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The emergence of the compressive ion acoustic double layer has been investigated for a two electron

temperature warm, multi-ion plasma by the Sagdeev pseudopotential technique. It shows that the

ambient cooler electron concentration plays a deterministic role in initiating the transition process of

a compressive ion acoustic solitary wave to its double layer. Incorporating the derivative analysis for

the pseudopotential, the transitional phase was further quantified by assigning a critical value for the

ambient cooler electron concentration. It has been observed that, beyond that critical value, the width

of the solitary wave increases rapidly with the increasing amplitude which coincides with the afore-

mentioned transitional phase, manifesting a change in the internal microphysics of the structure for

that region. A comparison with the satellite observation revealed good agreement validating the pre-

sent model. The model will be useful in interpreting the observed monopolar structures in the auroral

acceleration region. Published by AIP Publishing. https://doi.org/10.1063/1.5006972

I. INTRODUCTION

Plasma, being a highly nonlinear medium, is one of the

convenient test beds to study different nonlinear wave struc-

tures. Localized nonlinear structures, such as Solitary Waves

(SWs) and Double Layers (DLs), arise due to the balance

between the nonlinearity of the wave and the dispersion, or

the dissipation, of the wave in the medium. Among different

plasma systems, space plasma is an excellent laboratory for

the investigation of nonlinear localized structures. Satellite

observations have revealed bipolar and monopolar electric

field pulses at different regions of the magnetospheric

boundary layers.1–3 Slow moving bipolar electric field pulses

in the auroral region4 are often interpreted as Ion Acoustic

Solitary Waves (IASWs), whereas a corresponding monopo-

lar pulse associated with an ion beam is generally interpreted

as an ion acoustic Weak Double Layer (WDL).5

The subject DL has attracted great attention since Alfv�en

and Carlqvist, who have suggested the current disruption theory

of solar flares.6 A DL is a localized structure in the plasma

which consists of two parallel layers with opposite electrical

charges. They can effectively accelerate or decelerate charged

particles, dissipate energy, and cause a local break in the frozen

condition. Due to these properties, they have attracted a great

deal of attention in the space plasma-related studies. DLs occur

naturally in various space plasma environments, like the

aurora,7 the plasmasheet,8 the solar wind,9 or other magneto-

spheric boundary layers.10,11 The first space observation of DL

was reported by Temerin et al.7 along the auroral field lines.

This is followed by several other direct observational evidences

of DLs in the auroral acceleration region.12–14 The observa-

tional evidences of the auroral region proves that the DL occurs

naturally in regions which are highly kinetic by non-ideal pro-

cesses. Later, Ergun et al.8 reported the first direct observation

of DLs in the Earth’s plasma sheet which lies well outside

the auroral acceleration region. Besides satellite observa-

tions,7,8,12,14 ion acoustic DLs have been studied extensively in

the theory15–17 and laboratory experiments18,19 as well as by

numerical simulations.20–22 Several numerical simulations have

pointed out that an ion acoustic DL can be formed by the reflec-

tion of electrons off the negative potential depressions.23–26 In

other words, majority of the theoretical works found that an ion

acoustic DL is, in general, closely associated with the corre-

sponding rarefactive (negative amplitude) IASW. Assuming a

fluid model, ion acoustic DLs have been obtained for both an

weakly nonlinear analysis27–29 as well as from the Sagdeev

pseudopotential formalism where the latter may also encompass

large amplitude solutions.30,31 A kinetic mode DL, on the other

hand, is often related to the phase space density hole.16,32,33

According to the previous analyses, it is well established

that the existence domain of a rarefactive (negative amplitude)

IASW terminates with a corresponding DL solution whereas

that for the compressive (positive amplitude) one terminates

due to the steepening and wave breaking. Although there have

been many theoretical and numerical investigations of rarefac-

tive ion acoustic DLs, studies related to a compressive ion

acoustic DL have comparatively received scant attention so

far. In its first observational evidence, Temerin et al.7 have

interpreted the monopolar electric field pulses as DLs of both

the positive (i.e., compressive), as well as the negative (rare-

factive) polarities. They argued that the rarefactive DLs are

moving upward from the ionosphere to the magnetosphere,

whereas the compressive DLs are moving downward from the

magnetosphere to the ionosphere. It is also noticed that the

compressive DL, moving downward, damps out very quickly

due to the insufficient concentration of negative ions. Later

Goswami and Bujarbarua28 interpreted the observation of

Temerin et al.7 by adopting the weakly nonlinear theory.

They obtained compressive ion acoustic DLs with a positive

potential in the presence of negative ions. They also studied

the plasma system comprising of cold ions and two electron
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species, each with a distinct Maxwellian distribution, and

obtained both compressive and rarefactive ion acoustic DLs.

They were the first to infer that there is no DL for a two com-

ponent plasma system with a single species of Maxwellian

electrons.27 There are many examples in literature for rarefac-

tive DLs for a two electron temperature electrons, or negative

ions. In most of the cases, both of the electrons were assumed

to obey the Boltzmann distribution separately in thermal equi-

librium. Roychoudhury and Bhattacharya30 studied small

amplitude DLs in a magnetized plasma comprising of two

electron temperatures and cold ions. Adopting Sagdeev pseu-

dopotential technique and without assuming a quasi-neutrality

condition, they showed that the DL solution obtained by using

Poisson’s equation is significantly different from those

obtained from the quasi-neutrality condition. Their analytical

and numerical solutions show both compressive and rarefactive

ion acoustic DLs. Shortly after them, Baboolal et al.34 obtained

arbitrary amplitude solutions for rarefactive DLs in an unmag-

netized plasma where they claimed that their solutions were

confined only to the rarefactive solitary waves of negative

polarity. On the other hand, using reductive perturbation

method, Tagare29 obtained both rarefactive and compressive

ion acoustic DLs where he deduced the conditions for the

respective polarities based on the concentration of the cooler

electrons. Later Verheest et al.31 quantified the findings of

Baboolal et al.34 and showed that it is also possible to obtain a

compressive DL for their model, but those solutions are con-

fined only to a narrow domain with marginally super-ion-

acoustic flows. Compressive ion acoustic DLs have also been

obtained in plasma system containing positrons.35,36 Ghosh

and Iyengar37 obtained both compressive ion acoustic DLs and

Super Solitary Waves (SSWs) in a three component plasma

comprising of two electron temperatures obeying Boltzmann

distributions and warm ions. They have shown that it is the

electron temperature ratio which determines the parameter

regime supporting the DL.

It is well known that a rarefactive IASW, ubiquitously,

terminates to a DL. Ghosh and Iyengar,37 however, have

shown that, depending on the parameter regime, the termina-

tion process of the compressive solitary wave may differ and

thus may give rise to a compressive DL. Although there exists

an extensive theoretical analysis of a rarefactive IASW and

DLs, the particular transition process through which a rarefac-

tive solitary wave transforms to the terminating solution of DL

has received a lesser attention so far. Even fewer attempts

have been made to analyze its positive amplitude analogue

where a compressive ion acoustic DL emerges out of the ion

acoustic solitary wave with the same polarity. The relative

lacuna motivated us to revisit the onset of the compressive DL

and its correlation with the corresponding solitary wave. In our

recent works,38,39 we have successfully incorporated a deriva-

tive analysis to classify different nonlinear structures where, in

spite of their finer differences, they all follow the same bound-

ary conditions [Eq. (4)] and thus fall within the ambit of the

generalized solitary wave solutions. The derivative analysis

further enabled us to understand the particular steps through

which a Regular Solitary Wave (RSW) may transform to an

SSW. These correlations also helped us to determine the para-

metric conditions and the existence domain of the SSW. In the

present paper, we continued with the same plasma model but

focussed our attention to that parameter regime where the ter-

minating solutions are compressive DLs. Our analyses reveal

that the cooler electron concentration plays a deterministic role

in the transition of the compressive RSW to its DL. This fur-

ther reveals that, for this particular parameter regime, there is a

kind of “degeneracy” in the otherwise RSW solutions.

Depending on a critical value of the cooler electron concentra-

tion, the derivative profiles, the charge separation, and the

width-amplitude variation profiles differ significantly. A com-

parison with the satellite observation further indicates that our

theoretical estimations may be relevant in interpreting the

observed monopolar pulses in the auroral region.

This paper is organized as follows: Section II presents the

analytical form of the Sagdeev pseudopotential (Sec. II A) and

its derivatives (Sec. II B) for a two electron temperature warm

multi-ion plasma, while Sec. III presents the analysis of the

corresponding RSW and DL solutions. In Sec. III A, we have

discussed and validated the derivative analysis described by

Varghese and Ghosh,38 while in Sec. III B, we have analyzed

the width-amplitude variation of the nonlinear structures for

the selected parametric regime. In Sec. III C, we have vali-

dated the model with observational data. The exact existence

domains for both the compressive solitary waves and DLs

have been delineated for our model in Sec. III D assuming a

chosen set of parameters, and Sec. IV presents the conclusion.

II. FORMULATION

A. Sagdeev pseudopotential analysis

The plasma is assumed to be infinite, homogeneous, colli-

sionless, and unmagnetised. The Sagdeev pseudopotential for

two electron temperature warm multi-ion plasma is given as38
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which is derived from the following warm ion densities:
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and the total electrons density is given as

ne ¼ nec þ new ¼ le
U

lþ�b þ �e
bU

lþ�b; (4)

where the subscripts i, e, l, h, c, and w represent ions, elec-

trons, lighter and heavier ions, and cooler and warmer elec-

trons, respectively. M is the wave Mach number, Q ¼ mil

mih

	 

is the lighter to heavier ion mass ratio, where mil (mih) are

the mass of lighter (heavier) ions, respectively, and

b ¼ Tec

Tew

� �
refers to the cooler to warmer electron temperature

ratio. The normalized ion temperatures rj ¼ Tj

Teff

� �
are nor-

malized by the effective electron temperature

Teff ¼ TecTew

lTewþ�Tec

� �
, where Tj is the ion temperature, j¼ l and

h, and Tew;ec are the temperatures of warmer and cooler elec-

trons, respectively. All number densities are normalized by

the total equilibrium ion density n0 ð¼ nil þ nihÞ which

results in the ambient densities al (ah), and l (�), correspond-

ing to lighter (heavier ions) and cooler (warmer) electrons,

respectively. The velocities, time, and length are normalized
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The pressure pij is normalized by the ion equilibrium pres-

sure p0 ¼ n0Tið Þ and potential U by
Teff

e .

B. Derivatives of Sagdeev pseudopotential

According to the Sagdeev pseudopotential analysis
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which is equivalent to the charge separation Dn ð¼ ni � neÞ.
Taking the derivative of Eq. (7) with U, the 2nd order deriva-

tive of the Sagdeev pseudopotential becomes
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while the 3rd order derivative of the Sagdeev pseudopoten-

tial is given as
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In order to obtain the solitary wave solution, and to

ensure the recurrence of the initial state, WðUÞ of Eq. (1)

must satisfy the following boundary conditions:

WðU ¼ 0Þ ¼ @W
@U

����
0

¼ 0;
@2Wð0Þ
@U2

< 0;

WðU0Þ ¼ 0;
@WðU0Þ
@U

6¼ 0: (10)

This also implies that WðUÞ < 0 for 0 < U < U0, where U0

is the amplitude of the solitary waves.

For an ion acoustic DL, there is no recurrence of the ini-

tial state. The last boundary condition of Eq. (11) thus modi-

fies to the following:

WðUdÞ ¼ 0;
@WðUdÞ
@U

¼ Dnd ¼ 0; (11)

where Ud is the amplitude of the ion acoustic DL and Dnd is

the charge separation at Ud.

III. RESULT AND DISCUSSION

A. Derivative anlaysis

While their rarefactive counterpart is well known and

well studied, the compressive ion acoustic DLs are relatively

lesser known to the community. Ghosh and Iyengar37 have

previously identified forbidden regions in l which do not

support any SW solution. They have also reported that the

plasma may support compressive DLs or SSWs in the low

b–low l regime associated with the forbidden region.

According to their nomenclature, the regions supporting the

SSW, or DL, were termed as Region B1, and B2, respec-

tively, while Region A governs the familiar compressive

IASWs which are well known and well studied by

others.40,41 Incidentally, Region B2 belongs to the lowest

part of b and l, while Region A has large values for either of

them. In our previous analyses,38,39 we focused on Region

B1 and delineated the existence domain and the transforma-

tion processes of the SSW. There, we classified RSWs and

other nonlinear structures in plasma on the basis of our deriv-

ative analysis38,39 and also could identify the intricate pro-

cesses by which the former may transform to an SSW, or

other extra-nonlinear structures. In the present work, we

have shifted our attention to Region B2 which comprises of

both the RSWs and DLs, and delineated the regime using a

similar technique.

The existence domains for RSWs are well known and

well studied across different plasma models37–39 but little is

known so far about its transition process to a terminating DL

solution. Here, we specifically intend to analyze the transi-

tion processes of the compressive RSW to the corresponding

DL on the basis of our derivative analysis. We are continuing

with our previous plasma model comprising of two electron

temperatures and warm multi-ions. It is assumed that the

plasma is mainly comprised of Hþ ions with a minority com-

ponent of Heþ, having the mass ratio Q ¼1=4 and the lighter

ion concentration al ¼0:9. For the sake of our convenience,

we choose r ¼ 0:033 to be the temperature of both the

heavier and lighter ions, i.e., rl ¼ rh ¼ r. We have further

assumed that all these parameters, viz., Q, al, and r, remain

constant throughout our analyses.

Apart from the aforementioned parameters, we have

also chosen a constant Mach number M¼ 1.06, and the

electron temperature ratio is chosen as b ¼ 0.04. Both the

parameters remain constant unless specified otherwise. We

have selected four convenient values of l, the cooler

FIG. 1. Sagdeev pseudopotential pro-

files; curves (a) and (b) RSW, (c) tran-

sitional RSW, and (d) DL.
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electron concentration, for our analysis. Figures 1(a)–1(d)

show the four snapshots of the Sagdeev pseudopotentials

for the chosen l values. The first three figures [Figs.

1(a)–1(c)] represent RSWs, whereas the last one [Fig. 1(d)]

represents a DL. The characteristic l value that corre-

sponds to a DL is represented as “ld.” All the Sagdeev

pseudopotential profiles in Figs. 1(a)–1(d) have one local

extrema excluding the end points. For Figs. 1(a)–1(c),

however, it crosses the zero axis, ensuring the recurrence

of the initial state [Eq. (10)], while in Fig. 1(d), the profile

tends to the maximum amplitude where the solution

approaches another state asymptotically [Eq. (11)].

As part of the derivative analysis, we have plotted the

1st derivatives of the Sagdeev pseudopotentials @W
@U

� �
[Eq.

(7)] in Fig. 2 where the curves 1–4 represent the derivatives

of the corresponding Sagdeev pseudopotential profiles

shown in Figs. 1(a)–1(d), respectively. Noting the impor-

tance of the 1st derivative of the Sagdeev pseudopotential

(i.e., @W@U) and remembering that it represents the charge sepa-

ration density (Dn),38 we inspected all the four profiles

closely. It immediately reveals two groups. The 1st group

consists of curves 1 and 2, which show only one minima and

beyond that Dn increases monotonically. Contrary to that,

the 2nd group, i.e., curves 3 and 4, show an additional max-

ima revealing a decreasing trend for Dn near the maximum

amplitude. This makes their variation non-monotonic which

differs from the previous variation pattern. For curve 4,

which corresponds to a DL, Dn vanishes at its amplitude Ud

and recovers its initial value, i.e., Dn ¼ 0 at U ¼ 0 and Ud.

Figure 2 thus reveals a complete “bipolar” profile of Dn for

curve 4. For curve 3, however, the “bipolar” variation pattern

for Dn remains incomplete and the solution terminates at a

decreased, but positive Dn. To summarize, initially curve 3

follows the same variation pattern as curves 1 and 2 up to a

maximum value of Dn. After that, it transforms to that for

curve 4 but is cut short due to the energy condition, while Dn
remains positive and nonzero at U0.

In order to understand the variation in the property of

curve 3 from that of curves 1 and 2, where all the three

represent RSWs, we have analyzed the higher order deriva-

tives of the pseudopotential profiles. In Figs. 3(a) and 3(b),

we have plotted the subsequent 2nd [Eq. (8)] and 3rd [Eq.

(9)] order derivatives of the pseudopotential, respectively,

while all the legends remain the same as earlier. The differ-

ence between the two groups of the solutions becomes read-

ily evident as the subsequent roots of the corresponding @2W
@U2

profiles differ. In Fig. 3(a), curves 3–4 show a non-

monotonic variation for @2W
@U2 Vs U with two roots, while for

curves 1–2, the variation is monotonic with only one root.

Between curves 1 and 4, it is well evident that the monotonic

variation of the 2nd derivative gradually reaches up to the

non-monotonic variation of curve 4 corresponding to a DL

through curve 3. We may well argue that the RSWs associ-

ated with curves 1–3 represent a “degenerate state” of solu-

tions which have two distinct kinds of derivative profiles,

though they do not differ by their pseudopotentials. We may

further conjecture that curve 3 is associated with a transi-

tional region where the solution, being an RSW, has started

incorporating some of the characteristics of a DL.

Our argument get further clarified in Fig. 3(b) where,

expectedly, the 3rd order derivative profiles for curves 3–4

move from positive side to negative, having one root each,

but for curves 1–2 it remains always positive without any

root. This defines a limiting value of l ¼ lr, lr being that

maximum l value which supports a positive @3W
@U3 for the

FIG. 3. (a) Variation of @
2W
@U2 Vs U and (b) @

3W
@U3 vs U; curves (1) and (2) RSW,

(3) transitional RSW, and (4) DL.

FIG. 2. Variation of Dn Vs U; curves (1) and (2) RSW, (3) transitional

RSW, and (4) DL.
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solution throughout the range. Mathematically, the condition

can be written as

@3W

@U3
> 0 for all 0 � U � U0; provided l � lr; (12a)

@3W

@U3
< 0 for some U; 0 � U � U0; provided l > lr:

(12b)

The estimated value of lr for the present case is 0.00038.

According to Varghese and Ghosh,38 for an RSW, the

3rd derivative of the Sagdeev pseudopotential should always

be positive, i.e., @3W
@U3 > 0. Our present analysis, however,

reveals that while @3W
@U3 > 0 is a sufficient condition for an

RSW, it is not necessary. A compressive RSW in the vicinity

of the corresponding DL, like curve 3 in Fig. 1(c), will show

a negative value, or, alternatively, a single root for the 3rd

derivative (@
3W
@U3 ). Rather than its termination, the parameter lr

thus recognizes the onset of the transitional phase of the

RSW to its corresponding DL beyond that critical value.

This calls for a further clarification of the physical signifi-

cance of lr and its role in the RSW–DL transition. Rather

than to be a general condition for an RSW, the additional

parametric condition, proposed in Eq. (12b), may well be

argued as just an artifact of the transformation process. In

order to eradicate this dilemma, we proceed to analyze the

respective potential and Electric field (E-field) profiles.

Recalling that the extra maxima of curve 3 in Fig. 2

indicates a dip in Dn near the maximum amplitude, in Figs.

4(a)–4(d), we have plotted the respective potential profiles

(solid lines) and their associated Dn¼ ni�ne (dashed lines)

for the pseudopotential profiles in Figs. 1(a)–1(d). The gener-

alized coordinate g¼ x�Mt ensures the steady state solution

for the Sagdeev pseudopotential. It shows the usual bell

shaped potential profiles of the positive polarity, representing

a compressive RSW [Figs. 4(a)–4(c)], and the familiar step

shaped, or kink type, positive potential profile for the com-

pressive DL [Fig. 4(d)]. To preserve the symmetry, the origin

g¼ 0 of Fig. 4(d) is now shifted to coincide the g at the mini-

mum of the pseudopotential. For the first two cases, i.e.,

Figs. 4(a)–4(b), the Dn profiles, too, resemble the corre-

sponding potential profiles and have a “peak” near the ampli-

tude, indicating a compression in the positive ion density.

For Fig. 4(c), however, instead of a “peak” there appears a

“trough” at the amplitude showing a dip in the charge sepa-

ration. The “trough” gradually goes deeper, indicating a fur-

ther decrease in the positive ion density and/or increase in

the electron density. Eventually, the charge separation van-

ishes at the maximum amplitude and Dn illustrates the typi-

cal, fully grown bipolar structure for the DL [Fig. 4(d)].

Even though there are variations in the structure of Dn in

Figs. 4(a)–4(d), the amplitude of the potential profile remains

always positive. As l increases and the nonlinear structures

approach to the DL, the sharpness of the peak of the potential

profile associated with the solitary wave reduces and seems

to get more stretched out with the increasing amplitude (U0).

To complement Figs. 4(a)–4(d), we have plotted the cor-

responding E-field profiles in Figs. 5(a)–5(d), respectively,

which subsequently represent the RSWs {Figs. 5(a)–5(c),

and the DL [Fig. 5(d)]}. The E-field profiles correspond to

RSWs are bipolar in nature [Figs. 5(a)–5(c)], whereas that

corresponds to the DL is monopolar [Fig. 5(d)].

Even though the derivatives of the RSW, represented in

Fig. 1(c), behave differently from those in Figs. 1(a)–1(b),

they all have the same bell shaped potential profiles and

bipolar E-field structures which are the hallmark of an RSW.

The bipolar electric field structures in Figs. 5(a)–5(c) ascer-

tain that there is no discrepancy in their physical solutions

which was also expected from their respective pseudopoten-

tial profiles [Figs. 5(a)–5(c)]. On the other hand, Figs. 2–4

clearly indicate a change in their internal physical processes

FIG. 4. Potential and Dn profiles for

SWs and DL; (a) and (b) RSW, (c)

transitional RSW, and (d) DL.
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which appears self-consistently with the increase in the

minority component of the cooler electrons beyond its criti-

cal value (i.e., l � lr). It is this change in the internal physi-

cal processes which appears to be correlated with, and hence

possibly caused, the transformation of a compressive SW to

its corresponding DL. We have reached this proposition

because of the inherent correlation between lr and the fluctu-

ation in the charge separation near the maximum amplitude.

This correlation is attributed trivially to its definition [Eqs.

12(a) and 12(b)] on the basis of the derivative analysis. To

ascertain our proposition, we need to find a more generic

way to verify the physical significance of lr which should

preferably be independent of any particular formalism asso-

ciated with its derivation. It was previously noted that the

width-amplitude variation of the solitary wave, too, may

show a certain kind of degeneracy. Here, we have chosen to

explore the role of lr, if any, on the overall width-amplitude

variation profiles of the compressive IASWs. We have spe-

cifically focused on those IASW solutions which are going

to be terminated as DLs. The subsequent results have been

presented and discussed in Sec. III B.

B. Width amplitude analysis

According to the standard mathematical formalism, it is

well known that the larger is the amplitude, the narrower

becomes the soliton pulse. In other words, the width of a sol-

iton is inversely proportional to its amplitude. This particu-

larly holds true for a soliton derived from the Kortewege-de

Vries (K-dV) equation, the celebrated nonlinear partial dif-

ferential equation governing soliton solutions, or some other

equations alike. The foremost hint of this width-amplitude

relation was given by Zabusky and Kruskal42 in their work

on the nonlinear interaction of SW pulses in a dispersive

media. Later Washimi and Taniuti43 validated the same as

they derived the soliton solution analytically for a plasma

system governed by the K-dV equation. Following them,

others assumed it as one of the fundamental characteristics

of K-dV solitons and also incorporated it to validate their

experimental observations.44,45 Ghosh and Iyengar,46 how-

ever, contradicted the popular notion by presenting what

they termed as the “anomalous width variation” where the

width of the SW actually increases with the increasing

amplitude. They have shown that, for a rarefactive (negative

amplitude) IASW, the complete width-amplitude profile is

not linear as expected from a K-dV like solution, but shows

the shape of an “asymmetric parabola.” For a small ampli-

tude limit, they recovered the K-dV like pattern, which they

called as Region I, while for a large amplitude (i.e., Region

III according to their nomenclature), it shows an opposite

trend leading to a DL. They showed that the particular trend

is fairly consistent47,48 and also applicable to space

observations.49,50

From the above analyses it was inferred that, for a large

amplitude rarefactive IASW, the solution shows a non-K-dV

like, or “anomalous,” width variation where the width

increases with the increasing amplitude. In contrast, a com-

pressive IASW, being of a small amplitude solution, follows

a K-dV like variation, i.e., the width decreases with the

amplitude. Recently, Ghosh and Iyengar37 have shown that,

prior to the occurrence of a compressive DL, the correspond-

ing solitary wave do undergo an anomalous width variation

even though it has a reasonably small amplitude. This also

indicates that, rather than the external size of the nonlinear

structure, it is the limiting solution associated with the struc-

ture which determines the width-amplitude variation pattern.

In other words, irrespective of its amplitude, an anomalous

width variation seems to always lead to a DL as its limiting

FIG. 5. Electric Field profile for SWs

and DL; (a) and (b) RSW, (c) transi-

tional RSW, and (d) DL.
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solution. Recalling our previous analyses, we may infer that

the intricate internal physical processes within the localized

structure changes according to the parameter regime and

determines the characteristics, or phases of the particular

nonlinear solution.37 This phase is further determined by the

particular limiting solution which provides the clue to the

changes in the internal microphysics and manifests itself

through the width-amplitude variation. This calls for a com-

plete revisit of the width-amplitude variation processes of a

compressive ion acoustic solitary wave, encompassing all its

relevant parameter regime, which is currently beyond the

scope of the present work. Rather we choose to confine our

analysis for the parameter regime relevant to our interest,

i.e., Region B2 in Ref. 37. The results are as follows.

In order to get a complete picture regarding width-

amplitude analysis, we have estimated the half width W at

U ¼ U0=2 by integrating the energy equation [Eq. (6)]

numerically. To establish the general trend, we have

assumed two b values, viz., b¼ 0.03 and b¼ 0.04, while we

choose l to be the dummy variable for changing the ampli-

tude. To prevail adequate accuracy, we have chosen a higher

resolution of l (viz., dl� 10�4) compared to other existing

studies. All other parameters, viz., M, Q, r, and al, remain

constant. In Fig. 6, we have plotted W Vs. U0 which readily

confirms that, throughout the regime, the width has no

decreasing trend, i.e., the solution is a non-K-dV one.

Subsequently, the shape of the curve depicting W � U0 vari-

ation profile does not resemble any “asymmetric parabola”

either, as obtained previously for rarefactive solitary

waves.46,47 The present variation pattern consists of two dis-

tinct segments, both showing a monotonic increase in W

with increasing U0 but their rate of increase is not uniform.

Upto l ¼ lr , marked by the “�” in Fig. 6, it increases only

marginally, but after that there is a significant increase in W
with U0. For the lower b value, the overall regime shifts to a

smaller amplitude but the transitional trend continues. In

order to understand the particular variation pattern, we have

estimated the slopes of the W � U0 curves (dW
dU0

) and plotted

them in Fig. 7 for the corresponding U0 values. It readily

shows that, up to lr, dW=dU0 remains almost constant and

almost near to zero, indicating a linear variation with a com-

paratively very small and marginal increase in the width.

Significantly, just beyond lr, the slope dW=dU0 starts

increasing with l and U0, showing a prominent increase in

the width with increasing amplitude. This is followed by an

ever increasing rate by which the associated nonlinear struc-

ture starts to expand. The expansion is evident from Figs. 6

and 7, and more specifically by the very sharp increase in the

slope shown in the latter. Near the vicinity of the DL, the

slope abruptly shoots up, resembling the “jump condition”

prior to a “variable solitary wave” as discussed in Ref. 38.

The trend further confirms that the solution beyond lr

belongs to a transitional phase.

In Sec. III A, we have defined lr as that critical value of

l which determines the onset of the negative value, or, alter-

natively, a single root, for the 3rd derivative of the pseudopo-

tential. We have found that the parameter trivially indicates

a drop in the charge separation at the maximum amplitude.

In the present section, we have tried to explore the influence

of lr, if any, on the associated width-amplitude variation.

We have found that there is a significant correlation between

this critical parameter and the stretching of the nonlinear

structure (i.e., increase in the width) with increasing ampli-

tude. We have explored different b values which validates

the consistency of our results. Combining these two results

we may judiciously conclude that the critical parameter lr

indeed play a deterministic role in the transition of a com-

pressive ion acoustic solitary wave to a compressive DL.

The inference holds true for the Region B2 (i.e., low b � low

l) in Ref. 37 and is expected to hold true for other more gen-

eral class of models as well.

In order to conserve the overall flux of the respective

charged particles, the hotter electrons are accelerated through

the positive amplitude profile and rarefied, while the positive

ions get decelerated and further compressed. To interpret the

role of lr, we may conjecture that, beyond certain critical

FIG. 7. Variation of slope of the W � U0 with U0.

FIG. 6. Variation of W with U0 with l.
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value of l (i.e., lr), an additional increase in the minority

component of the cooler electrons may start pulling out some

of the positive ions away from the maximum amplitude

resulting in a dip in the charge separation. This in turn

stretches out the potential profile, eventually turning it to a

DL. Alternatively, one may also claim that there is an

increase in the possibility of trapping of cooler electrons

within the positive structure for l > lr. Such a scenario,

however, is beyond the scope of our current fluid model and

needs to be complemented by an adequate kinetic formalism.

C. Comparison with observational evidences

Satellite observations of low frequency, slow moving

bipolar and monopolar electric pulses were often interpreted

as IASWs or DLs. These observations consistently showed

that a taller pulse is wider too, i.e., the width increases with

the increasing amplitude. This contradicts the usual notion of

a solitary wave whose width is expected to decrease when

the amplitude increases. In Sec. III B, we have already

pointed out the “anomalous width variation” for the large

amplitude rarefactive (negative polarity) ion acoustic solitary

waves which befit the trend of the satellite observations. In

situ measurements generally find it difficult to determine the

polarity of the observed structures, though theoretically they

were often interpreted as a negative amplitude solution.

However, the possibility of the existence of positive polarity

structures cannot be ruled out. As early as the first observa-

tion by S3–3 satellite, Temerin et al.7 indicated the presence

of positive polarity structures in the auroral region (Sec. I).

In Sec. III B, we have confirmed “anomalous width var-

iation” for a positive amplitude solution as well. This indi-

cates that the present plasma model can be implemented to

study the signatures of the positive amplitude DL (monopo-

lar structures) in the auroral acceleration region. To validate

our results with space plasma observations, we have com-

pared our theoretical estimations with the S3-3 satellite

observation. The results are summarized in Tables I and II as

described below.

The observational data presented by Temerin et al.7 in

the auroral acceleration region reports the electron tempera-

ture ranging from 0:5 to 5 eV, and the electron densities rang-

ing from 5 to 10 cm�3 at the height of approximately

8000 km. In accordance with those observed parameters, we

have assumed Teff (�Te) ¼ 5 eV and n0 ¼ 5 cm�3. From

these inputs we have estimated the scales of our plasma

model, viz., the Debye length kd (¼7:4339 m), the ion

acoustic speed cisl (¼21:885 km/s), and the proton plasma

frequency (xp ¼ 2:9439 kHz), which were found to be con-

sistent with the satellite observations. Table I has enlisted

both the observed and the assumed plasma parameters as

well as the corresponding estimations of the relevant plasma

scales.

For an electron temperature ratio b¼ 0.031 and a cooler

electron concentration l ¼ 1:585� 10�3, as mentioned in

Table I, our plasma model supports a compressive ion acous-

tic DL, moving with the Mach number M¼ 1.06. The normal-

ized amplitude Ud ð¼ 0:1679Þ has been obtained from the

Sagdeev pseudopotential, while the normalized width W
(¼11.9306) has been obtained by integrating Eq. (6) numeri-

cally. In order to compare with the satellite observations, we

have converted our results to the corresponding non-

normalized values by incorporating appropriate normalization

parameters (Table I). Remembering that the “pseudoparticle”

does not reflect or retrace itself back from Ud [Eq. (11)], we

redefined the width of the DL as

W ¼ g1=2 ¼
ðU0

U0
2

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�2WðUÞÞ
p �

dU: (13)

The associated time duration (Dt) has been obtained

from W assuming x¼ 0 for the generalized coordinate g
(¼ x�Mt), i.e.,

Dt ¼
�

W

M

�0
; (14)

where the prime denotes the non-normalized quantity. To

estimate the associated average E-field, we have assumed

Eavg ¼
U0d
W0

(15)

while the maximum E-field is estimated as

TABLE I. Plasma parameters estimated and as well as obtained from observation.

Plasma parameters assumed Observational parameters

Plasma scales

Assumed parameters Estimated theoretically Observational

b ¼ 0:031 Te � 0:5� 5 eV Teff ¼ 5 eV kd ¼ 7:4339 m kd � 5 m

l ¼ 1:585� 10�3 n0 ¼ 5� 10 cm�3 n0 ¼ 5 cm�3 cisl ¼ 21:885 km=s

r ¼ 0:033

Q ¼ 0.25

M ¼ 1.06

TABLE II. Wave parameters.

Theoretical

ObservationalNormalized Non-normalized

U0 ¼ 0:1679 Eavg ¼ 9:4683 mV=m E � 15 mV=m

Emax ¼ 13:3847 mV=m

W ¼ 11.9306 Dt ¼ 3:8232 ms Dt ¼ 2� 20 ms

V ¼ 23:198 km=s V � 50 km=s
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Emax ¼ �
�

dU
dg

�0����
W¼Wmin

; (16)

where dU=dg has been obtained from Eq. (6) at the mini-

mum value of W. Table II compares our analytical estima-

tions of the shape, size, and velocity of the DL with the

observations. It shows that our theoretical estimations are

well within the range of the satellite observations. This fur-

ther validates that our model is appropriate for interpreting

the satellite observations and may further be applicable for

understanding the observed nonlinear wave phenomena in

space plasmas.

D. Existence domain

To complete our discussion, here we have delineated the

existence domains of the RSW and the DL. In Fig. 8, we

have plotted the variation of Ud (solid lines) and the corre-

sponding ld (dashed lines) with b for two different Mach

numbers, viz., 1.06 and 1.07. It shows that the amplitude of

the DL (Ud) increases both with b and M. As b increases, the

corresponding ld also increases, but for a larger M, it drops

significantly. As M increased, the extent of the b value sup-

porting the DL also increases to a good extent.

To find their existence domains, it is necessary to deter-

mine the characteristic l values which marks the onset and

offset of different nonlinear structures. During the process of

the transition of an RSW to a DL, we have found two charac-

teristic l values, viz., “lr” and “ld” where the former char-

acterizes the initialization of the transitional process and the

latter is associated with the DL. We have observed that all

these characteristic l values varies significantly with varying

b which in turn affects the parameter regime of the nonlinear

structures. In Fig. 9, we have plotted the variation of lr (dot-

ted line) and ld (solid line) with b. The region between the

lr and ld represents the transitional phase between an RSW

and DL. The region below lr represents those RSWs which

are not affected by the limiting solution. The complete exis-

tence domain of the RSW, however, is bounded below ld,

shown by the dashed line in Fig. 9.

IV. CONCLUSION

In the present paper, we have delineated the transition of

a compressive IASW to its corresponding DL. The plasma

parameters supporting a compressive DL belong to a low b-

low l regime (Region B2 in Ref. 37) which is associated

with the lower end of the “forbidden region” in l. Using the

derivative analysis, we have identified a critical value of l
(¼lr) which triggers the transitional phase of an RSW

toward the corresponding DL solution. We have found that

an RSW in this regime has a kind of “degeneracy” in their

solution. Physically and qualitatively all RSW solutions are

indistinguishable as all of them are associated with the typi-

cal bipolar electric field and the bell shaped potential pro-

files, and the morphology of their associated Sagdeev

pseudopotential is also not distinguishable either. However,

the microphysics within the localized potential structure dif-

fers significantly before and after the critical value of lr due

to the change in the charge separation profile near the maxi-

mum amplitude. Instead of a peak, it shows a trough near U0

as l increases beyond lr. This further manifests itself in a

rapid increase in the width with the amplitude, triggered after

that critical value. The two processes, together, “stretch” the

localized structure, ultimately converting it to a DL.

In the above analysis, we have defined lr as that maxi-

mum value of l for which the 3rd derivative remains positive

throughout the range of U. In our previous study, we intro-

duced the same condition to distinguish an extra-nonlinear

solution from the corresponding RSW. The present result

reveals that the condition is though sufficient, but not neces-

sary for an RSW. In other words, an RSW in its transitional

phase will violate this condition but will remain physically

indistinguishable from those RSW solutions which are in the

non-transitional phase and satisfy the aforementioned condi-

tion. This calls for a more critical definition for the onset of

an extra-nonlinear solution. A work in this direction is cur-

rently under progress and will be communicated shortly.FIG. 9. Regime of SWs and DLs.

FIG. 8. Variation of ld and Ud with b.
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After identifying the transitional phase between the RSW

and DL, we have delineated their respective existence

domains. It confirms a “jump condition” where the amplitude

shoots up abruptly to a large value as the solution approaches,

or converts, to a DL. The abruptness or the “jump condition”

resembles that observed previously during the onset of a vari-

able solitary wave (VSW).39 Though a DL is a well-studied

structure and the concept of the VSW emerged only very

recently, the salient features of their respective transitional

patterns appear to be fairly analogous and may need further

comparative studies.

It has been confirmed that the parameter regime of our

concern governs only a non-K-dV like solution which shows

an anomalous increase in the width with the amplitude. This

motivated us to compare our results with the satellite obser-

vations of Temerin et al.7 It shows a good agreement. This

further validates our model for its applicability to interpret

the slowly moving ESWs in the auroral region.
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