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The transition of an ion acoustic solitary wave into a “supersoliton,” or a super solitary wave have

been explored in a two electron temperature warm multi-ion plasma using the Sagdeev pseudopo-

tential technique. It is generally believed that the ion acoustic solitary wave can be transformed to a

super solitary wave only through a double layer. The present work shows that the transition route

of an ion acoustic solitary wave to a super solitary wave is not unique. Depending on the electron

temperature ratio, a regular solitary wave may transform to a super solitary wave either via the dou-

ble layer, or through an extra-nonlinear solitary structure whose morphology differs from that of a

regular one. These extra-nonlinear structures are associated with a fluctuation of the charge separa-

tion within the potential profile and are named as “variable solitary waves.” Depending on these

analyses, the upper and lower bounds of a super solitary wave have been deciphered and its exis-

tence domain has been delineated in the parametric space. It reveals that super solitary waves are a

subset of a more generalized class of extra-nonlinear solitary structures called variable solitary

waves. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4993511]

I. INTRODUCTION

The first time the concept of supersolitons came forth

when, in 2012, Dubinov and Kolotkov1 were working on a

five component plasma comprising of electrons, positrons,

positive and negative ions, and dust particles. In their analy-

sis they obtained a new form of solitary waves which have

larger amplitudes than usual. To distinguish them from other

Regular Solitary Waves (RSWs), they coined the term

“supersoliton.” They were called “super” because of their

extraordinary large amplitudes which are typically larger

than the corresponding Double Layers (DLs). As they have

larger amplitudes, the conventional methods like the

Korteweg-de Vries (KdV) equation are not applicable for

them; neither they have any analytical formalism like a tradi-

tionally known soliton. Instead, they are primarily identified

by the additional subwell, or local extrema, in the conven-

tional Sagdeev pseudopototential profile corresponding to an

otherwise RSW solution. This has prompted us to propose a

generalization of the nomenclature as Super Solitary Waves

(SSWs) instead of “supersolitons.”

Initially it was believed that the SSWs are an artefact of

complicated plasma models which have at least five or four

species of particles. It was further believed that the extra sub-

well in the pseudopotential arises due to tweaking of several

plasma parameters which are available in such kinds of

exotic multi-species plasmas. Soon after, Verheest et al.2

confirmed that a minimum three component plasma is

enough to support these extra-nonlinear solutions. Many

more theoretical studies followed3–13 which obtained SSWs

for different plasma systems. These analytical results suggest

that the proposition of SSWs is more realistic and fairly

regular rather than to be an artefact. It is well known that a

three component plasma is also necessary to support a rare-

factive (negative amplitude) ion acoustic solitary wave or a

DL while a two component plasma cannot sustain either of

these structures. This condition holds true for an SSW as

well. In that sense, SSWs are merely another candidate for a

fully nonlinear localized structure, like rarefactive ion acous-

tic solitary waves or DLs.

Solitary waves and DLs have been studied extensively

for last few decades, but there was never any report of struc-

tures like SSWs in the past.14 The apparent fallacy may be

explained by the very narrow and delicate balance of plasma

parameters needed to sustain an SSW solution. It is this

extremely narrow parameter regime for the existence domain

of SSWs which makes their detection difficult. Albeit of such

a selective condition, a recent simulation result showed that

the SSWs are extremely stable structures.15 It also reports an

extra steepening prior to its formation which indicates that

they are highly nonlinear solutions as predicted earlier.1

It is well known that the existence domain of a compres-

sive (i.e., positive amplitude) ion acoustic solitary wave termi-

nates due to steepening and wave breaking16 while for a

rarefactive ion acoustic wave, it terminates with a correspond-

ing DL solution.17 Ghosh and Iyengar18 have shown that the

inclusion of a very small concentration of sufficiently cooler

electrons may generate compressive ion acoustic DLs.

Depending on the termination process, they argued that the

existence domain of the compressive ion acoustic solitary wave

has two distinct regions or “phases” where the solutions are ter-

minated either by a wave steepening (phase A, region A and

B1 in Ref. 18), or DL (phase B, region B2 in Ref. 18). They

have also shown that the transition from Phase “B” to Phase

“A” leads to a sharp discontinuity and the onset of SSWs.

While existence domains for RSWs are well known and

well studied across different plasma models, little is known
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so far for that of SSWs. Recent research studies highlighted

the conditions and the processes for the occurrence of

SSWs.5,18–20 Verheest et al.5 investigated the occurrence of

ion acoustic “supersolitons” in a dusty plasma with station-

ary negative dusts, cold fluid protons, and Cairns distributed

electrons. They critically analyzed the existence of SSWs

beyond the DL. From their analysis they inferred that an

SSW occurs after a DL and they argued that, after SSW,

ordinary solitary waves are formed due to the coalescence of

the extrema of the pseudopotential. Shortly after them,

Maharaj et al.19 also concluded that the lower limit of SSWs

is a DL. The process of coalescence of the subwells has also

been confirmed in our recent work20 where we have further

quantified it by assigning some typical characteristic values

for the cold to hot electron temperature ratios. It revealed the

deterministic role of the electron temperature ratio which

decides the particular type of the limiting solution. In this

process, we have also identified the different intermediate

structures, like a Curve of Inflection (CoI) and Variable

Solitary Waves (VSWs), other than SSWs. This calls for a

reexamination of the present understanding that an SSW nec-

essarily emerges out of a DL. It also becomes necessary to

explore the association of SSWs with these intermediate

extra-nonlinear structures. To quantify the possible correla-

tions, here we have studied the transition of RSW to SSW

with varying cooler electron concentrations. The correspond-

ing values of the electron temperature ratio have been chosen

according to the limiting solutions highlighted in our previ-

ous analysis.20 As a result, we have been able to identify a

set of characteristic values for the cooler electron concentra-

tion which affects the transition route to any particular limit-

ing solution. It also confirms that there is no unique route for

the onset of an SSW. The study helped us to delineate the

overall existence domain of SSWs.

The present paper is organized as follows. The model

and formulation are explained in Sec. II, Sec. II A represent-

ing the derivation of the Sagdeev pseudopotential while Sec.

II B analyzes the properties and conditions for its derivatives.

Section III delineates the overall existence domain of SSW

by studying the conditions for its onset. Section III A studies

the different routes to the limiting solution for the varying

electron temperature ratio considering two different heavier

ion concentrations (Secs. III A 1 and III A 3) and the results

are further analyzed and compared with a regular variation

for RSWs (Sec. III A 2). The study leads to Sec. III B which

categorizes two distinct types of transition routes for the

onset of an SSW while Sec. III C summarizes the existence

domains for these extra-nonlinear structures in a parametric

regime determined by the relative electron temperatures and

concentrations. The overall conclusion has been given in

Sec. IV.

II. FORMULATION

A. Derivation of the Sagdeev pseudopotential

The theoretical model has considered the plasma to be

infinite, homogeneous, collisionless and unmagnetized,

which consists of two warm ions (lighter and heavier) and

two temperature electrons. Recalling the basic equations and

the parameters explained in Varghese and Ghosh,20 the ligh-

ter (nil) and the heavier (nih) ion densities are given by
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respectively. We are assuming the electrons are following

Boltzmann distribution and are separately in thermal equilib-

rium. The total electron density is given as

ne ¼ nec þ new ¼ le
U

lþ�b þ �e
bU

lþ�b;

where the subscripts i, e, l, h, c, and w represent ions, elec-

trons, lighter and heavier ions, and cooler and warmer elec-

trons, respectively. M is the wave Mach number, Q is the

lighter to heavier ion mass ratio (Q ¼ mil

mih
), where mil and mih

are the mass of lighter and heavier ions, respectively, and b
refers to the cold to hot electron temperature ratio (b ¼ Tec

Tew
).

The normalized ion temperatures are rj ¼ Tj

Teff

� �
, normalized

by the effective electron temperature Teff ¼ TecTew

lTewþ�Tec

� �
,

where Tj is the ion temperature, j¼ il and ih, and Tew(Tec) are

the temperatures of warmer (cooler) electrons, respectively.

All number densities are normalized by the total equilibrium

ion density n0(¼ nilþ nih), which gives the corresponding

ambient densities, viz., al, ah, l, and �, for lighter ions,

heavier ions, cooler electrons and warmer electrons, respec-

tively. The velocities, time, and length are normalized by the

lighter ion acoustic speed cisl ¼
ffiffiffiffiffiffiffiffiffiffiffi

Teff

mil

� �r !
, inverse of ion

plasma frequency x�1
pil ¼ n0e2

�0mil

� ��1
2

� �
, and the effective

Debye length keff ¼ �0Teff

n0e2

� �1
2

� �
, respectively. The pressure

pij, ( j¼ h and l ), is normalized by the ion equilibrium pres-

sure p0 (¼ n0Ti), where Ti (¼ alTilþ ahTih) is the net effective

temperature of ions, and potential / is normalized by
Teff

e .

The corresponding Poisson’s equation is given by,

@2U
@x2
¼ nec þ new � nih � nil: (1)

According to the Sagdeev pseudopotential technique

@2U
@g2
¼ ni � ne ¼ �

@WðUÞ
@U

; (2a)

which leads to;
1

2

@U
@g

� �2

þWðUÞ ¼ 0; (2b)

where W(U) is the Sagdeev pseudopotential.
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Integrating the Poisson’s equation with ion and electron

densities, we have obtained the Sagdeev pseudopotential

W(U) for two electron temperature warm multi-ion plasma

which is given as20
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In order to obtain the solitary wave solution, and to

ensure the recurrence of the initial state, W(U) of Eq. (3)

must satisfy the following boundary conditions:

WðU ¼ 0Þ ¼ @W
@U

				
0

¼ 0;
@2Wð0Þ
@U2

< 0;

WðU0Þ ¼ 0;
@WðU0Þ
@U

6¼ 0: (4)

This also implies that W(U)< 0 for 0<U < U0 where U0 is

the amplitude of the solitary waves.

B. Derivatives of the Sagdeev pseudopotential and
additional conditions

Apart from all these conditions in Eq. (4), an RSW

appears to satisfy the additional condition20

@3W

@U3
> 0; for 0 � U � U0: (5)

For all Other Solitary Waves (OSWs), including VSWs,

SSWs, and CoIs, the 3rd derivative of Eq. (3) (i.e., @
3W
@U3 ) fluc-

tuates between positive and negative values within the range

indicating a variability in the charge separation (Dn) within

the localized structure (Eq. 2a). We may recall that an SSW

is defined by the additional extrema of W(U) and bounded by

CoI. A CoI is characterized by a “point of inflection” at U ¼
UCoI where

@WðUCoIÞ
@U

¼ @
2WðUCoIÞ
@U2

¼ 0; 0 < UCoI < U0: (6)

Typically, the pseudopotential profile of an SSW exhibits 4

extrema while that for a CoI is 3. An RSW, and a generalized

VSW (gVSW) other than SSW or CoI, both have two

extrema only, but the latter (gVSW) differs from an RSW as

it does not satisfy Eq. (5). By a gVSW we mean that subset

of OSWs which excludes more specific class of solutions

like SSW and CoI, but still observes an extra wiggle in the

corresponding pseudopotential profile. In other words, for a

gVSW, though the charge separation (Dn) fluctuates but it

always remains positive and finite near the vicinity of the

maximum amplitude (Eq. 2a).20

For a DL, there is no recurrence of the initial state. The

last boundary condition of Eq. (4) thus modifies to the

following:

WðUdÞ ¼ 0;
@WðUdÞ
@U

¼ Dnd ¼ 0; (7)

where Ud is the amplitude of the DL and Dnd is the charge

separation at Ud.

For our model, the compressive positive amplitude soli-

tary wave should further satisfy the energy condition given by

U0 <
1

2
M �

ffiffiffiffiffiffiffiffiffiffi
ð3rlÞ

p� �2

; Ut ¼
1

2
M �

ffiffiffiffiffiffiffiffiffiffi
ð3rlÞ

p� �2

; (8)

Ut being the terminating amplitude beyond which W(U)

becomes complex and the wave breaks.16

III. RESULTS AND DISCUSSION

A. Different transition routes for OSW

Lately, it has become evident that the electron tempera-

ture ratio (b) plays a crucial role in determining all kinds of

OSW solutions.18,20 In our previous work, we have defined

two characteristic b values, namely, bs and bv, respectively,

which determine the overall parameter domain for OSWs

(bs� b � bv). The former one (bs) indicates the onset of an

SSW while the latter (bv) denotes the upper boundary of b
supporting any kind of OSW as the limiting solution. Apart

from the onset of the SSW, bs is also associated with the

very sharp and discontinuous phase transition between

phases A and B (Sec. I), where for the latter the solitary

wave terminates to DL.18 So far all our analyses were

restricted to the limiting value of l (¼ll) (Ref. 18) which

showed that, for bs� b � bv, the terminating OSW solution

shifts from SSW to CoI, and then to gVSW, for increasing b.

This immediately poses the question whether the route to the

terminating solution remains unique, or varies with the

change in the parameter regime. It is generally believed that

an RSW may transform to an SSW via DL. We were curious

to know how a gVSW may fit in this scheme of the transi-

tional process. While it is fairly straightforward to predict

the emergence of a gVSW out of SSW from the coalescence

of extrema of the latter one,5,20 it is still unclear whether an

SSW may transform to an RSW with a larger, or equal

amplitude through such gVSWs.

To have a more systematic and generalized understand-

ing of these features and to explore the above-mentioned

questions more accurately, we have assumed a multi-ion

plasma comprising of two singly charged ions with finite ion

temperatures and two populations of electrons with different
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temperatures. For the sake of our convenience, it is assumed

that both the heavier and lighter ions are of same tempera-

tures, i.e., rl¼rh¼ r, and it remains constant (i.e., r ¼
0.033) throughout our analysis. It is also assumed that the

plasma is mainly comprised of Hþ ions with a minority com-

ponent of Heþ ions, keeping the mass ratio Q¼ 1/4 a con-

stant. In the present work, we have focused our attention on

the parameter regime which supports OSW solutions and is

bounded between bs and bv (i.e., bs�b � bv). Choosing a

set of representative values for b, we have tried to find out

those characteristics l values which determine the onset (off-

set) of the corresponding SSW or OSW. The results have fur-

ther been compared with a similar analysis of RSW beyond

the said regime (i.e., b > bv). To establish a more general-

ized approach, we have considered two different concentra-

tions of heavier ions, namely, ah¼ 0.1 (low) and ah¼ 0.2

(high), respectively and, for the sake of comparison, we have

also kept the Mach number constant (M¼ 1.06), unless

specified otherwise.

1. OSW (bs £ b £ bv; al 5 0.9)

Here we have chosen a low heavier ion concentration

(ah¼ 0.1) and have selected five different b values to study

the respective Sagdeev pseudopotential profiles with varying

l. Throughout our analysis, a dotted curve represents an

RSW, a dashed curve represents a gVSW or a DL, a dash-

dot curve denotes a CoI, and a solid curve corresponds to an

SSW. For the sake of convenience, we have defined two

parameter ranges for l, namely, Ro (� li�l � lf) and Rs

(� ls1< l < ls2), which support OSWs and SSWs, respec-

tively. Similarly, Rg (� lv1<l < lv2) defines the range for

gVSWs. The parameters li (lf), lv1 (lv2), and ls1(ls2) are

the characteristic l values denoting the onset (offset) of an

OSW, a gVSW, and an SSW, respectively. Noting that a CoI

may either be the n-type or the p-type, depending on the

morphology of the pseudopotential, the corresponding l val-

ues are defined as ln and lp, respectively. The difference

between these two types is that the coalescence of extrema

may occur either at the 1st subwell of the pseudopotential (n-

type), or the 2nd (p-type).20 Throughout our analysis, ll is

that limiting l value beyond which any solitary wave solu-

tion, including OSWs, terminates (i.e., lf¼ll), and ld

denotes the DL.

a. Case 1 (b¼ bs):. This b value corresponds to the

aforementioned phase transition where the limiting solution

transforms from a DL to an SSW. Figure 1 shows the

Sagdeev pseudopotentials for different l values, keeping all

other parameters and b constant while Table I summarizes

the solutions associated with different curves, marked by “j,”

j being 1, 2, 3, etc., along with their corresponding l values

(lj). The last column denotes the particular characteristic l
values for this regime. It clearly shows that an RSW (curve

1) transforms to an SSW (curve 3) via a DL (curve 2). The

result is consistent with those obtained previously by

Verheest et al.21 and is supported by others.6,9,19 The termi-

nating solution is an SSW and the route to the terminating

solution is as follows:

RSW ! DL ! SSW;

Ro � Rs � ld < l � ll; li ¼ ls1 ¼ ld:

To complement our findings, we have plotted amplitude (U0)

vs. l in Fig. 2 for different M and b. The intermediate DL

solution between RSW and SSW readily explains the large

jump in the amplitude (U0) and the discontinuity. It also

shows that the condition is not unique for any particular

choice of the Mach number (M) but follows for other param-

eter regimes as well. It is well known that the amplitude of

an RSW (dashed lines) increases with increasing M and l18

FIG. 1. Sagdeev pseudopotential profiles for Case 1, b¼ 0.049; Curves (1)

RSW, (2) DL, and (3) SSW.

TABLE I. Summary of parameters: Case 1 (b¼ 0.049).

j Type lj Characteristic l

1 RSW 1 � 10�3 ld ¼ 1.285 � 10�3

2 DL 1.285 � 10�3 ll ¼ 1.30042 � 10�3

3 SSW 1.300 � 10�3

FIG. 2. Variation of amplitude (U0) with l for different M values; Case 1

transformation.
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but decreases with b.22 Eventually, with increasing M, the

variation profile shifts to a lower l and b value [Fig. 2(a)].

As M increases, not only the amplitude, but also the overall

kinetic energy of the system increases,17 leading to an increase

in the terminating amplitude Ut (Eq. (8)), as well. It allows the

condition for attaining an OSW to get adjusted to a lower b
value [Fig. 2(a)]. The particular combination of M – b ensures

the optimum amplitude and allows the highly nonlinear solu-

tion to sustain. Interestingly, in Fig. 2(a), the variations of the

amplitude after the discontinuity (solid lines) appears to be

barely marginal for any of the parameters, viz., M, l, and b,

compared to that prior to the discontinuity (dashed lines). We

have already noticed that, for a particular regime supporting

OSWs, the amplitude is often very close to its Ut and changes

very slowly over the range of the parameters.20 The same

seems to hold true for a variation in M as well.

The delicate balance has made the range of l values

supporting OSWs much smaller than that for an RSW [Fig.

2(a)]. We have highlighted one of this variation for

M¼ 1.06 and b¼ 0.049 in Fig. 2(b). It confirms a marginal

increase in the amplitude with l. According to Figs. 2(a)

and 2(b), though the variation of U0 vs. l is monotonic

before and after the discontinuity, the slope of the respec-

tive variation profiles differ significantly. Prior to the onset

of the discontinuity, marked by ld, the slope shows a steep

increase but it drops to a fairly moderate value after the dis-

continuity [Figs. 2(b)].

b. Case 2 (b� bs but b< bCoI):. Here we have chosen a

b value which is sufficiently away from the transition region

(b� bs) but closer to bCoI and remains within bs�b� bCoI

where the terminating solution is an SSW. Figure 3 shows

the respective Sagdeev pseudopotentials and Table II sum-

marizes the solutions associated with different curves and

their corresponding l values as earlier (viz. Table I, Sec.

III A 1 a), “j” being 1–4 in this case. All other parameters and

legends remain the same as before. The particular route from

RSW to SSW can now be summarized as,

RSW ! gVSW ! p-CoI ! SSW;

Ro � lv1 � l � ll; Rs � lp < l � ll;

li ¼ lv1; ls1 ¼ lp:

Clearly, in this case, the transformation of RSW to SSW is

distinctly different from that of the previous one (Case 1,

Sec. III A 1 a). Initially, as we increase l, instead of a DL

(curve 2, Fig. 1), there appears a “minor wiggle” in the pseu-

dopotential (curve 2, Fig. 3) giving rise to a gVSW. The wig-

gle starts to arise in the otherwise smooth pseudopotential

profile of RSW due to the fluctuation in the charge separation

(Dn¼ ni – ne) and with a further increase in l, it grows into a

fully formed SSW (curve 4, Fig. 3) via p-CoI (curve 3, Fig.

3).20 From an RSW to gVSW, the amplitude (U0) also shows

a large increase as well. This particular trend of transforma-

tion excludes the possibility of the existence of a DL

between the RSW and gVSW, or gVSW and SSW. For the

previous case (Sec. III A 1 a), from RSW the solution trans-

forms to a DL where both the generalized electric field

(� @U
@g) and the charge separation (Dn ¼ @W

@U) vanish at U ¼
Ud (Eq. (7)). As l increases, the vanishing charge separation

(Dn¼ 0) shifts to a nonzero electric field (@U@g 6¼ 0) giving rise

to an SSW. For the present case, however, the generalized

electric field always remain nonzero between U ¼ 0, and U0

(the amplitude), excluding the end points. It is the onset of a

minor fluctuation in the charge separation (cuve 2) which

grows larger with increasing l, giving rise to an extra “fold”

or subwell in the pseudopotential and, eventually, leads to an

SSW.

FIG. 3. Sagdeev pseudopotential profiles correspond to Case 2 transforma-

tion (1) RSW, (2) gVSW, (3) p-CoI, and (4) SSW.

TABLE II. Summary of parameters: Case 2 (b¼ 0.053).

j Type lj Characteristic l

1 RSW 1 � 10�3 lv1 ¼ 1.5934 � 10�3

2 gVSW 1.85 � 10�3

3 p-CoI 1.90547 � 10�3 (¼ lp)

4 SSW 1.97 � 10�3 ll ¼ 1.9838 � 10�3

FIG. 4. The amplitude (U0) variation with respect to l for different Mach

number (M) values for Case 2 transformation.
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The difference between these two trends of transforma-

tion becomes further prominent in Fig. 4 where, following

Case 1, we have plotted U0 vs. l for all the nonlinear struc-

tures assuming a certain sets of Mach number (M) and b. For

each curve in Fig. 4, the “�” denotes the onset of the OSW

(l¼li¼ lv1) while the “�” denotes the p-CoI (l¼ lp). It

readily shows a regular variation instead of a discontinuity

as observed in the previous case. It confirms that there is a

solitary wave solution, either an RSW or OSW, for each

value of l provided 0< l�ll. The absence of the disconti-

nuity also confirms that there is no DL solution within this

range. A closer inspection reveals three distinct segments for

each curve, denoted by (1), (2), and (3) in Fig. 4. For the first

segment (segment (1), up to the “�”; l<li), and for a fixed

value of b and M, U0 increases gradually with l but from l
¼ li onwards (segment (2), between the “�” and the “�”;

li�l � lp) it shows a steep accent and then again, beyond

lp (segment (3), beyond the “�”; lp< l � ll), it decreases

gradually. We may well conjecture that, as b is increasing

from bs to bCoI, the gVSW solutions of segment (2) (i.e.,

li�l � lp) start appearing there to bridge the gaps, or dis-

continuities, shown in Fig. 2(a) (Case 1, Sec. III A 1 a). The

variation pattern observed in Fig. 4 was previously reported

by Ghosh and Iyengar,18 where they suggested that the steep

accent of segment (2) occurs due to a kind of phase transition

across b ¼ bs between two distinctly different regions. In

the present case, all the solutions belong to the same para-

metrical region and is away from the region of phase transi-

tion (i.e., b � bs). In spite of a sharp change in the slope of

the curve, there is no discontinuity either. The present analy-

sis, thus, generalizes the previous findings.

In order to understand the variation of amplitude (U0)

with l in Fig. 4 we have estimated the slopes of the different

M – b curves (dU0

dl ), and plotted them for the corresponding

ranges of l (Fig. 5). It readily shows a steep increase, fol-

lowed by even a sharper decrease in the slope for segment

(2), while for segments (1) and (3) they vary gradually show-

ing an opposite trend. For segment (1) (lower l), the slope

increases with l while for segment (3) (i.e., l ! ll), it

decreases. In between these two segments, the very sharp

peak indicates an unexpectedly large variation in U0 over a

very small change in l which hints to a “jump condition” sim-

ilar to that reported earlier.3,18 Though the extent of the sharp-

ness of the peak varies quantitatively as M and b changes, the

qualitative trend remains the same over our chosen set of

parameters. Our latter analyses have confirmed this current

trend throughout our chosen parameter regime. Between the

regimes belonging to Case 1 and Case 2, respectively, we

have identified a characteristic b value as b ¼ bI beyond

which there is no DL solution for the entire b � l regime.

Considering M¼ 1.06 and keeping all other parameters con-

stant as chosen for Case 1, we have determined bI¼ 0.051.

c. Case 3 (b¼ bCoI). As we increase b, the limiting solu-

tion transforms from SSW to a CoI. Figure 6 shows the

Sagdeev psedopotentials for b ¼ bCoI where M¼ 1.06 and

other parameters remain the same. All the relevant l values

and the type of the solutions are listed in Table III. The over-

all transition is

RSW ! gVSW ! p-CoI ! SSW ! n-CoI;

Ro � lv1 � l � ll; Rs � lp < l < ln;

li ¼ lv1; ls1 ¼ lp; ls2 ¼ ln ¼ ll:

This transition can be interpreted as the extension of the

previous one (Case 2, Sec. III A 1 b) with an additional n-CoI

solution for a larger amplitude. This also shows that both p-

FIG. 5. Variation of dU0

dl vs. l for Case 2 transformation.

FIG. 6. Sagdeev pseudopotential profiles correspond to Case 3 transforma-

tion (1) RSW, (2) gVSW, (3) p-CoI, (4) SSW, and (5) n-CoI.

TABLE III. Summary of parameters: Case 3 (b¼ 0.0538967).

j Type lj Characteristic l

1 RSW 1 � 10�3 lv1 ¼ 1.77 � 10�3

2 gVSW 2.05 � 10�3

3 p-CoI 2.08115 � 10�3 (¼ lp)

4 SSW 1.97 � 10�3

5 n-CoI 2.16154 � 10�3 (¼ ln)
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CoI and n-CoI may be supported within the same parameter

regime. Previously we showed that a CoI denotes the bound-

ary of an SSW. Here we have found that, for this particular

set of parameters, the p-CoI denotes the lower boundary of

the SSW while the n-CoI denotes the upper. So, at b ¼ bCoI,

the SSW is sandwiched between a p-CoI and an n-CoI. It

also shows that the n-CoI has a larger amplitude, and hence a

higher nonlinearity than p-CoI.

As mentioned in Case 2, the pseudopotentials in Fig. 6

themselves show that, as l increases, the wiggles start to

appear with a big “jump,” or increase in the amplitude but

after reaching a certain l, the amplitude (U0) becomes quite

close to its terminating value (U ! Ut). With a further

increase in l the amplitude does not increase in the same

rate as earlier but varies only marginally or becomes almost

near-constant. A more detailed analysis of the variation of

the amplitude will be discussed in the due course.

d. Case 4 (b> bCoI but b� bv). We have now chosen a b
which is greater than bCoI but remains close to it. In this

regime (bCoI< b< bv), the solution terminates as a gVSW.

In order to explain the types of transformation of nonlinear

structures in that regime, we have plotted the Sagdeev pseu-

dopotential profiles as shown in Fig. 7 while Table IV sum-

marizes the relevant details. The transformations are similar

to Case 3 (Sec. III A 1 c) and can be summarized as

RSW ! gVSWm! p-CoI ! SSW ! n-CoI ! gVSWr;

Ro � lv1 � l � ll; Rs � lp < l < ln;

li ¼ lv1; ls1 ¼ lp; ls2 ¼ ln:

The major difference here from the previous one (Case 3,

Sec. III A 1 c) is the appearance of two different bands of

gVSWs, appearing before and after the regular SSW. We

have marked them by two subscripts, viz. ‘m’, for a smaller

amplitude, and ‘r’, for the larger one, respectively. It also

shows that, with increase in b, the l regime supporting a reg-

ular SSW shifts to a lower value. The SSW solutions are

now clearly sandwiched between the p and n types of

CoIs (lp< l < ln), forming a distinct subset within the

overall range of VSW or OSW (li<l < lf). This also

shows that increase in b extends the overall range of

OSW solutions.

e. Case 5 (b�bCoI but b< bv). Contrasting the previous

case, we now have chosen a b which is far away from bCoI

but remains smaller than bv. The terminating solution thus

continues to be a gVSW. As usual, Fig. 8 shows the Sagdeev

pseudopotentials and Table V gives the l values. Here the

most striking feature is that there is no SSW solution at all. It

appears like both the p-CoI and n-CoI have merged together

keeping only gVSWs as the available solution. The overall

trend of transformations can now be summarized as a simple

two step process, viz.

RSW ! gVSW; Ro � Rg � lv1 � l � ll; li ¼ lv1:

This eventually reveals another characteristics b value,

namely, b ¼ bII, beyond which there is no SSW solution for

any value of l. Therefore the range of the b value, which

supports SSW, is bounded by bs�b�bII. Considering

M¼ 1.06 and keeping all other parameters constant as cho-

sen for above cases we have found bII¼ 0.056.

FIG. 7. Sagdeev pseudopotential profiles correspond to Case 4 transforma-

tion, (1) RSW, (2) gVSW, (3) p-CoI, (4) SSW, (5) n-CoI, and (6) gVSW.

TABLE IV. Value of parameters: Case 4 (b¼ 0.055).

j Type lj Characteristic l

1 RSW 1.5 � 10�3 lv1 ¼ 2.01 � 10�3

2 gVSW 2.2 � 10�3

3 p-CoI 2.30935 � 10�3 (¼ lp)

4 SSW 2.325 � 10�3

5 n-CoI 2.35517 � 10�3 (¼ ln)

6 gVSW 2.4 � 10�3 ll ¼ 2.4006 � 10�3

FIG. 8. Sagdeev pseudopotential profiles correspond to Case 5 transforma-

tion, (1) RSW, (2) gVSW, and (3) gVSW.
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2. RSW (Case 6: b > bv; aL 5 0.9)

It is known that, for b> bv, the terminating solution is

an RSW. Here we have chosen a b (¼ 0.069) which is only

slightly greater than bv (¼ 0.067). Figure 9 shows a set of

Sagdeev pseudopotentials with varying l, but fixed b. It

reveals only RSW solutions, but no OSWs. This further con-

firms that, for b > bv, not only the limiting one but also all

other solitary wave solutions are RSWs and no OSW exists

for any value of l provided all other parameters, viz., M, r,

Q, and al, remain constant (Sec. III A 1).

According to Case 4 (Sec. III A 1 d) we have observed

that, with an increase (decrease) in l, there is a gradual

coalescence of extrema for the SSW giving rise to an n (p)

type of CoI and then, with a further increase (decrease) in

the parameter, it turns to a gVSWr (gVSWm), respectively.

As l decreases further, the gVSWm merges to an RSW

while an increase in l leads the gVSWr to the wave break-

ing (Eq. (8)) and the solution ceases to exist. A similar

trend continues for all the previous cases (Cases 1–5, Sec.

III A 1) where, for the lower end (l<lv1), the solution

merges with an RSW but at the upper end it turns to be the

limiting solution (i.e., l¼lv2¼ ll). This poses the ques-

tion whether it is possible for a gVSW to merge to an RSW

with a larger amplitude. Our analysis shown in Fig. 9, how-

ever, rules out any such possibility. It also confirms that,

though increase in l indicates a gradual coalescence of

extrema, the gVSW never actually transforms to an RSW

with a larger amplitude. Whether this trend continues for

any general class of model requires a more detail paramet-

ric analysis. For our choice of model, however, b¼bv con-

firms the boundary of, not only the limiting, but all kinds

of OSWs.

Following Case 2 (Sec. III A 1 b), we have plotted Uo vs.

l and the variations of their slopes with l in Figs. 10(a) and

10(b), respectively. We have chosen three selected values for

M – b. It readily shows three segments of the amplitude vari-

ation (Sec. III A 1 b), namely, increase in the slope, a peak

and a drop or decrease in the slope following the peak [Fig.

10(b)]. The profiles depicting the variation of the slopes are

almost bell shaped with a visible asymmetry due to their

steeper decent from the peak. As expected, the range of l
values supporting RSW is the largest for M¼ 1.05 which has

the lowest amplitudes. The corresponding slope shows least

asymmetry and is the widest of the three, confirming a slow

variation of the amplitude. As M increases (and b decreases),

along with the amplitudes [Fig. 10(a)] the heights of the

peaks for the profiles in Fig. 10(b) also increase while their

widths decrease making them sharper. The range of l sup-

porting the solution shrinks while the drop in the slope fol-

lowing the peak becomes even steeper with increasing M.

A comparison between Figs. 5 and 10(b) shows that,

though both reveal a similar qualitative trend for the slopes,

the former shows a very spiky, almost ‘d’ like profile which

is drastically different from that observed in Fig. 10(b). To

understand this trend in more detail and to complement our

findings on OSWs (Secs. III A 1), we have summarized the

variations of the amplitudes with l for Cases 2–5 in Figs.

11(a)–11(d), respectively while Figs. 12(a)–12(d) show their

respective variations of the slopes. As before, the “�” and

“�” in Figs. 11(a)–11(d) mark the onset of gVSW (l¼ lv1),

TABLE V. Summary of parameters: Case 5 (b¼ 0.059).

j Type lj Characteristic l

1 RSW 2.00 � 10�3

2 gVSW 3.3 � 10�3 lv1 ¼ 3.06 � 10�3

3 gVSW 3.42 � 10�3 ll ¼ 3.43 � 10�3

FIG. 9. Sagdeev pseudopotential profiles for RSWs (Case 6, b¼ 0.069).
FIG. 10. (a) Variation of amplitude (U0) with l (b) Variation of dU0

dl vs. l, for

RSW.
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FIG. 11. Variation of U0 with respect

to l for Cases 2–5.

FIG. 12. dU0

dl vs. l corresponding to

Fig. 11.
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and p-CoI (l¼lp), respectively. For all the cases, the set of M
values remain constant, viz., M¼ 1.05, 1.06, and 1.07 while for

Figs. (11) and (12), the corresponding b values have been cho-

sen according to the prescribed limiting solutions (Sec. III A 1).

It shows that the amplitude (U0) increases with l while both

the amplitude (U0) and the limiting amplitude (Ut) increases

with M though the latter increases only marginally [Figs.

11(a)–11(d)]. The range of l values decreases with increasing

M and U0. It also shows that, even with a small overall increase

in b from Figs. 12(a) to 12(d), which is typically< 0.01, there

is a drastic decrease (� 90%) in the peak of the slopes. This is

followed by a corresponding decrease in the sharpness, and

smoothening of the profiles. Characteristically, an individual

profile in Fig. 12(d) resembles that of Fig. 10(b) but, unlike the

latter one, the former profiles do not show any regular trend for

changing M and b. This trend follows for Figs. 12(a)–12(c) as

well. More specifically, in Figs. 12(a) and 12(b), the largest

peaks occur for M¼ 1.05 while in Fig. 12(d) they occur at

M¼ 1.07. On the other hand, M¼ 1.06 corresponds to the low-

est peak for Figs. 12(a) and 12(d) while for Figs. 12(b) and

12(c) M¼ 1.07 is the lowest. In Fig. 12(c), peaks corresponding

to M¼ 1.05 and 1.06 are almost equal. The apparently arbitrary

trend may be caused due to their delicate “jump conditions”

(Sec. III A 1) which depends on the very minute combination

of parameters. We further note that the “jump condition” takes

place with the onset of gVSW, marked by “�”s in Figs.

11(a)–11(d) while beyond lp (marked by “�”), the amplitude

turns near constant and the slope drastically drops to a very low

value. The sharpest peak occurred at M¼ 1.05, b ¼ 0.054

[Fig. 12(a)] where the profile looks like almost a d function

thanks to the near vertical increase in amplitude over a minute

change in l, as shown in Fig. 11(a).

3. Revisiting OSW (al 5 0.8)

We have previously observed that, as the heavier (ligh-

ter) ion concentration changes, morphology of the Sagdeev

pseudopotential for the limiting solution at b¼ bCoI may also

change from n-CoI (al¼ 0.9) to p-CoI (al¼ 0.8). This calls

for a revisit of all our above mentioned analyses, viz., Cases

1–6, (Secs. III A 1 a–e and III A 2) with an increased heavier

ion concentration (lower al). For the sake of comparison, we

keep all the other parameters same as that in the Sec. III A 1

while vary the lighter ion concentration from al¼ 0.9 to 0.8,

enhancing the contribution of the heavier ions. It has con-

firmed that the transitional processes as experienced previ-

ously for Cases 1 and 2 do not get affected by the change in

the relative ion concentration. In other words, we may con-

clude that the transitional processes for the bs�b< bCoI

regime remained the same throughout the selected range of

al. The same holds true for Case 6, i.e., b> bv which

revealed only the RSW solution as expected from our previ-

ous analysis. However, since the limiting solution itself dif-

fers at b ¼ bCoI, it is necessary to revisit it (viz., Case 3,

Sec. III A 1 c) for the reduced al. The details are as follows:

a. Case 7 (b ¼ bCoI, al¼ 0.8). Figure 13 shows the

Sagdeev pseudopotentials corresponding to b ¼ bCoI while

Table VI summarizes all their properties and corresponding

characteristic l values. We recall that, for al¼ 0.9 and

b¼ bCoI, the terminating solution was n-CoI and the RSW

transformed into n-CoI through gVSW, p-CoI and SSW

(Sec. III A 1). For al¼ 0.8, however, the RSW transforms

into p-CoI through gVSW but, unlike the previous one, it

does not support any SSW. The overall transitional process

now can be represented as

RSW ! gVSW ! p-CoI;

Ro � Rg � lv1 � l � ll; li ¼ lv1; lp ¼ ll;

which excludes any SSW solution. This suggests that, as

al decreases, the b regime supporting SSW shrinks to

bs� b< bCoI. This also indicates that the decrease in the value

of al pushes the corresponding p-CoI solution to a larger l, ulti-

mately turning it into a limiting solution at bCoI. It is this upward

shifting of the p-CoI solution, rather than any direct influence of

al on the morphology of the Sagdeev pseudopotential, which

turned the limiting solution from an n-CoI to a p-CoI.

b. Case 8 (bCoI< b< bv). Contrary to al¼ 0.9, where we

could identify two distinct transitional patterns for the

selected b range, (viz., Cases 4 and 5), for al¼ 0.8 there

exists only one type of transition. The pattern resembles to

that of Case 5 for al¼ 0.9, making these two cases, viz.,
Cases 5 and 8 equivalent to each other, i.e.,

RSW ! gVSW;

Ro � Rg � lv1 � l � ll; li ¼ lv1:

FIG. 13. Sagdeev pseudopotential profiles for Case 7 (aL¼ 0.8,

b¼ 0.035684); Curves (1) RSW, (2) gVSW, and (3) p-CoI.

TABLE VI. Summary of parameters: Case 7 (b¼ 0.035684).

j type lj Characteristic l

1 RSW 5 � 10�5

2 gVSW 1.13 � 10�4

3 p-CoI 1.157 � 10�4 lp ¼ ll
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This further confirms that the b regime for SSW shrinks with

reduced al. The parameter bII shifts to the left and merges

with bCoI making the latter the uppermost boundary of b sup-

porting SSW solutions. This naturally eliminates any n-CoI

solution and gVSWs with larger amplitudes for al¼ 0.8.

There is also no equivalence for Case 4. Cases 7 and

8 together confirm that a p-CoI necessarily represent a lower

boundary of SSW and always have a lower amplitude than

the corresponding n-CoI. For both the parameter regime, p-

CoI moves up to larger l with the increasing b. For al¼ 0.9,

a p-CoI moves to a larger l (e.g., Case 4) and then ultimately

merges with n-CoI (e.g., Case 5) leaving only gVSWs as

OSW solutions. In the present situation (al¼ 0.8), in the

absence of any n-CoI, a p-CoI moves up, up to the limiting

solution (Case 7) and any SSW ceases to exist from and

beyond that value of b (b 	 bCoI).

B. Comparison of different transition routes for OSW

In Secs. III A 1 and III A 3, we have studied the transi-

tion of an RSW to SSW for the selected b ranges (viz., Cases

1–5) and different al values (viz., Cases 7 and 8). A closer

inspection readily reveals that there are grossly two distinct

types of transition routes, namely

Type I transition: RSW! DL! SSW; (bs � b � bI)

Type II transition: RSW! gVSWm! p-CoI!SSW!
n-CoI! gVSWr; (bI < b � bII)

Type I is identical to Case 1 (Sec. III A 1 a) whereas Type

II resembles Case 4 (Sec. III A 1 d). All other cases arise from

the truncation of Case 4 at different levels. Cases 2 and 3 got

truncated after step 4 (SSW) and step 5 (n-CoI), respectively,

while Cases 7 and 8 get truncated after step 3 (p-CoI) and step

2 (gVSW), respectively. All these truncations occur due to the

energy condition (Eq. (8)). For Case 5, the intermediate seg-

ment from step 3 to 5 (i.e., p-CoI! SSW! n-CoI) vanishes

due to the coalescence between p-CoI and n-CoI reducing the

Type II transition to a two step process only. Hence all the

other cases except Case 1 (i.e., Cases 2 – 8) may be considered

as the subcategory of Type II transition.

The main difference between the Type I and Type II

transitions is that the former one is associated with a DL

where the latter involves a gVSW rather than a DL. Here, a

DL or DL-like solution necessarily means that the charge

separation (Dn) should vanish at its maximum amplitude

(Eq. (7)) whereas all OSWs, including gVSWs, have a finite

non-zero charge separation at U0 (i.e., @W@U 6¼ 0). So far, to our

knowledge, there is no directly reported evidence of an SSW

which is not associated with a DL, or DL-like solutions.

Results from Verheest et al.,5 however, have indicated a

non-DL intermediate solution between RSW and SSW which

they termed as a “triple root” solution. They argued that the

particular solution emerges due to the coalescence of the

adjacent two roots of the DL (viz., Fig. 1, Sec. III A 1).

Figure 14 shows a Sagdeev pseudopotential profile for our

model which apparently resembles their triple root solution,

i.e., the pseudopotential curve of the intermediate solution

(curve 2, solid line) meets the zero axis with almost a

“grazing incidence”. The profile lies in between an RSW

(curve 1, dotted line) and SSW (curve 3, dashed line). Figure

15 represents the corresponding profiles for the derivative.

All the curves confirm a positive non zero charge separation

(Dn) near the maximum amplitude (U0). Interestingly, curve

2 does show a large drop in the charge separation (Dn) near

U0 but, after attaining a minimum value, which remains posi-

tive and non-zero, it once again shows an upward trend indi-

cating another increase in charge separation (Dn) at the

maximum amplitude (U0). This excludes it from the category

of any DL-like solution. Instead of turning to a DL, it will

show a minor wiggle near the tip of the potential profile cor-

responding to curve 2 which, with increasing amplitude, will

increase and shift towards a lower potential, eventually giv-

ing rise to a fully grown SSW (curve 3). In other words, as

FIG. 14. Sagdeev pseudopotentials for (1) RSW, (2) “grazing incidence,”

and (3) SSW.

FIG. 15. Variation of @W@U with U corresponding to Fig. 14.
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the amplitude (nonlinearity) increases, the wiggle shifts to a

lower potential. According to our previous analysis,20 and

the characteristics of its derivative profile, the particular

solution in Fig. 15 (curve 2) is thus categorized as a gVSW.

The trend of the Sagdeev pseudopotential curves in Fig.

14 already rules out any possibility of a DL solution between

Curves 1 (RSW) and 2. The aforementioned upward trend in

the charge separation (Dn) further eliminates the possibility

of any DL after curve 2. This further confirms that the transi-

tion shown in Fig. 14 is that of Type II. From the large drop

in the charge separation (Dn, Fig. 15) we may well conjec-

ture that the RSW was tending to a DL but, somehow, it was

prohibited and encountered a second steepening instead,

which soon get balanced leading to an SSW solution. This

appears to be consistence with the simulation result of

Kakad et al.,15 where they have noticed an extra large steep-

ening prior to their SSW solution.

Though a Type II transformation has never been

reported before, we have found it fairly regular and consis-

tent for our model. To assess how exceptional it is vis-�a-vis

the Type I, we have delineated all the characteristic b val-

ues in Fig. 16 along with all the subregions (viz., subregions

“a” and “b”) within the existence domain of OSWs

(bs� b�bv). We have chosen al¼ 0.9 and M¼ 1.06 and

keep all other parameters constant. The subregion “a”

denotes the range of b supporting SSW solutions while the

subregion “b” comprises of the gVSW solution only.

Focussing on SSW solutions (subregion “a”), we have

found that, eventually, the region bounded between bs and

bI (DbI¼ bI � bs¼ 0.002) is governed by the Type I trans-

formation while that bounded between bI and bII (DbII¼bII

– bI¼ 0.005) is governed by the Type II transformation. It

indicates that, of the overall b range observing SSW solu-

tions (subregion a) only around 28% is governed by Type I

while the rest major part follows a Type II transformation.

In other words, a Type II transformation appears to be more

common than that of Type I.

C. Existence domain of extra-nonlinear structures

To find the existence domain of SSW, or OSW, it is

necessary to determine the characteristic l values associ-

ated with the onset (eg., ls1, li) and offset (eg., ls2, li) of

the corresponding solution. We have observed that all these

characteristic l values vary significantly with varying b
which in turn affects the particular ranges of Rs (Ro) sup-

porting SSWs (OSWs), respectively. In Fig. 17(a) we have

plotted the variations of the characteristic l values with b
for the complete range of b (bs� b � bv) where ll (¼lf)

determines the upper boundary of the OSW solution. The

green, solid lines represent the variations of ls1 and ls2, the

brown, dash-dot lines are for li and lf (¼ll) while the blue,

dashed line shows the variation of ld. To highlight different

subregions, the vertical dotted lines mark the various char-

acteristic values for b. The spindle shaped area bounded

between the two solid lines, viz., ls1 and ls2, represents the

existence domain of the SSW (Rs) in an overall l – b
regime. For the clarity, the region is further highlighted in

Fig. 17(b). For a Type I transition, ls1 is associated with a

DL (i.e., ld) while for Type II, it is associated with a p-CoI

(lp). The spindle converges to a point at both of its ends

and the endpoints are determined by the lower (bs) and

upper (bv) bounds of b. The range of the l values appeared

to be the largest around b � bCoI [Fig. 17(b)], but tapers

down for both the directions. The dashed line shows the

variation of ld representing the DL solution. For b < bs it

determines the upper boundary of the RSW while beyond

bs and up to bI (bs�b<bI) it merges with the lower bound-

ary of Rs. As b increases further, i.e., bI�b� bII, the lower

boundary of Rs is determined by the variation of lp for a p-

CoI solution. The upper boundary, on the other hand, is

determined by ll (¼ lf, dash-dot curve) up to bCoI, but from

that point onward (bCoI<b � bII), it bifurcates towards a

lower l value (ls2<ll) and merges with the variation of ln

for n-CoI. The lower bound, i.e., both ld and lp, increases

monotonically with b though the former shows a compara-

tively slower rate of variation [Figs. 17(a) and 17(b)]. The

rate of increase in the upper bound, on the other hand, slows

down after bCoI which eventually narrows down the exis-

tence domain.

While boundaries of SSW solutions are well marked,

that for a gVSW is relatively blurred due to the seamlessly

continuous and incremental transformations of an RSW to a

gVSW. To minimise the confusion, we have explored the

overall existence domain of OSW which comprises of all the

types of the extra-nonlinear structures, including the SSW

and the gVSW. The upper boundary of an OSW is uniquely

defined by ll (Eq. (8)). We have estimated the lower bound

of the OSW by delineating two characteristic l values, viz.,
ld (for Type I) and lv1 (for Type II), respectively. The for-

mer one (ld) assumes that any such extra-nonlinear solution

has a larger amplitude than the corresponding DL. The latter

one (lv1) is associated with the onset of a gVSW and is that

the lowest l which does not satisfy Eq. (5). We have already

shown that, for a Type II transition, and in the absence of a

DL, the onset of an OSW is actually determined by that of a

gVSW. On the basis of those aforementioned assumptions,FIG. 16. The complete b regime supporting OSW solution.
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conditions for the lower boundary of an OSW may thus for-

mally be written as

li ¼
ld : bs � b < bI

lv1 : bI � b � bv:



(9)

The region bounded in between two dash-dot curves repre-

sents the complete existence domain for OSWs. It readily

shows that the previously discussed SSW existence domain

[Rs, solid curves; Figs. 17(a) and 17(b)] is considerably nar-

rower than the overall Ro. It also confirms that SSWs are a

subset of more general extra-nonlinear large amplitude solu-

tions. Figure 17(a), along with Fig. 16, confirms the follow-

ing condition in general,

Rs � Rg; Rs 
 Rg; and Rg ¼ Ro � Rs

We note that the lower boundary shows a significant initial

dip in l near b�bI but beyond b¼bI, both the upper and

lower bounds of Ro increases monotonically with increasing

b. It appears that the lower bound increases more rapidly

compared to the upper bound. The former gradually merges

with the latter and an OSW solution ceases to exist beyond

bv. Unlike the upper boundary, which is quantitatively

unique and determined without any ambiguity, the lower

boundary of the OSW, or gVSW is comparatively more qual-

itative in nature. It, however, represents a fairly reliable trend

of the variation. A more specific and quantitative study of

the lower boundary is beyond the scope of the present work

and will be communicated elsewhere.

IV. CONCLUSION

So far it was believed that an SSW is necessarily associ-

ated with a DL. Our analyses have confirmed that they may

emerge out of a gVSW as well. A gVSW is an otherwise

ordinary solitary wave which has a substantial fluctuation in

the charge separation but observes an overall increase in it

near the maximum amplitude. We have categorized the for-

mer transition as Type I and the latter as Type II. In this pro-

cess we have identified two more characteristics b values,

viz., bI (bII) which determines the respective parameter

regime observing Type I (Type II) transitions. We have fur-

ther observed that, for a Type II transition, the SSW solution

is bounded between a p-CoI (lower bound) and n-CoI (upper

bound). Eventually, we have delineated the spindle shaped

existence domain for the SSW in the l � b regime. The very

narrow area of the existence domain indicates that a very

delicate balance is required to sustain an SSW solution.

Though the relative densities and temperatures of the elec-

trons primarily determines the existence domain of the SSW,

an increase in the heavier ion concentration (ah) inhibits the

formation of SSWs and shrinks its existence domain.

The onset of an OSW is always associated with an

abrupt increase in the amplitude (jump condition). In order

to quantify it, we have implemented the derivative analysis

for the variation of the amplitude with l. The slope of the

profile (i.e., dU0

dl ) has shown a very characteristic feature

along with a peak associated with the “jump condition”. The

peak is smooth and regular for an RSW, but turns spiky and

irregular with an OSW. It arises due to the non-monotonic

variation of the amplitude with l.18 The peaks provide a

more quantitative estimate of the abruptness with which the

amplitude increases.

To complete our analysis, we have also delineated the

overall regime of the OSW. We have found that, for the

Type II transition, the lower bound of the OSW is more qual-

itative due to its seamless and continuous merging with

RSW. We have noticed that particular morphologies of a p

and n type CoI ensure a higher nonlinearity when the “point

of inflection” is associated with the first subwell of the

FIG. 17. (a) The overall existence

domain of OSW (brown dash-dott

lines) and SSW (green solid lines); the

blue dashed line represents DL. (b)

The highlighted existence domain of

SSW (green solid lines); the brown

dash-dotted line represents the upper

limit of OSW and the blue dashed line

represents DL.
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pseudopotential, i.e.,, U0 (n-CoI)>U0 (p-CoI). We have also

confirmed that the amplitude of an RSW is always smaller

than the corresponding gVSW. Our analysis is expected to

enhance our understanding for these extra-nonlinear struc-

tures and their association with the otherwise regular

solutions.

ACKNOWLEDGMENTS

The authors would like to acknowledge the Director of

Indian Institution of Geomagnetism for the facilities and the

encouragement for the completion of the work. The first

author would like to thank her colleagues A. Lotekar and T.

Kamalam for their valuable suggestions.

1A. E. Dubinov and D. Y. Kolotkov, IEEE Trans. Plasma Sci. 40,

1429–1433 (2012).
2F. Verheest, G. S. Lakhina, and M. A. Hellberg, Phys. Plasmas 21, 062303

(2014).
3A. E. Dubinov and D. Y. Kolotkov, Plasma Phys. Rep. 38, 909–912

(2012).
4F. Verheest, M. A. Hellberg, and I. Kourakis, Phys. Plasmas. 20, 012302

(2013).

5F. Verheest, M. A. Hellberg, and I. Kourakis, Phys. Rev. E 87, 043107

(2013).
6M. A. Hellberg, T. K. Baluku, F. Verheest, and I. Kourakis, J. Plasma

Phys. 79, 1039–1043 (2013).
7O. R. Rufai, R. Bharuthram, S. V. Singh, and G. S. Lakhina, Phys.

Plasmas. 21, 082304 (2014).
8O. R. Rufai, R. Bharuthram, S. V. Singh, and G. S. Lakhina, Phys.

Plasmas. 22, 102305 (2015).
9S. V. Singh and G. S. Lakhina, Commun. Nonlinear Sci. Numer. Simul.

23, 274–281 (2015).
10F. Verheest and M. A. Hellberg, Phys. Plasmas. 22, 012301 (2015).
11C. P. Olivier, S. K. Maharaj, and R. Bharuthram, Phys. Plasmas. 22,

082312 (2015).
12A. Paul and A. Bandyopadhyay, Astrophys. Space Sci. 361, 172 (2016).
13D.-N. Gao, J. Zhang, Y. Yang, and W.-S. Duan, Plasma Phys. Rep. 43,

1–5 (2017).
14T. K. Baluku, M. A. Hellberg, and F. Verheest, EPL 91, 15001 (2010).
15A. Kakad, A. Lotekar, and B. Kakad, Phys. Plasmas 23, 110702 (2016).
16R. B. White, B. D. Fried, and F. V. Coroniti, Phys. Fluids 15, 1484 (1972).
17S. S. Ghosh and A. N. S. Iyengar, Phys. Plasmas 4, 3204–3210 (1997).
18S. S. Ghosh and A. N. S. Iyengar, Phys. Plasmas. 21, 082104 (2014).
19S. K. Maharaj, R. Bharuthram, S. V. Singh, and G. S. Lakhina, Phys.

Plasmas 20, 083705 (2013).
20S. S. Varghese and S. S. Ghosh, Phys. Plasmas 23, 082304 (2016).
21F. Verheest, M. A. Hellberg, and I. Kourakis, Phys. Plasmas 20, 082309

(2013).
22S. S. Ghosh and A. N. S. Iyengar, Phys. Scr. 61, 361 (2000).

102111-14 S. V. Steffy and S. S. Ghosh Phys. Plasmas 24, 102111 (2017)


