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Abstract Artificial Neural Networks (ANNs) are known to be capable of solving linear as well as highly
nonlinear problems. Using the long-term and high-quality data set of Formosa Satellite-3/Constellation
Observing System for Meteorology, Ionosphere, and Climate (FORMOSAT-3/COSMIC, in short F3/C) from 2006
to 2015, an ANN-based two-dimensional (2-D) Ionospheric Model (ANNIM) is developed to predict the
ionospheric peak parameters, such as NmF2 and hmF2. In this pilot study, the ANNIM results are compared
with the original F3/C data, GRACE (Gravity Recovery and Climate Experiment) observations as well as
International Reference Ionosphere (IRI)-2016 model to assess the learning efficiency of the neural networks
used in the model. The ANNIM could well predict the NmF2 (hmF2) values with RMS errors of 1.87 × 105 el/cm3

(27.9 km) with respect to actual F3/C; and 2.98 × 105 el/cm3 (40.18 km) with respect to independent
GRACE data. Further, the ANNIM predictions found to be as good as IRI-2016 model with a slightly smaller
RMS error when compared to independent GRACE data. The ANNIM has successfully reproduced the local
time, latitude, longitude, and seasonal variations with errors ranging ~15–25% for NmF2 and 10–15% for
hmF2 compared to actual F3/C data, except the postsunset enhancement in hmF2. Further, the ANNIM has also
captured the global-scale ionospheric phenomena such as ionospheric annual anomaly, Weddell Sea
Anomaly, and the midlatitude summer nighttime anomaly. Compared to IRI-2016 model, the ANNIM is found
to have better represented the fine longitudinal structures and the midlatitude summer nighttime
enhancements in both the hemispheres.

1. Introduction

A comprehensive understanding of the ionospheric structure and dynamics is essential for the near-real-time
forecast and long-term prediction of the ionospheric parameters to serve the satellite-based communication
and navigation needs. Theoretical or physics-based models are developed by understanding the physical,
chemical, and transport processes that control the variability of coupled thermosphere-ionosphere system
(Schunk, 1996). By systematically understanding the effects of background ionospheric conditions such as
electric fields, neutral winds, solar flux, and geomagnetic conditions, the physics-based models can predict
the temporal and spatial variability of ionospheric parameters. The Time-Dependent Ionospheric Model
(Schunk et al., 1976, 1975; Schunk & Walker, 1973), thermosphere-ionosphere-electrodynamics general circu-
lation model (Richmond et al., 1992; Roble et al., 1988), thermosphere-ionosphere-mesosphere electrody-
namics general circulation model (Roble & Ridley, 1994), parameterized ionospheric model (Daniell et al.,
1995), coupled thermospheric ionospheric model (Fuller-Rowell et al., 1996), Shuffled University plasma-
spheric ionospheric model (Bailey & Balan, 1996; Bailey et al., 1997), and SAMI2 is Another Model of the
Ionosphere (SAMI2) (Huba et al., 2000) are some of the physics-based models. On the other hand, the
International Reference Ionosphere (IRI) (Bilitza, 2001) and NeQuick (Hochegger et al., 2000; Nava et al.,
2006; Radicella & Leitinger, 2001) are the empirical models, developed by assimilating the several ground
and spaceborne observations globally. Several methods are being incorporated to model the local time,
latitude, longitude, and solar cycle variability of the ionosphere by the scientific community across the world.
Each model has its own advantages and disadvantages; however, the accurate prediction of the ionospheric
conditions is still a challenging task because of its complex variability due to several controlling factors
(Anderson et al., 1998; Shunk & Sojka, 1996).

The Artificial Neural Networks (ANNs) and machine learning can solve more complex problems by systematic
learning mechanisms. Numerous studies on prediction of ionospheric peak electron density (NmF2), total
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electron content (TEC), sunspot number, interplanetary conditions using ANNs can be found in the literature
(Athieno et al., 2017; Huang & Yuan, 2014; Kumluca et al., 1999; Lamming & Cander, 1999; Macpherson et al.,
1995; Poole & Poole, 2002; Watthanasangmechai et al., 2012; Williscroft & Poole, 1996; Wintoft, 2000; Xenos,
2002; Zhao et al., 2014). Earlier attempts to forecast the NmF2 and TEC using neural networks were based on
daily and monthly time scales. Altinay et al. (1997) implemented multilayer perceptron-type neural networks
to forecast the ionospheric critical frequency (foF2). Ma et al. (2005) used residual minimization training neural
network in ionospheric tomography to reconstruct the local ionospheric electron density distribution. By
implementing the genetic algorithm based neural networks, Zhou et al. (2013) tried to predict the foF2.
The aforementioned studies on ionospheric prediction are mostly confined to over a given location.
Oyeyemi and Poole (2004) and Oyeyemi et al. (2005) developed a global foF2 model and discussed the
forecasting capabilities of the neural network-based models. Recently, neural networks are being used in
the magnetospheric studies as well (Dmitriev & Suvorova, 2000; Shin et al., 2016; Zhelavskaya et al., 2016).
All the above studies show the potentiality of the neural networks and its application in the fields of iono-
sphere and magnetosphere. In the view of the capabilities of the ANNs, the main objective of the present
study is to develop an Artificial Neural Network based Ionospheric Model (ANNIM) to predict the ionospheric
F2 region peak parameters such as NmF2 and hmF2, globally, using the long-term radio occultation (RO) data
set of Formosa Satellite-3/Constellation Observing System for Meteorology, Ionosphere, and Climate
(FORMOSAT-3/COSMIC (F3/C)).

2. Data and Methodology

With a constellation of six microsatellites around 800 km circular orbits, the F3/C radio occultation experiment
provides the height profiles of atmospheric parameters and ionospheric electron density. With nearly 2,000
profiles per day, F3/C provided unprecedented coverage of ionospheric vertical electron density profile
observations with a nearly uniform spatial distribution over the globe. Further, the retrieved electron density
profiles from F3/C are found in good agreement with ground-based incoherent scatter radar and ionosonde
observations (Lei et al., 2007; Schreiner et al., 2007). In the present study, we have used the ionospheric peak
electron density (NmF2) and the peak height of F2 layer (hmF2) derived from the F3/C electron density profiles
during 2006–2015 (http://cdaac-www.cosmic.ucar.edu). All the electron density profiles were initially
processed for quality control, and profiles with a mean standard deviation greater than 1.5 and/or F2 layer
peak height (hmF2) greater than 500 km were removed from the analysis using the method suggested by
Yang et al. (2009), Potula et al. (2011), and Uma et al. (2016). The daily averaged F10.7 solar flux and 3-hourly
Kp index data are obtained from the Space Physics Data Facility of NASA, USA (https://omniweb.gsfc.nasa.
gov). Figure 1a shows the daily averaged F10.7 solar flux for the entire data range, starting from 2006 to 2015.
Figure 1b shows the number of electron density profiles from F3/C in each month indicating the quantum of
the data that used in the present study. The blue bars indicate the total number of F3/C profiles, and the
green bars indicate the good profiles after applying the quality control measures. It can be observed from
the Figure 1 that the number of F3/C profiles are higher during 2007–2010 (low solar activity period) when
all the satellites in the F3/C constellation are fully operational. The number of profiles in the later years
decreased due to the operational failure of some of the F3/C satellites. Further, the electron density profiles
from the Gravity Recovery and Climate Experiment (GRACE) radio occultation observations available during
2007–2015 and the International Reference Ionosphere (IRI-2016) model have been used for comparison to
assess the performance of ANNIM.

2.1. Artificial Neural Networks

Our brain is more complex and mysterious object that ever studied by the scientists. The human brain
consists of nearly 100 billion neurons which are massively interconnected into a parallel network to perform
highly nonlinear tasks. The ANNs attempt tomimic the human brain (or biological neurons) to solve problems
such as pattern recognition, clustering, generalization, linear and nonlinear data fitting, and time series
prediction. The input-output relationship in neural networks is determined by the “strength of the signal”
or “weights.” McCulloch and Pitts (1943) explained the idea of neural network computation. According to
the McCulloch and Pitts model, all neurons in the network are represented by a combination of logical func-
tions. Widrow and Hoff (1960) introduced the Adaptive Linear Neuron (also known as Least Mean Squares
rule) approach by adjusting the weight of the network, which significantly improved the learning ability of
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neural networks. Rumelhart et al. (1986) has further introduced backpropagation of errors in the feed-forward
neural networks, which increase the ability of the neural network computing to solve more complex
problems. However, the learning speed was a problem at that time. Later, Jacobs (1988) improved the rate
of convergence to the minimum least squares error of the neural networks by adapting the learning rate.
Widrow and Lehr (1993) explained the applications of the adaptive neural networks, and its applications in
various nonlinear problems. To solve nonlinear input-output relationship, feed-forward neural networks
are very useful. A multilayer feed-forward neural network consists of three blocks, namely, input unit,
hidden layer(s) and the output unit. The neural network outputs with “n” number of input neurons and “k”
number of neurons can be written as (Krasnopolsky & Lin, 2012)

Yq ¼ gq0 þ
Xk

j¼1
gqj :φ hj0 þ

Xn

i¼1
hji:xi

� �
(1)

where q = 1, 2, …, m and φ hj0 þ
Pn

i¼1 hji:xi
� �

represents an individual neuron with a nonlinear activation
function φ. Here g and h denote the fitting parameter of the neural network. Flow diagram of a feed-forward
neural network with error backpropagation algorithm is shown in Figure 2. Training of the network is done in
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Figure 1. (a) Daily averaged F10.7 solar flux during 2006–2015 and (b) data statistics showing the total number of F3/C profiles (green) per month and good profiles
(blue) after quality control check.

Figure 2. Flow diagram of a feed-forward neural network with error backpropagation algorithm.
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four steps: (i) initialization of weights and biases, (ii) feed forward, (iii) error backpropagation, and then (iv)
updating the weights and biases. During the initial stage of learning, some random weights are assigned
to the network. In the next stage (feed-forward), each input unit (xi), receives a signal along with assigned
weights, passes through each of the hidden nodes (H1, H2, …, H40). Then, each unit in the hidden layer(s)
calculates the activation function for each input parameter and weight and sends its signal to the output
layer. The output layer computes the activation function to get the response of the network. In the third
stage, the error is computed by comparing the expected output with the calculated output and backpropa-
gated to all nodes in the previous layer(s). During the final stage, weights and biases are updated according to
the estimated error factor. As shown in Figure 2, these steps are iteratively repeated in successive epochs
until the network converges to the minimum least square error.

2.2. Neural Network Architecture and Training Method

In this study, the ANN is aimed to create a multivariate regression model to predict the ionospheric para-
meters such as F2 layer peak electron density (NmF2) and peak height (hmF2). The MATLAB-based
Levenberg-Marquardt (LM) algorithm (Levenberg, 1944; Marquardt, 1963) has been used to train the neural
network. Though this method requires more computational memory, it takes less computation time. Figure 3
shows the block diagram and architecture of the neural network that used in the present study. The primary
inputs used in our model are date (YYYY/MM/DD) or day number (DDD), time (Universal Time, UT), latitude,
longitude, F10.7 solar flux, and Kp index, shown in Figure 3a. These inputs also serve as inputs to the horizontal
wind model (HWM-2014) (Drob et al., 2015) to compute zonal and meridional winds and International
Geophysical Reference Field (IGRF-2012) model to calculate inclination, declination and dip latitude. These
model computations of winds and geomagnetic field configurations are taken care by an internal subroutine
in the program (gray box, Figure 3b). After performing several test runs and analyzing the regression values,
we found that the architecture with one hidden layer that contains 40 neurons is suitable for our study. The
final architecture of the feed-forward neural network with one input layer, one hidden layer with 40 neurons,
and one output layer is shown in Figure 3c. During the training process of neural networks, the total data is
divided into three sets, namely, training, validation, and testing. The training data set is used to obtain the
nonlinear relationship between input parameters and the target parameters (NmF2 and hmF2) and compute
the weights. The validation set (which is not used for training purpose) is used to optimize the neural network
performance by estimating the errors and avoiding the overfitting of model parameters. The errors estimated
during the validation are further used in the network to check if the errors are within the permissible range.
The testing data set is an independent data that is not used in the training but used to assess the network
performance only. In the present analysis, nearly 70% of the global F3/C data during the period from 2006
to 2015 is used for training, 15% of data is used for validating the network, and the remaining 15% of data
is used for testing the neural network. We initially trained our neural network with entire global data set of

Figure 3. Configuration of Artificial Neural Network used in the present study. (a) Primary inputs to the neural network. (b) Calculation of additional inputs using
IGRF-12 and HWM-14. (c) Architecture of feed-forward neural network with error backpropagation.
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F3/C with the above mentioned input parameters and found that the regression value (R) between the
predicted and target parameters is 0.88.

To further improve the regression of the neural network, we have adopted a gridded neural network, rather
than feeding the entire global data to a single neural network. In this approach, we divided the entire global
data into small spatial grids of size 20° longitude × 10° latitude and the data in each grid are trained using the
neural networks separately. Our basic idea is to get an individually trained neural network for each 20°
longitude × 10° latitude spatial grid around the globe using the same architecture shown in Figure 3. As
mentioned above, 70%, 15%, and 15% of data in each grid are used for training, validation, and testing of
neural network, respectively. For example, Figure 4 shows the regression coefficient (R) between normalized
target parameters (NmF2 and hmF2) and the predicted output parameters during training, validation, and
testing steps for a spatial grid of 0–10°N latitude and 0–20°E longitude. Figure 4 (bottom right) shows the
regression between the predicted and target parameters for all the data. The colored solid lines represent
the fit of the corresponding predicted values and the regression values are shown on the top of each panel.
With this gridded neural network approach, the regression in each spatial grid has significantly improved
compared to the single neural network approach on global data. One can see that the overall regression
value is nearly 0.93, which has significantly improved compared to the single neural network approach
(0.88). Finally, a cluster of 324 trained neural networks, one for each spatial (20° longitude × 10° latitude) grid,
were developed. A front-end MATLAB routine that selects the appropriate neural network based on the input
parameters is further developed to combine the set of 324 neural networks and build a two-dimensional
(2-D) model that can predict the ionospheric F2 layer peak parameters (NmF2 and hmF2), globally.

3. Results

The learning efficiency of the above neural network configuration and performance of this Artificial Neural
Network-based Ionospheric Model (ANNIM) to predict the NmF2 and hmF2 is evaluated in this section. For

Figure 4. Linear regression between the normalized target parameters and ANN output during (a) training, (b) validation, and (c) testing phases for the spatial grid of
0–10°N latitude and 0–20°E longitude. (d) The linear regression between the predicted and target parameters for all the data.
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this purpose, the NmF2 and hmF2 data from the F3/C observations under
March equinox (day number = 80 ± 20 days) with moderate solar activity
(F10.7 solar flux = 120 ± 10 solar flux unit (sfu)) and quiet geomagnetic
activity (Kp ≤ 3) conditions were selected from the entire available F3/C
data set. A total of ~30,000 data points have been selected that meet
the above selection criteria. Also, it should be noted that the selected
NmF2 and hmF2 data from F3/C that comprise different latitudes, longi-
tudes, local times, and years, however, meet the selection criteria of day
number = 80 ± 20 days, F10.7 solar flux = 120 ± 10 sfu and Kp ≤ 3. Now,
the ANNIM has been run to predict the NmF2 and hmF2 values for the same
latitudes, longitudes, and local times of actual F3/C data with day
number = 80, F10.7 = 120 sfu and Kp = 3. The ANNIM predicted NmF2 and
hmF2 values are compared with the actual F3/C data in Figures 5a and
5b, respectively. As can be observed from Figures 5a and 5b the predicted
NmF2 and hmF2 by ANNIM are well correlated with the actual F3/C data. The
linear regression between ANNIM and F3/C data gives the regression coef-
ficients (R) of 0.94 for NmF2 and 0.77 for hmF2. The RMS (root-mean-square)
errors of the ANNIM predictions are 1.87 x 105 el/cm3 for NmF2 and 27.9 km
for hmF2. These results indicate that the learning capability of the proposed
neural network architecture and the performance of ANNIM are very good
for NmF2 and reasonably good for hmF2.

The spatial and temporal variations of NmF2 and hmF2 predicted by ANNIM
are further examined in comparison with the actual F3/C data. Both the
ANNIM-predicted and F3/C data of NmF2 and hmF2 (above data, shown in
Figure 5) are binned into 2.5° geographic latitude, 2.5° dip latitude, 5°
geographic longitude, 30 min local time intervals to construct the spatial
and temporal maps of NmF2 and hmF2. For example, Figures 6a and 6b
show the geographic latitude and longitude variations of NmF2 derived
from ANNIM and F3/C, respectively, at a fixed local time of 12 LT. A

10-point smoothing is applied on both ANNIM and F3/C data, and in both latitude and longitude directions
to construct the smooth spatial variation maps of NmF2. One can observe from the Figures 6a and 6b that the

Figure 5. The linear regression between ANNIM predictions and the actual
F3/C for (a) NmF2 and (b) hmF2 under March equinox (day number = 80 ± 20),
moderate solar activity (F10.7 = 120 ± 10), and quiet geomagnetic (Kp ≤ 3)
conditions.

Figure 6. Geographic latitude and longitude variations of NmF2 derived from (a) ANNIM, (b) F3/C, and (c) percentage of error at 12 LT duringMarch equinox. The local
time and dip latitude variation of zonal mean (longitudinally average) NmF2 derived from (d) ANNIM and (e) F3/C and (f) percentage of error.
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geographic latitude and longitudinal variations of NmF2 predicted by ANNIM are in good agreement with the
original F3/C data indicating that the ANNIM has well captured the spatial variation of NmF2. Figure 6c shows
the error in the model predicted NmF2 when compared to original F3/C data expressed in percentage, as
given by

Percentage of Error Eð Þ ¼ ANNIM� F3=C data
F3=C data

�100 (2)

From Figure 6, one can see that the percentage error remains below 15% at most locations. However, the
ANNIM appears to underestimate the NmF2 at high-latitudes where the error increases to ~20–25%. The
slightly higher percentage of error at high latitudes can partly be due to low background NmF2 values and
low-solar activity data bias in the training data set used in the present model, will be discussed later in
section 4.

Similarly, Figure 6d shows the local time and dip latitude variation of zonal mean (longitudinally average)
NmF2 derived from ANNIM. From the Figure 6d, one can see that the local time and dip latitude variations
of NmF2, such as, low values during predawn hours, steadily increasing after sunrise, reaching maximum
around noon and afternoon hours with a well-developed equatorial ionization anomaly and decreasing after
sunset have been successfully captured by the model. Figure 6e shows the similar local time and dip latitude
variations of NmF2 constructed from the actual F3/C. Comparison of Figures 6d and 6e clearly indicates that
the model predicted NmF2 values and its local time and dip latitudes variations are in good agreement with
the F3/C data. Figure 6f shows that the error in the model predicted NmF2 with respect to original F3/C data is
small and mostly remains below ~15–20%. The ANNIM-predicted NmF2 also show error greater than 20% at
some times, for example, at low latitudes during the predawn hours of 3–5 LT (overestimated) and at south-
ern middle-to-high latitudes around midnight (underestimated). These large errors can also be partly due to
very low background ionization which could often magnify the error because of low denominator value
in equation (2).

Figure 7 is similar to that of Figure 6, however, presents variations of hmF2. One can observe from Figure 7 that
the ANNIM has well captured the spatial and temporal variations of hmF2 and generally in good agreement
with the F3/C observations. The percentage error remains to be small (less than 10%) at all latitudes, longi-
tudes, and local times except during the postsunset hours at equatorial and low latitudes (18–21 LT in
Figure 7f). The model underestimates the hmF2 at equatorial and low latitudes during the postsunset hours
when compared to F3/C data. The enhanced hmF2 values in the F3/C data (Figure 7e) during the

Figure 7. Geographic latitude and longitude variations of hmF2 derived from (a) ANNIM, (b) F3/C, and (c) percentage of error at 12 LT duringMarch equinox. The local
time and dip latitude variation of zonal mean (longitudinally average) hmF2 derived from (d) ANNIM and (e) F3/C and (f) percentage of error.
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postsunset hours at equatorial latitudes can be attributed to postsunset height rise of equatorial F layer due
to prereversal enhancement in the zonal electric field (Farley et al., 1986; Park et al., 2010; Rishbeth, 1971).
However, the ANNIM fails to capture this feature around postsunset hours.

After the comparisons of ANNIM predictions with the F3/C data, it is also important to compare the model
results with an independent data set that was not used in the present model. For this purpose, the global
NmF2 and hmF2 data from the GRACE-RO profiles were obtained under similar conditions of day
number = 80 ± 20 days, F10.7 solar flux = 120 ± 10 sfu, and Kp ≤ 3 from the available GRACE data during
the period 2007–2015. Now the ANNIM as well as IRI-2016 models has been run for the given latitudes, long-
itudes, and UT times of actual GRACE data points with day number = 80, F10.7 = 120, and Kp = 3. The ANNIM
and IRI-2016 model predictions of NmF2 and hmF2 are compared with the actual GRACE data in Figure 8.
Figures 8a and 8b show the ANNIM predictions, and Figures 8c and 8d show the IRI-2016 model predictions
with respect to the GRACE data. Figures 8a and 8c (Figures 8b and 8d) show the NmF2 (hmF2) comparisons. It
can be seen from the Figures 8a and 8b that the ANNIM predictions are linearly correlated with the GRACE
data with the regression coefficients values of 0.89 and 0.63 for NmF2 and hmF2, respectively. The RMS error
is 2.98 × 105 el/cm3 for NmF2 and 40.18 km for hmF2 in comparison with the independent GRACE data. Further,
the IRI-2016 model predictions of NmF2 and hmF2 (Figures 8c and 8d) also linearly correlated with GRACE data
with the regressions coefficients of 0.86 and 0.57 for NmF2 and hmF2, respectively. The RMS error in IRI
predicted NmF2 is slightly higher (3.6 × 105 el/cm3) and that for hmF2 is nearly same (39.93) compared to
ANNIM. Therefore, from the results presented in Figure 8, one can conclude that the ANNIM predictions of
NmF2 and hmF2 are reasonably good and nearly comparable with IRI model predictions. However, the
ANNIM gives slightly better correlation (3%) for NmF2 and hmF2 (6%) than by IRI-2016 with respect to the
independent GRACE data.

With a view to further examine the model response during the solstices, the ANNIM has been run for similar
conditions (F10.7 = 120 sfu and Kp = 3) for June solstices (day number = 172) and December solstices (day
number = 354) and compared with F3/C data. The IRI model also has been run with the same inputs to further
compare the ANNIM. For example, Figure 9 shows the longitudinal and latitudinal variation of NmF2 at fixed
local time of 12 LT during June (a–c) and December (d–f) solstices. Figures 9a and 9d represent ANNIM results,
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Figure 8. Linear regression between ANNIM predictions and independent GRACE radio occultation observations for (a) NmF2 and (b) hmF2. Linear regression
between IRI-2016 model predictions and GRACE RO observations for (c) NmF2 and (d) hmF2.
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Figures 9b and 9e represent F3/C data, and Figures 9c and 9f represent the IRI-2016. From Figure 9, one can
clearly observe that the longitudinal and latitudinal variations of derived from ANNIM are in good agreement
with the F3/C data during both the solstices. Further, it can also be observed that the NmF2 is globally large
during the December solstice (Figures 9d–9f) when compared to June solstices (Figures 9a–9c), which is
popularly known as ionospheric annual anomaly (Berkner & Wells, 1938; Rishbeth & Muller-Wodarg, 2006;
Sai Gowtam & Tulasi Ram, 2017; Yonezawa, 1971; Zeng et al., 2008). This indicates that the ANNIM has
successfully captured the seasonal and annual variations of NmF2. Further, the longitudinal and latitudinal
variations predicted by ANNIM are nearly comparable to those predicted by the IRI-2016 model. However,
IRI-2016 model gives relatively smoother longitudinal variations. The fine longitudinal structures around
equatorial ionization anomaly region appear to be better represented by ANNIM than in IRI-2016 when
compared with the F3/C data. This is somewhat expected as the ANNIM is primarily developed based on
the F3/C data.

Figure 9. The global ionospheric NmF2 maps generated around local noon (12 LT) by using (a, d) ANNIM, (b, e) F3/C data, and the (c, f) IRI-2016 model during June
(Figures 9a–9c) and December (Figures 9d–9f) solstices.

Figure 10. The global ionospheric NmF2 maps generated around local midnight (00 LT) by using (a, d) ANNIM, (b, e) F3/C data, and the (c, f) IRI-2016 model during
June (Figures 10a–10c) and December (Figures 10d–10e) solstices.
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Figure 10 is similar to Figure 9 except for midnight local time (00 LT) conditions. It can be seen from these
figures that the NmF2 is generally high in the respective summer hemispheres (Northern Hemisphere during
June and Southern Hemisphere during December) at low and middle latitudes. This feature is generally
known as midlatitude summer nighttime anomaly (MSNA) in the Northern Hemisphere (Lin et al., 2010;
Thampi et al., 2009) and its Southern Hemispheric counterpart is popularly known as Weddell Sea
Anomaly (WSA) (Bellchambers & Piggott, 1958; He et al., 2009). These midlatitude nighttime enhancements
of NmF2 in the summer hemispheres are generally attributed to the combined effects of equatorward neutral
winds in the presence of geomagnetic field configuration (Liu et al., 2010). Nevertheless, the ANNIM has
successfully reproduced these midlatitude nighttime phenomena of MSNA and WSA. The ANNIM results
are also similar to that of IRI-2016; however, the ANNIM better resembles with the F3/C data as expected.

4. Summary and Discussion

An ANN-based ionospheric model (ANNIM) to predict the ionospheric F2 layer peak density (NmF2) and height
(hmF2) has been developed using the long-term (2006–2015) and global data of F3/C radio occultation obser-
vations. The global F3/C data have been divided in to spatial grids of 20° longitude × 10° latitude, and the
data in each grid were trained using the same neural network architecture given in Figure 3. The basic idea
behind dividing the global data in to smaller spatial grids is to reduce the spatial variability of data in each
grid. Training the neural network over smaller spatial grids improves the learning and adoptability by the
neural network to the given set of input parameters. Accordingly, the linear regression value has been
increased from 0.88 for single neural network approach on global data to 0.93 for a neural network on a
spatial grid of 20° longitude × 10° latitude (Figure 4). However, dividing the global data into too smaller
spatial grids causes an increase in the number of neural networks. Hence, there is a trade-off between the
number of neural networks and the size of the spatial grids. In the present study, we adopted a spatial grid
size of 20° longitude × 10° latitude and the data in each spatial grid are separately trained. Therefore, this
model comprises of 324 trained neural networks, one for each grid. Finally, the set of 324 trained neural
networks combined through a front-end code to build the two-dimensional (2-D) model (ANNIM) that can
predict the NmF2 and hmF2.

In this pilot study, the learning efficiency of the proposed neural network approach and the performance of
ANNIM under moderate solar activity (F10.7 = 120 sfu) and quiet geomagnetic (Kp ≤ 3) conditions have been
evaluated in comparison with actual F3/C data. The linear regression coefficients between the ANNIM
results and actual F3/C data are 0.93 for NmF2 and 0.77 for hmF2, and the RMS errors are 1.87 × 105 el/cm3

for NmF2 and 27.9 km for hmF2 (Figure 5). The comparisons of ANNIM results and actual F3/C data shown in
Figures 6, 7, 9, and 10 clearly indicate that the local time, latitude, longitude, and seasonal variations of
NmF2 and hmF2 were well captured by the ANNIM. The estimated error in NmF2 by ANNIM predictions is
mostly below 15% with respect to F3/C data; however, the error is sometimes greater than 20%, particularly,
at local times and latitudes where the background ionization is very low (Figure 6). It should also be noted
that the actual F3/C data used in Figures 6 and 7 are pooled from the entire database that meets the criteria
of day number = 80 ± 20 days, F10.7 solar flux = 120 ± 10 sfu, and Kp ≤ 3 to construct the spatial and temporal
distribution maps. Hence, there could be an inherent variability (such as day-to-day) that already exists in the
NmF2 and hmF2 values of F3/C data points that are pooled from a range of day number (80 ± 20 days), F10.7
(120 ± 10), and Kp (≤ 3) values. On the other hand, the ANNIM has been run with the fixed inputs of day
number = 80, F10.7 = 120 sfu, and Kp = 3 while comparison. Therefore, given the differences in the ANNIM runs
and the actual F3/C data points, an error of 15–20% would be reasonable and/or encouraging.

The error in the predicted hmF2 by ANNIM is mostly below 10% except during the postsunset hours where the
ANNIM underestimates the hmF2 around equatorial and low latitudes (Figures 7d–7f). The equatorial F layer
often elevated (hmF2 increases) during the postsunset hours due to prereversal enhancement in the zonal
electric field as can be seen from the F3/C data in Figure 7e. However, the ANNIM fails to capture this feature
(Figures 7d and 7f). One of the reasons behind this failure by ANNIM, perhaps, is the relatively smaller number
of hmF2 points at equatorial and low latitudes that reflect the postsunset enhancement in a given spatial grid
(during the training). Also, lack of input parameter (such as zonal electric field) that drives the postsunset
enhancement of hmF2 in the present model could be another reason. Reducing the spatial grid size at
equatorial latitudes and training with an additional input of zonal electric field may, perhaps, improve the
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response of model during the postsunset hours which would be carried out in our subsequent studies.
Further, the comparison with an independent data set of GRACE radio occultation observations in Figure 8
shows that the RMS error is slightly increased for both NmF2 and hmF2. However, the ANNIM predictions
are still good and nearly comparable with the IRI model predictions. Further, the ANNIM predictions show
slightly better (3% for NmF2 and 6% for hmF2) with GRACE data than the IRI-2016 model.

Nevertheless, the ANNIM has well captured the local time, latitude, longitude and seasonal variations as
presented in Figures 6, 7, 9, and 10. Further, the ANNIM has successfully reproduced the large-scale iono-
spheric features such as ionospheric annual anomaly (Figure 9) and midlatitude nighttime enhancements
such as MSNA andWSA (Figure 10). Also, the NmF2 variations predicted by ANNIM are nearly comparable with
the IRI-2016model, however, better represents the finer spatial structures with respect to F3/C data (Figures 9
and 10). This is expected as the ANNIM is primarily developed based on F3/C data. These results indicate that
the neural networks used in the present study are appropriately trained and the two-dimensional ANNIM has
well reproduced the spatial and temporal variations of ionospheric NmF2 and hmF2.

With these promising results by ANNIM, further studies will be focused on optimizing the model. There is a lot
of scope to improve the model, particularly, NmF2 response at high latitudes and hmF2 response during the
postsunset hours where the error becomes significant as discussed earlier. It should also be noted that the
quantum of available F3/C data that is used to train the ANN is heavily weighted during the relatively low
solar activity years (2007–2010) where the F10.7 solar flux is mostly below 100 sfu (Figure 1). However, we
purposefully compared the ANNIM predictions at F10.7 is around 120 sfu in order to examine the model
performance at moderately higher solar flux levels where the quantum of data used for training of ANN is
relatively small. The underestimation of NmF2 at high latitudes (Figure 6) and hmF2 during postsunset hours
around equatorial and low latitudes (Figure 7) by ANNIM can partly be attributed for these differences in solar
flux conditions as the larger ion production and higher postsunset enhancement of hmF2 is expected during
the higher solar activity levels (Tulasi Ram et al., 2006). Despite this low-solar activity bias in F3/C data, the
ANNIM gives promising results at moderate solar flux levels, and also, there is a good scope for the improve-
ment of model provided more data at higher solar activity levels is included in the ANN training. Further, the
ANNIM response during the disturbed space weather and geomagnetic activity periods needs to be carefully
evaluated with independent data sets, which will be carried out in our subsequent reports. Finally, the ANNIM
can be further extended to model the total ionospheric vertical electron density profile, and a complete
three-dimensional (3-D) model would be developed using the global RO data from F3/C and other missions
such as CHAMP, GRACE, and the upcoming FORMOSAT-7/COSMIC-2 (Lee et al., 2013; Yue et al., 2014).
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