km height)

and low level clouds (cp >680 hPa, below ~3 km Weather satellite observations are better though
height). Figures 6A-6C show the monthly average of drifting and decaying orbits plague the data. Study
cloud type and snowfall data in 2001-2003, 2004-2006was also carried out for the number of high-cloud
and 2007-2009 respectivellop panels correspond days per month and low-cloud days per month and
to change-in-snow fall and bottom panels give cloud monthly snowfall per month against monthly mean
type with red and green histograms representing highGCR flux (X-axis) in 2001-2003, 2004-2006 and 2007-
and low level clouds. 2009. For each case, the correlation coefficient (r),
o ) ] ) coefficient of determination {y and t-test statistics

A striking observation (Figs. 6A-6C) is thatthe 5,65 are determined above the significance level
amounts of high level (red histograms) and low level ,q jisted inTable 1 Table 1 allows us to see how the
(green histograms) clouds are generally increased by, e |ations are between cosmic rays and low level
8% and 23% respectively with decreasing solar clouds/change-in-snowfall data during extended
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200

1 51 101 151 195 1 51 101 151 201 251 301 351
Julian day, year 2001 Julian day, year 2003

C D dB
5

=
o 2
o
=
@
o

101 181 201 251 301 351 101 181 201 0
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Fig. 5: Wavelet spectra of the GCR data in 2001, 2003, 2008 and 2009

minimum periodTable gives a correlation of 0.31 and (>0.1GeV) and relativistic electrons and frequent solar
0.14 for the low level clouds and for change-in- flares are maximumt high latitudes, solar maximum,
snowfall in 2007-2009 are the highest correlations where the geomagnetic field lines are open to the
noted An interesting point is that the correlations and auroral zone during solar disturbances and nearly
t-testin 2007-2009 are higher than those in 2001-2003vertical to the eartl’surface, ionization increases up
and 2004-2006. The test shows that the changes irto stratospheric height. The contribution of solar wind-
low level cloud cover with cosmic rays provide a small/ magnetosphere dynamo considerably increases during

convincing link. the solar maximum period in the global electric circuit
_ _ (Roble, 1985Anil Kumaret al, 2009).The variation
Discussion of J,in specific UT hours in 2009 can be understood

in terms of 17% increase in GCR. The current density
Iso (Fig. 2) undergoes the well-known diurnal
variation (Wlson, 1920:Torresonet al, 1946) with
primary maximum at around 18:00-19:00 UT in almost
d’:l” years and minimum at around 03:00 Ufe diurnal
variation studied earlier (Deshpande and Ka20fi ;
Harrison, 2005) has been explained in terms of
Wilson'’s classical hypothesis {iabn, 1920) based on
the observations of Maud and Carnegie survey ships
(Torresonet al,, 1946). Later ionospheric dynamo
mechanism and solar wind-magnetosphere dynamo
Current Density mechanism are added to the hypothesis of global

electric circuit.
The current density (Fig. 2) increases with increasing

solar activity from 2001 to 2009, and base line reduced ~ The current density variations (Fig. 2A) can be
to half at the value of about 1.25pA/during the ~ understood more closely in terms of a strong
long deep solar minimum (2007-2009). In 2001, the dependence of thunderstorm dynamo (IStE&T3);
cause may be higher flux of energetic protons solar wind—-magnetosphere and ionosphere dynamo

The fair weather atmospheric electric current density
(J,) and meteorological parameters measured at th
IndianAntarctic station Maitri for nine years (2001-
2009) covering the long deep solar minimum are
presented. The data together with meteorological dat
from otheAntarctic stations and equivalent GCR flux
measured at thé&merican Antarctic station
(McMurdo) are used to study the possible effects of
GCR flux onAntarctic climateThe main observations
are discussed.
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2005;Anil Kumaret al, 2009:Tinsley 1996, Rcroft

et al, 2012). In an earlier work, Panneerselvaim
al., (2007b) mathematically differentiated later
contributions from Maitri observations. It is well known
that the current density, is proportional to the
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Fig. 6C: Monthly average cloud type (bottom) and change-
in-snowfall rate (top) from January 2007 to
December 2009

variations in low latitude thunderstorm activity
Recently Rycroftet al (2012) also showed thafis
modulated by solar processes both @nygar and
shorter time scales.

The data from Maitri for short durations have
been reported earlier by other scientists. Sietgdl
(2013) reported the data for 12 days in January-
February 2005 and showed that the diurnal variation
of Maxwell current density and electric field has a
peak between 18:00 Udnd 20:00 UTDeshpande
and Kamra (2001) reported the data for 34 days in
1997, and the difference of their results from the
Carnegie field curve (Ksemill972) is attributed to
the seasonal and longitudinal distribution of
thunderstorm activity Panneerselvanet al.,
(2007) analyzed the data in 2001-2004 and stressed
that apart from day-to-day variations there are diurnal,
seasonal and inter-annual variations in electric potential
and currentsAnil Kumar et al. (2008, 2009) studied
the air-earth current measurements during the
geomagnetic storms in 2004-2006 to study the role of
solar wind-magnetosphere-ionosphere interactions.

The current density variations,(Fig. 2C) can
be understood more closely in terms of a strong
dependence expected from thunderstorm contribution.

near the Eartls’ surface responds to the changes in The lage clear increases df at 08:00 UT 14:00

V,, Tinsleyet al., (1998) analyzed the values Bf

UT, 16:00 UTand 20:00 UTcorresponds to peak

(proxy ofJ,) andV; measured at the South Pole during thunderstorm times in south EAsia,Africa, Europe
1982-1986. They found a good correlation betweenand America. These current variations can be
the two parameters even during periods of irregularunderstood more closely in terms of a strong
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dependence expected from thunderstorm dynamgparticles. The ionization produced by GCRs helps in
(Israel, 1973). It has a clear GCR flux influence as the formation of clouds.

per the statistical analysis providedreable 1.
Clouds and Snow-Fall

Cosmic Ray Flux
y The data is presented to provide a connection between

The GCR flux (Fig. 4) increases with decreasing solarclouds (Rble 1) and GCR fluxThe amount of high
activity (in 2001-2009), and undergoes fluctuations of level cloud is less than of low level cloud with
mainly mean 27 days period (Fig. 5). The relation decreasing solar activity (Fig. 6A-6C) or with
between GCR flux and solar activity can be increasing GCR flux (Fig. 4). The correlation of low
understood closely in terms of the ponderomotive forcelevel clouds increased from 0.07 to 0.31 between the
due toAlfven waves.The wavege-distribute the  two levels of solar activity (2001) and at the end of
field and energy of space plasmas in such a way thatong deep solar minimum (2009) respectively when
HMF flux expands and pushes off the GCR flux with the GCR fluxes are also lowest and highest.
increasing solar wind velocity (Achterberg, 1981, _

Potgiete2013). Using the data during Satellite Cloud Th_e present ob;ervatlons are found to genergl_ly
Climatology Project (ISCCP) in 1983-1999, agree with those earlier reports (Svensmark and Friis-

Kristjanssonet al (2002) reported that GCR flux Christensen, 1997Tinsley, 2000; Marsh and
varies inversely with solar activitysing the long span Sv_er!smark, 2000; Carslaaﬂvgl, 2002; Kirkby 2007.;
of neutron monitor data from 1965 to 1997 recorded Knstjansso_net al, 2008;Voiculescu and_ USOSk'.n’
at the South Pole/Antarctica, Bieketr al (2007) 2012; Harrisoret al, 2012) though earlier studies

reported that the GCR flux decreased by 8% in 3pare mainly for other periods and locations. For
years example, in a general global study using the ISCCP

data in 1983-1994, Marsh and Svensmark (2000)
As mentioned in section 1, both GCRs and SCRsreported a high and statistically significant correlation

have meteorological importance mainly because ofbetween GCR flux and low level clouds. Using the

their ionizing power (Sarabhai, 1942; Rdal, 1972; time series data in 1984-200@®jculescu and Usoskin

Bazilevskaya, 2000; Rao, 2Z0Mironovaet al, 2015). (2012) found the low level clouds varying in phase

GCRs cause ionization mainly in the lowest part of with cosmic rays induced ionization (CRII) in some

the atmosphere while SCRs cause ionization mainlyareas (south Pacific and souillantic oceans,

at tropopuase and stratosphere altitudes (Cadisto western Indian Ocean, Continental EAsta and

al., 2011). Certain SCRs associated with solar flares northern high latitudes), and the response of clouds to

are highly energetic. These cosmic rays particlesCRII is positive and persistent over the entire time

increase the charging of air and lead to the formationinterval in some key areas such as high latitude Pacific.

of cluster ions with large number of hydrogen-bonded

hydrates that can then coalesce with other air

Table 1: Measured relationship (Linear correlation) that exist between GCR , Cloud distribution and change-in-snow fall
from monthly average values of 2001-2009

Solar activity Mean GCR flux R & R2with meteorological parameters T-test value
(Counts/hour) LLC HLC CSF LLC HLC CSF

High 8.5 x 16 0.07 0.070.13 8.65 15.75.71

(2001-2003) 0.0049 0.0049 0.0169

Moderate 9.4x 16 0.04 0.06 0.11 12.30 14.09 7.39

0.0016 0.0036 0.0121
Long deep 10.6 x 16 0.31 0.15 0.14 24.9 9.58 7.54
solar minimum 0.0961 0.0225 0.0096

(2007-2009)

R-Correlation Codicient with GCR & Rvalues are below RaluesLLC - low level clouds, HLC - high level clouds, CSF - change in
snow-fall
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Effects on Climate and Deen (1991)Tinsley (1996);Tinsley (2000);
Harrison (2000); Harrison andplin (2001),
Svensmarlet al (2007). In this case thunderstorm
creates a charge separation with positive ions at the
) ) top of the cloud and negative ions at the bottom (this
ray flgx has been ree_lsonably <_3||scussed earlier toonegative charge gets discharged through lightning to
(Har_rlson, 2000.; Harnsqn ankplin, 2001), though the ground). The positive charge at the top of the
the |_nvolved microphysical processes need furtherCloud moves through the conductive upper atmosphere
studies. to the ionosphere giving the ionosphere a positive

Cosmic rays cause ionization at tropospheric charge. The difference in charge between the
altitudes; and the presence of charged particles (andonosphere and the Earstsurface drives an electric
aerosols) lead to condensation of water vapour anceurrent from the ionosphere to the surface. The
relative humidity enable to form clouds (Ratsl., resistance of the atmosphere to current flow depends
1986; Tinsley and Deen 1991; Harrison 2000he on the ion concentrations. Thus, when more cosmic
chaged particles act as centers of raditishat help ~ rays enter the atmosphere, electricity flows more
overcome the excess pressiReifiside water vapour ~ quickly through the atmosphere.

(of dsurfafe tip]s'_oﬁ)l t% start the pLocesds OI This may have an effect on the cloud properties
condensation. The INvolved Process can beé unders Oogy enhancing the collision rate between cloud droplets

fr?]m e>r<]ces§ pressui§(|= 2T thendln%_:[lc;elnfmlty and aerosols. Often, in the clouds, liquid water drops
when there is no particle (or when radidsecomes iy ayist even when temperatures are well below

zero), and he.nce condensation becomgs gnllkely dUPOOC (freezing point of water). Collisions between the
to the excessive outward pressure. The ionization als%harged aerosols with these super cooled cloud

re(:]uces thﬁ atr?é)_spherlch (columnhar) re3|s]'£|ance _ordroplets may enable the freezing of these droplets,
?Egncist (Tml |(r)]nosp eLe-eartI current 0;” (V|a| hich could lead to cloud invigoration due to the heat
); this also enhances the coalescence of sma eleased from freezing or enhanced precipitation.

water drops into Iarg'e drops (Mason, 1971,)' Thea‘hese dects, howeverare all still very uncertain.
process of condensation and electroscavenging lea

to formation of drops under super-saturation. The quantitative analyses prove that the
Currently two hypotheses are prevailing (Carsktw  observed cosmic ray flux correlates with the cloud
al., 2002). The central theme of the ‘ion-aerosol clear- cover and snowfall. The month mean variability in
sky hypothesis’ is that cosmic rays affect ion GCR, cloud cover and snowfall are less correlated
concentrations in the atmospheXerosol nucleation  during solar maximum, while during solar minimum
(the formation of ~1 nm patrticles in the atmosphere) period correlation is highett's impossible to speculate
is generally enhanced by the presence of ionsif any such changes are statistically significant in
(Sprackleret al, 2008;Wang and Penng009;Yu declining phaseA couple of quantitative analysés r
and Luo 2009). The particles formed through and t-teat values are also provided the same result
nucleation may grow through condensation of sulfuric (Table 1) for the period. On each solar epoch the
acid and organic vapors to sizes where they can actorrelation coefficient (r), the coefficient of
as CCN (Kirkbyet al, 2011) and, if, CCN are determination @ and t-test statistics are noted. The
exposed to relative humilities above 100%, cloud will plot 6(A)-6(C) andlable 1 allow us to see how the
form on them. Thus, a change in cosmic rays couldcorrelation increases between the cosmic rays and
potentially affect the number of cloud drops, which in the low level clouds from solar active period to
turn may affect the amount of sunlight reflected by a extended minimum period. The mean monthly
cloud, the formation of precipitation and cloud lifetime variability t-test provides the inference that the high/
(Carslawet al, 2002). low cloud cover are significantly different in the 2007-
2009 period than from the 2001-2003 period.

As mentioned, the data (Fig. 2-6¢em to provide
link between cosmic rays and climate and weather
The science of the link of low level clouds and cosmic

The second one ‘ion-aerosol near-cloud
hypothesis’ is connected with the global electric circuit As described, the formation of clouds depends
mechanism via vertical current developed by increasedon the ionization at tropospheric heights mainly by
ionization due to cosmic rays, as suggestedristey GCRs. Marsh and Svensmark (2000) noticed a good
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correlation of low level clouds with cosmic rays. density {,) and meteorological parameters measured
Harrisonet al (2012) reported that the base height at the IndiamAntarctic station Maitri together with

of low level clouds vary with cosmic ray conditions. the equivalent GCR flux obtained from theerican

As shown by the present data (Fig. 4) the GCR flux Antarctic station McMurdo for nine years (2001-
undergoes long term and short term variations, and2009) covering the long deep solar minimum (2007-
hence the rate of ionization and cloud formation could 2009) has been carried out for the first time. The
also undergo similar variations, which is also shown correlations and t-test increase with decreasing solar
by the data (Fig. 6), especially for low level clouds. activity and highest correlation and t-teat are at the
During the long deep solar minimum (2007-2009) the low deep solar minimum. This study indicates that
GCR flux increased to the peak level of 10500 counts/the low level clouds increased from 7% to 31% in
hour on average (Fig. 4), and paved the way for wide-accordance with the variation GCR flux during
spread low level cloud formation (Fig. 6C), which extended solar minimum. It indicates that GCR has a
might have exerted a net cooling effect as reportedsmall link that can affect the weather and climate at
for earlier periods based on temperature variationAntarctica.

(Carslawet al, 2002).
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