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Several spacecraft missions have observed electron holes (EHs) in Earth’s and other planetary

magnetospheres. These EHs are modeled with the stationary solutions of Vlasov-Poisson equations,

obtained by adopting the Bernstein-Greene-Kruskal (BGK) approach. Through the literature sur-

vey, we find that the BGK EHs are modelled by using either thermal distribution function or any

statistical distribution derived from particular spacecraft observations. However, Maxwell distribu-

tions are quite rare in space plasmas; instead, most of these plasmas are superthermal in nature and

generally described by kappa distribution. We have developed a one-dimensional BGK model of

EHs for space plasma that follows superthermal kappa distribution. The analytical solution of

trapped electron distribution function for such plasmas is derived. The trapped particle distribution

function in plasma following kappa distribution is found to be steeper and denser as compared to

that for Maxwellian distribution. The width-amplitude relation of perturbation for superthermal

plasma is derived and allowed regions of stable BGK solutions are obtained. We find that the stable

BGK solutions are better supported by superthermal plasmas compared to that of thermal plasmas

for small amplitude perturbations. Published by AIP Publishing. https://doi.org/10.1063/1.5025234

I. INTRODUCTION

Over the past decade, various space-borne experiments

show that the electrostatic solitary waves (ESWs) are ubiqui-

tous in Earth’s magnetosphere.1–10 These solitary waves are

observed as “holes” in phase space. Depending on the

trapped species, these holes can be either electron holes

(EHs) or ion holes (IHs). The nonlinear treatment of the

problem of electrostatic modes in a Vlasov gas was devel-

oped by Bernstein, Greene, and Kruskal (BGK).11 Until then

this problem was mostly resorted to the linearization of gov-

erning equations, leading to a mathematically tractable prob-

lem. However, the linear theory breaks down for the

particles trapped in the potential energy troughs, as the parti-

cle velocity and wave velocity will be comparable. Thus, a

nonlinear theory was imperative. In 1956, Bernstein, Greene,

and Kruskal solved the time independent Vlasov-Poisson

equations and obtained general solutions for nonlinear

plasma waves in the electrostatic regime.11 They showed

that it is possible to construct nonlinear disturbances of arbi-

trary shapes by cleverly choosing the distribution of trapped

particles. Later in 1967, Roberts and Berk12 provided a phys-

ical picture for phase space EHs in a numerical experiment

on nonlinear evolution of two-stream instability. In their

model, they considered that the trapped particles follow the

Dirac delta distribution. Further, it took more than a decade

to experimentally verify the existence of BGK EHs. In 1979,

at Ris/ laboratory, the existence of BGK EHs was con-

firmed.13 Turikov14 followed the BGK approach and con-

structed the trapped electron distribution for a Maxwellian

ambient electron distribution and various solitary potential

profiles. Later, based on the BGK approach, many theories

explaining the fundamental concepts concerning the plasma

phenomenon of the electron hole and their application to

ESWs observed in space plasmas have been proposed.15,16

Most of the BGK based models assume the space

plasma in thermal (Maxwellian) equilibrium, described by

the Maxwell distribution. However, this assumption is not

valid everywhere in space plasma environments. Space plas-

mas are rich in various plasma processes like particle accel-

eration, plasma heating, etc. All these plasmas lead the

plasma to deviate from the state of thermal equilibrium.17

Superthermal particle distributions are ubiquitous in the

Earth’s magnetosphere, especially regions like radiation

belts and auroral region, etc. Also, their presence is con-

firmed by many spacecraft measurements.18 These types of

distributions are well described by the so-called kappa (j) or

generalized Lorentzian velocity distribution functions, as

shown for the first time by Vasyliunas.19 Such distributions

have high-energy tails deviated from a Maxwellian and

decreasing as a power law in particle speed. The one-

dimensional isotropic kappa velocity distribution function

for electron has the following form:20

feðVÞ ¼
n0e

ðpjh2
eÞ

1=2

CðjÞ
Cðj� 1=2Þ 1þ V2

jh2
e

" #�j

: (1)

In the equation above, C is the gamma function, and n0e and

V are the density and velocity of electrons. h2
e ¼ ½ðj

�3=2Þ=j�v2
th;e is the most probable speed or characteristic

speed, where vth;e ¼ ð2kBTe=meÞ1=2
is the thermal speed of

the plasma species, and kB is the Boltzmann constant. Te and

me are temperature and mass of the electrons, respectively.

The spectral index j decides the slope of the tail of the distri-

bution function, and it is always greater than 1.5. The smaller
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value of j enhances the superthermal population in the sys-

tem, which leads to decrease in the slope of the tail. As the

kappa index j ! 1, the kappa distribution function con-

verges to the Maxwellian distribution function. For the space

plasmas,18 the kappa index is observed in the range 2< j < 6.

The presence of superthermal particles in space plasmas sug-

gests a possible role in the existence domain and the charac-

teristics of ESWs, which is confirmed by different fluid

models.21–24 In this paper, we develop a one-dimensional

BGK model of EHs in superthermal space plasmas to

address the effect of superthermal plasma population on the

characteristics of EHs. Further, this paper is organized as fol-

lows: In Sec. II, we discuss the mathematical formulation of

BGK EH with the superthermal distribution. The width-

amplitude relation is detailed in Sec. III, and the present

study is summarized and concluded in Sec. IV.

II. MODEL

We consider a one-dimensional collisionless two-

component unmagnetized plasma consisting of electrons and

ions. The fundamental equations that govern the electrostatic

electron holes in such a plasma are Vlasov and Poisson

equations

@fs
@t
þ Vs

@fs
@x
� qs

ms

@U
@x

@fs

@Vs
¼ 0; (2)

d2U
dx2
¼ �ðqene þ qiniÞ

�0

; (3)

where fs, qs, Vs, and ms are the distribution function, charge,

velocity, and mass of the species s, respectively. Here qe¼ –e
for electrons and qi¼þe for ions. ne and ni are electron and

ion densities. U is the electrostatic potential and �0 is the per-

mittivity of the medium. For simplicity, the ion density is

assumed to be uniform. This assumption is justified by the fact

that the large mass ratio between ion and electron prevents ions

from contributing significantly to electron dynamics.

Furthermore, it is convenient to work in a coordinate system in

which the electron hole is at rest, the so-called wave frame, so

that all quantities are time-independent. In such a case, the

equations above then take the following dimensionless form:11

v
@feðv; xÞ
@x

þ 1

2

@/
@x

@feðv; xÞ
@v

¼ 0; (4)

d2/
dx2
¼
ð1
�1

feðv; xÞdv� 1: (5)

In Eq. (5), we have used ne ¼
Ð1
�1 feðx; vÞdv, for total num-

ber of electrons. Also in the above equations, v is the normal-

ized electron velocity in the frame co-moving with the wave

perturbation, and fe is the electron distribution function. The

normalizations used here are such that the energies are nor-

malized by ambient electron thermal energy, 2kBTe. x is nor-

malized by the electron Debye length, kde ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTe=�0n0e2

p
.

Velocity is normalized with the electron thermal velocity

vth;e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTe=me

p
, and / is the potential normalized by

kBTe/e. Here, Te is the electron temperature, kB is the

Boltzmann constant, and n0 is the equilibrium density of

electrons. We consider superthermal electrons in the model

that follow the kappa distribution as given by Eq. (1). The nor-

malized form of Eq. (1) is given by

feðvÞ ¼
CðjÞffiffiffi

p
p

Cðj� 1=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j� 3=2

p 1þ v2

j� 3=2

 !�j

: (6)

Following the BGK scheme, we assume a frame in which

both potential pulse and the electron distribution are in a

self-consistent steady state. Working in this frame, we write

the electron distribution function in terms of the normalized

total energy of the particles given by

w ¼ 1

2
v2 � /
� �

: (7)

Now, we will make a change of variable [(x, v)! w]; that is,

we will move to the energy frame, w. Thus, the normalized

distribution function transforms as

feðwÞ ¼
CðjÞffiffiffi

p
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j� 3=2
p

Cðj� 1=2Þ
1þ 2wþ /

j� 3=2

� ��j

; (8)

where

f ðx; vÞdv ¼ f ðwÞdw=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2wþ /

p
:

Here, the total energy (w) is normalized with mv2
th;e, i.e.,

2kBTe. As these electrons encounter a positive potential

pulse, depending on their respective velocities, some of them

will get trapped and some of them will pass through. Hence,

two kinds of the population exist. One is the passing electron

population (with w> 0), and another one is the trapped elec-

tron population (with w< 0). Passing electrons follow their

initial distribution, which in our case is the kappa distribu-

tion. The trapped electrons, which oscillate inside the poten-

tial, follow a different distribution, which needs to be

derived using BGK approach. One key step in the BGK

approach is to separate particles that are trapped in the poten-

tial, and those that are passing. We assume the form of the

potential applied and the form of distribution function for

passing particles. Then we solve for the trapped particle dis-

tribution function and derive the physical parameter range

for stable solutions of EHs. Spacecraft observations show

that the wave potential structures of the Gaussian form are a

most common in the Earth’s magnetosphere.1,29 The positive

wave potential acts as a perturbation to trap electrons within

it. We assume this potential in the Gaussian form given by

/ðxÞ ¼ w exp � x2

2d2

� �
; (9)

where w is the amplitude, and d is the width of the perturba-

tion, respectively. d is a distance, where the potential

decreases to 0.6065 times the maximum amplitude of w. The

full width half maximum of (FWHM) of perturbation is

given by, D¼ 2.35d. As there are two kinds of electron popu-

lation (i.e., trapped and passing) exists here, they will have

two different distribution functions. The passing particle dis-

tribution function is denoted by fp, and the trapped electron
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is denoted by ftr. The net charge density can also be consid-

ered as a combination of passing charge density, trapped

charged density, and uniform ion background density.

Therefore, Eq. (5) can be written as

d2/
dx2
¼ np þ ntr � 1: (10)

In the equation above, np is the passing charge density, and

ntr is the trapped charged density. The passing electrons are

those electrons which are not affected by the potential. For

passing electrons, the net energy is always positive, and for

the trapped electrons, the energy is assumed to be negative.

So those electrons whose velocities fall in the potential range

6
ffiffiffiffi
/
p

will get trapped and rest will pass through. This sets

the range of integration for both passing and trapped electron

distributions. Thus, in terms of distribution function, Eq.

(10) can be written as

d2/
dx2
¼
ð� ffiffiffi

/
p

�1
fpðx; vÞdvþ

ð1
þ
ffiffiffi
/
p fpðx; vÞdv

þ
ðþ ffiffiffi

/
p

�
ffiffiffi
/
p ftrðx; vÞdv� 1: (11)

In the equation above, we have used

np ¼
ð� ffiffiffi

/
p

�1
fpðx; vÞdvþ

ð1
þ
ffiffiffi
/
p fpðx; vÞdv; (12)

ntr ¼
ðþ ffiffiffi

/
p

�
ffiffiffi
/
p ftrðx; vÞdv: (13)

We now rearrange Eq. (11) to obtain the expression for the

trapped electron distribution function

ntr ¼
d2/
dx2
�
ð� ffiffiffi

/
p

�1
fpðx; vÞdv�

ð1
þ
ffiffiffi
/
p fpðx; vÞdvþ 1: (14)

Now in Eq. (14), the terms in RHS are known and can be

solved these terms one by one. Equation (12) gives its expres-

sion, wherein and we need to solve the integrals. Exploiting

the symmetricity of kappa distribution, we can write np as

np ¼ 2

ð1
þ
ffiffiffi
/
p fpdv ¼ 2

ð1
0

fpdv�
ð ffiffiffi

/
p

0

fpdv

" #
: (15)

Thus making such a transformation, we can solve the inte-

gral, and we get an analytical expression for np as (see

Appendix A for details)

np ¼
ABjffiffiffi

B
p B1=2�j

A
� 2B�k/1=2

2F1 j; 1=2; 3=2;�/=B½ �
� �

;

(16)

where

A ¼ CðjÞ
Cðk � 1=2Þ

ffiffiffi
p
p ;

B ¼ j� 3=2;

and 2F1[a, b, c; z] is the Gauss hypergeometric function.

Substituting Eqs. (9) and (16) in (14), we get trapped elec-

tron density as

ntr ¼
x2/

d4
� /

d2
þ 1� ABjffiffiffi

B
p

�
B1=2�j

A

� 2B�k/1=2
2F1 j; 1=2; 3=2;�/=B½ �

�
: (17)

But from Eq. (13), we can rewrite Eq. (17) as

ðþ ffiffiffi
/
p

�
ffiffiffi
/
p ftrðx; vÞdv ¼ x2/

d4
� /

d2
þ 1� ABjffiffiffi

B
p

�
B1=2�j

A

� 2B�k/1=2
2F1 j; 1=2; 3=2;�/=B½ �

�
;

(18)

which can be written as

2

ðþ ffiffiffi
/
p

0

ftrðx; vÞdv ¼ x2/

d4
� /

d2
þ 1� ABjffiffiffi

B
p

�
B1=2�j

A

� 2B�k/1=2
2F1 j; 1=2; 3=2;�/=B½ �

�
:

(19)

To solve this integral equation, we make a change to variable

w using Eq. (7) and then we get

2

ð0

�/=2

ftrðwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xþ /
p dw ¼ x2/

d4
� /

d2
þ 1

ABjffiffiffi
B
p

�
B1=2�j

A

� 2B�k/1=2
2F1 j; 1=2; 3=2;�/=B½ �

�
:

As the RHS of above equation is a function of /, we can

assume it to be g(/). Then, Eq. (19) can be written as

2

ð0

�/=2

ftrðwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2wþ /
p dw ¼ gð/Þ: (20)

The solution of such an integral equation closely follows the

method adopted by Chen and Parks.25 This results in the

expression of ftr(w). See Appendix B for the detailed deriva-

tion of the ftr

ftrðwÞ ¼
2
ffiffiffi
2
p ffiffiffiffiffiffiffi

�w
p

pd2
1� 2lnð�8w=wÞ½ �

þ Affiffiffi
B
p 2F1 1=2; j; 1; 2w=B½ �: (21)

The first term in Eq. (21) arises from the net charge density

part, and the second term from the passing particle density. It

can be observed from the expression for trapped electron

density [Eq. (17)] that the first two terms represent the net

charge density and the next term emanates from the passing

electron density. Similarly, as the trapped electron distribu-

tion function is derived from the trapped electron density,

the distribution function will have an explicit dependence on
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the net charge density. The effect of superthermal population

of plasma on ftr is manifested through the second term of Eq.

(21). Thus, the EH characteristics are governed by the sec-

ond term, which ensues from the assumed distribution of

plasma. The first term in Eq. (21) insinuates that the charge

density term affects only the trapped particle population.

This is evident as the first term vanishes and becomes imagi-

nary for w> 0. The first term in Eq. (21) tends to 0 as

w! 0, and due to the effect of second term, the net value of

the ftr tends to a positive constant. The second term in Eq.

(21) has a finite positive value at w¼ 0, and this term mono-

tonically decreases as w takes negative values. As the

trapped population exists only for negative energies, the w is

restricted to negative values. We find that first term in Eq.

(21) has a maxima at w ¼ �w
8

exp ð�5=2Þ. The end point

behaviour of the two terms implies that ftrðw ¼ 0Þ
< ftrðw ¼ �w

8
exp ð�5=2ÞÞ. Combining the behavior of two

terms in ftr, it can be concluded that ftrð0 > w
> �w

8
exp ð�5=2ÞÞ < ftrðw ¼ �w

8
exp ð�5=2ÞÞ. It implies that

the trapped particle distribution function ftr has a single peak in

the w space as shown in Fig. 2(a), which corresponds to a dou-

ble peak in velocity space as shown in Fig. 2(b).

We carried out similar mathematical exercise by treating

plasma to be in thermal equilibrium and estimated the

trapped particle density and distribution function, i.e., ntr and

ftr. These expressions are given in Appendix D. It may be

noted that the first term of trapped particle distribution func-

tion associated with the superthermal plasmas [Eq. (21)] and

the thermal plasma [Eq. (D5)] is identical as they emanate

from the charge density part, which is common for both

cases. However, the second term for both cases is different,

which is attributed to thermal and superthermal effects con-

sidered in plasma models.

The three dimensional plot of the trapped particle distri-

bution function is given in Fig. 1. In this figure, ftr(w) is

shown in panel (a), (b) and (c) are plotted using Eq. (21),

whereas ftr(w) depicted in panel (d) is plotted using Eq. (D5).

From Fig. 1, we observe that as the kappa index takes higher

values, the ftr manifests itself as the trapped particle distribu-

tion function of the thermal plasma. We see that the trapped

particle distribution function is deeper for superthermal

plasma as they possess higher trapped density. For the ther-

mal plasma, the edges are comparatively less darker, which

indicates that the trapped population in thermal plasma is

less. This is quite obvious as superthermal plasma that fol-

lows kappa distribution has a low average thermal velocity

as compared to thermal plasma. The higher depth of super-

thermal plasma hints us that the electron hole formed is

deeper. This also means that superthermal plasma traps more

particles with lower thermal energy. For a better understand-

ing, we studied the variation of ftr with the energy variable

w, where w ¼ 1
2
ðv2 � /Þ. This is shown in Fig. 2(a). The ftr

is plotted for different values of superthermal index, j. We

observe that for j¼ 400 the trapped particle distribution

function approaches to that of Maxwellian. In Fig. 2(a), all

the four curves tend to converge at one point when ftr(w)

approaches zero. This value is w¼ –0.35. This value implies

w¼ –w/2 and is the center of electron phase space hole

where x¼ v¼ 0. For ftr, w¼ –w/2 is a point of global mini-

mum, beyond which ftr becomes negative, which is physi-

cally irrelevant for stable BGK EHs. The global minimum

implies that the phase space holes have a minimum phase

space density at the centers. This can be better understood

from Fig. 2(b). Figure 2(b) depicts the variation of ftr in

velocity space. It can be observed that there are two peaks

in the plot one in the negative axis and other one in the

positive axis. This phenomenon manifests itself as two

counter-streaming beams with equal magnitude of velocity.

With the solitary wave potential, the counter-streaming

beams are self-consistent configurations, which have been

FIG. 1. Plot of trapped electron distri-

bution function ftr in x-v domain. The

four panels depict the variation of ftr
for various superthermal indexes j.

The colour gradient shows the varia-

tion of trapped electron density. Here

we have used w¼ 0.7 and d¼ 1.7.
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demonstrated to be stable by numerical simulations as well

as by analytical means.15

III. WIDTH-AMPLITUDE RELATION FOR
SUPERTHERMAL PLASMAS

For a stable BGK solution, the trapped electron distribu-

tion function should be positive.11 Exploiting this condition,

we can derive the allowed regions of width-amplitude rela-

tion for the wave potential incorporated in the plasma. In the

case of trapped particles, the dominant force they experience

will be provided by the potential; hence we can neglect the

effects of velocity. Assuming the maximum potential

applied, we get w¼ –w/2. Using this relation, ftr(w, d,

w¼ –w/2)� 0 suffices this requirement, yielding the width-

amplitude relation for superthermal plasma (see Appendix C

for detailed derivation)

d2 � 2
ffiffiffi
B
p

pA

ffiffiffiffi
w

p
2ln4� 1ð Þ

2F1 1=2; j; 1;�w=B½ � : (22)

This inequality is represented in Fig. 3(a) for superthermal

plasmas [Eq. (22)] and thermal plasmas [Eq. (D6)]. The

colored region separates the whole space into stable and

unstable regions. In Fig. 3(a), blue and red color bars,

respectively, represent the stability regions for thermal and

superthermal plasmas. It is evident from Eq. (22) that the

minimum allowed width for stable EHs increases with the

potential amplitude, w. We observe from Fig. 3(b) that the

parametric regime of w and d that supports stable BGK EH

solutions in superthermal plasma is greater than that of

thermal plasma for perturbation with amplitude w � wl and

width d � dl. But after these w and d of the perturbation,

the thermal plasma shows a higher region of stability in

comparison with superthermal plasma. We can define these

limiting values as wl–dl. At this point, the stability regions

of both Maxwellian and kappa equalize. It suggests that the

perturbation of width Dl� 2.35dl, i.e., Dl� 3.53kD, and

amplitude w � 0.7e/kBT has a higher region of stability for

superthermal plasmas. In order to quantify the difference

in the regions, we take the ratio between the width of ther-

mal and superthermal plasmas for j ¼ 2, 4, 400. It is

depicted from Fig. 4 that for w � 0.7, the stability region

for highly superthermal plasma is nearly 25% higher than

the thermal plasma. But after w � 0.7, even though the

thermal plasma has a higher region of stability, the region

FIG. 3. (a) Allowed regions of width-amplitude for the existence of stable

BGK solutions linked with EHs for superthermal (red) and thermal (blue)

are shown by vertical bars. (b) The limiting boundary (lowest limit, where

stable solution exists) of d as a function of amplitude of perturbation is

shown for superthermal (red) and thermal plasmas (blue). The region shaded

with yellow color indicates the deviation of this lower boundary for thermal

and superthermal plasmas. The limiting value of dl and wl represents the

value where thermal and superthermal plasmas have the same allowed

regions for amplitude-width of perturbation.

FIG. 2. (a) shows the variation of trapped particle distribution function ftr
with the energy variable w for superthermal plasma with j ¼ 2, 3, 400, and

thermal plasma. The dashed line depicts the case of thermal plasma. (b)

shows the corresponding variation of trapped particle distribution function

ftr of superthermal plasma for j ¼ 2, 3, 400, and thermal plasma in velocity

space. Here, d¼ 1.7 and w¼ 0.7.
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of thermal plasma is higher by about only 10%. Also at

very high amplitude perturbation, none of these differences

are significant. We know that the average thermal velocity

of particles in superthermal distribution is small compared

to thermal plasmas, i.e., h< vth. The superthermal plasma,

which has a large number of lower thermal energy particles

than the thermal plasma, will support more BGK solutions

for lower perturbations as it has a considerable number of

lower energy particles to form stable BGK solutions. But

as the perturbation increases, the particles with higher ther-

mal energy will also get trapped. In such a case, the ther-

mal plasma will have an increased population of higher

thermal particles. Even though the superthermal plasma

has a nonzero tail with high energetic particles, they will

not get trapped at all in such perturbations. Thus, the ther-

mal plasma possesses a higher region of stability. But we

can see that the stability region is higher by only 10%.

IV. CONCLUSION

This paper is an attempt to introduce a general BGK

theory that can be used to model EHs in the space plasma.

We have derived analytical results for trapped particle den-

sity and distribution function for a one-dimensional

unmagnetized plasma following superthermal kappa distri-

bution. Such nonthermal distributions are often found to be

present in different regions of the magnetosphere. Thus,

this model is more generalized to examine the EHs in

space plasmas as compared to the earlier BGK model for

thermal space plasmas. Assuming the positive nature of

trapped particle distribution function, which is an indis-

pensable condition for stability of BGK EHs, we derived

the width-amplitude relation. This relation gives the com-

bination of width and amplitude of perturbation that will

result in stable BGK EHs. This study leads to a conclusion

that the superthermal plasma is able to form stable BGK

solutions for smaller perturbations. This is even observed

in the fluid simulation by Lotekar, Kakad, and Kakad,22

where they found that the superthermal plasma supports

stable solitary wave structures for a larger set of perturba-

tions than the thermal plasma. We also see from the width-

amplitude plot that for a fixed amplitude of perturbation,

the set of d values supported by superthermal plasma is

much greater when the amplitude of wave potential is less

than 0.7e/kBTe. This means that under the same initial con-

ditions, more modes of BGK waves are supported by

superthermal plasma than thermal plasma. Similar results

have been obtained by Lotekar, Kakad, and Kakad23 in

their fluid simulation with cold ions and superthermal elec-

trons. This can be understood in two ways. One is that as

the average speed in superthermal plasma is lowered, par-

ticles will get trapped even for combinations which are not

applicable in the case of thermal plasma. Another way of

explaining this phenomenon is in terms of the concept of

free energy. As proved by Leubner,26 superthermal plasma

will have a lower entropy as compared to that of thermal

plasma, which in turn means that it has lower free energy.

This will hence lead to the formation of stable BGK solu-

tions rather than leading to the case of instability.

The key findings of the present work are the following:

(i) The analytical expressions for trapped particle density

and distribution function are given for superthermal plas-

mas, (ii) stable BGK solutions are better supported by plas-

mas following superthermal kappa type distributions for

EHs of relatively lower amplitude, i.e., /max< 0.7e/kBTe,

and (iii) the effect of superthermal plasma population is sig-

nificant for EHs of widths less than 3.53kD and amplitude

less than 0.7e/kBTe (i.e., wl¼ 0.7e/kBTe, Dl¼ 3.53kD).

Hence, we conclude that we have come up with a general

kinetic model that is well equipped to explain the behavior

of BGK electron holes in space plasmas. If a region of

space plasma is in thermal equilibrium, the present model

can be used by setting up higher j index.

APPENDIX A: SOLUTION TO THE INTEGRALS

Now, Eq. (15) can be expanded as

np ¼
2CðjÞffiffiffi

p
p

Cðj� 1=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k � 3=2

p
"ð1

0

1þ v2

j� 3=2

 !�j

dv

�
ð ffiffiffi

/
p

0

1þ v2

j� 3=2

 !�j#
: (A1)

Let

A ¼ CðjÞ
Cðk � 1=2Þ

ffiffiffi
p
p ;

B ¼ j� 3=2:

Also by substituting v2¼ x we get

np ¼
ABkffiffiffi

B
p

ð1
0

ðBþ xÞ�jx�1=2dx�
ð/

0

ðBþ xÞ�jx�1=2dx

" #
:

(A2)

Now using the following identities from the book of

table of integrals by Gradshteyn and Ryzhik,27 we obtain

Eq. (16)

FIG. 4. The ratio of limiting boundary (lowest limit, where stable solution

exists) of d for Maxwellian and superthermal plasma is plotted as a function

of amplitude of perturbation. It indicates that the allowed region of stable

BGK solutions is nearly 25% more for highly superthermal plasmas (j¼ 2)

as compared to thermal plasmas.
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ð1
0

xk�1ð1þ xÞ�lþ�ðxþ cÞ��dx

¼ b l� k; k½ �2F1 �; l� k; l; 1� c½ �;ðu

0

x��1ðxþ aÞkðu� xÞl�1dx

¼ akulþ��1b l; �½ �2F1 �k; �; lþ �;�u=a½ �;

where

b x; y½ � ¼
C x½ �C y½ �
C xþ y½ �

: (A3)

We also used the relation for Gauss Hypergeometric

function29

2F1 j; j� 1=2; k; 1� B½ � ¼ B1=2�j: (A4)

APPENDIX B: SOLUTION TO INTEGRAL EQUATION

As mentioned in Eq. (20), we need to solve the follow-

ing integral equation:

2

ð0

�/=2

ftrðwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2wþ /
p dw ¼ gð/Þ: (B1)

By substituting 2w¼ –p, we change the above equation

into

ð/

0

ftrð�pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pþ /
p dp ¼ gð/Þ: (B2)

Now we need to solve for ftr(–p). For that we multiply the

above equation by 1ffiffiffiffiffiffiffi
a�/
p and integrate over / from 0 to a.

Thus, we get

ða

0

d/
gð/Þffiffiffiffiffiffiffiffiffiffiffiffi
a� /
p ¼

ða

0

d/
ð/

0

ftrð�pÞffiffiffiffiffiffiffiffiffiffiffiffi
a� /
p ffiffiffiffiffiffiffiffiffiffiffiffi

/� p
p dp: (B3)

The above equation can be written as

ða

0

d/
gð/Þffiffiffiffiffiffiffiffiffiffiffiffi
a� /
p ¼

ða

0

dp

ða

p

ftrð�pÞffiffiffiffiffiffiffiffiffiffiffiffi
a� /
p ffiffiffiffiffiffiffiffiffiffiffiffi

/� p
p d/; (B4)

ða

0

d/
gð/Þffiffiffiffiffiffiffiffiffiffiffiffi
a� /
p ¼

ða

0

ftrð�pÞdp

ða

p

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� /Þð/� pÞ

p d/:

(B5)

The second integral in Eq. (B5) becomes p (table of integrals

by Gradshteyn and Ryzhik27). Therefore, we haveða

0

f ð�pÞdp ¼ 1

p

ða

0

gð/Þffiffiffiffiffiffiffiffiffiffiffiffi
a� /
p d/: (B6)

Let us consider p¼ a and the derivative of the above equa-

tion with respect to a, we get

f ð�aÞ ¼ 1

p
d

da

ða

0

gð/Þffiffiffiffiffiffiffiffiffiffiffiffi
a� /
p d/

� �
: (B7)

Now we use integration by parts and obtain

f ð�aÞ ¼ 1

p
gð0Þffiffiffi

a
p þ

ða

0

d/
g0ð/Þffiffiffiffiffiffiffiffiffiffiffiffi
a� /
p

� �
: (B8)

We know that g(/) is the trapped electron density and has no

value if there is no applied potential. Thus, g(0) ! 0. Also,

upon change of variable a! –2w we get

ftrðwÞ ¼
1

p

ð�2w

0

d/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2w� /
p dgð/Þ

d/
: (B9)

We have derived a solution to the integral equation. Now we

need to apply this equation to find out the trapped particle

distribution function for superthermal plasmas. As a first

step, we need to differentiate the trapped particle density

given by Eq. (17) with respect to /

dgð/Þ
d/

¼ d

d/

�
1

d2
�2/lnð/=wÞ � /ð Þ þ 1� ABjffiffiffi

B
p

�
B1=2�j

A

� 2B�k/1=2
2F1 j; 1=2; 3=2;�/=B½ �

��
; (B10)

which is

dgð/Þ
d/

¼ �2

d2
1þ lnð/=wÞ½ � � 1

d2
þ Affiffiffi

B
p /�1=2 1þ /

B

� ��k

:

(B11)

Substituting Eq. (B11) in Eq. (B9), we get the analytical

form of trapped particle distribution function for superther-

mal plasmas as

ftrðwÞ ¼
2
ffiffiffi
2
p ffiffiffiffiffiffiffi

�w
p

pd2
1� 2lnð�8w=wÞ½ �

þ Affiffiffi
B
p 2F1 1=2; j; 1; 2w=B½ �: (B12)

To derive Eqs. (B11) and (B12) we have used the following

identities:28

1.

d

dz
ðza

2F1 a; b; aþ 1;�z=n½ �Þ ¼ az�1þa 1þ z

n

� ��b

: (B13)

2. ðu

0

x��1ðxþ aÞkðu� xÞl�1dx

¼ akulþ��1b l; �½ �2F1 �k; �;lþ �;�u=a½ �: (B14)

APPENDIX C: DERIVATION OF WIDTH-AMPLITUDE
RELATION

Now, we have the trapped particle distribution function

given by

ftrðwÞ ¼
2
ffiffiffi
2
p ffiffiffiffiffiffiffi

�w
p

pd2
1� 2lnð�8w=wÞ½ �

þ AB�1=2
2F1 1=2; j; 1; 2w=B½ �: (C1)
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To obtain the width-amplitude relation, we assume that the

trapped particle distribution function is positive, i.e., ftr� 0.

In fact, we are essentially deriving the region of width and

amplitude of perturbation that results in a positive distribu-

tion function. Also, we have a relation 2w¼ v2 – /. In the

case of trapped electrons, we assume that the kinetic energy

is less than the potential energy. This is a valid assumption

because only those particles with lower kinetic energy will

get trapped. The moment they get trapped, they will be under

the influence of trapping potential, and hence those particles

will have more potential energy than the kinetic energy.

Hence, we can take /¼ –2w. To obtain allowed regions of

width-amplitude for stable EHs, we need to take the case /
! /max, i.e., /¼w which gives us w¼ –w/2, i.e., net energy

equal to the maximum potential. Applying these assumptions

in Eq. (C1), we get

�2
ffiffiffiffi
w

p
pd2

1� 2ln4½ � � � Affiffiffi
B
p

2F1 k; 1=2; 1;�w=B½ �
: (C2)

By rearranging this equation, we get the width-amplitude

relation

d2 � 2
ffiffiffi
B
p

pA

ffiffiffiffi
w

p
2ln4� 1ð Þ

2F1 1=2; j; 1;�w=B½ � : (C3)

APPENDIX D: DERIVATION OF BGK THEORY FOR
THERMAL PLASMA

We here briefly discuss about the derivation of BGK sol-

utions for thermal plasma. Here, we assume the normalized

form of the Maxwell-Boltzmann distribution, given by

f ðvÞ ¼ 1ffiffiffi
p
p exp ð�v2Þ: (D1)

Now, the passing particle density is given by

np ¼
ð� ffiffiffi

/
p

�1
fpðvÞdvþ

ð1
þ
ffiffiffi
/
p fpðvÞdv: (D2)

Assuming the Maxwell distribution, we get

np ¼ 1� erf
ffiffiffiffi
/

ph i
: (D3)

Substituting this in Eq. (10) and rearranging, we get the

trapped particle density for thermal plasma

ntr ¼
x2/

d4
� /

d2
þ erf

ffiffiffiffi
/

p	 

: (D4)

Now by closely following the same steps, we get the trapped

particle distribution function for the thermal plasma

ftrðwÞ ¼
2
ffiffiffi
2
p ffiffiffiffiffiffiffi

�w
p

pd2
1� 2ln � 8w

w

� �� �
þ exp ðwÞI0ðwÞffiffiffi

p
p ;

(D5)

where erf is the error function and I0 is the modified Bessel

function of first kind.

Following the same procedure discussed in Appendix C,

we derive the width-amplitude relation for thermal plasma

d2 � 2
ffiffiffiffi
w

p
ð2lnð4Þ � 1Þffiffiffi

p
p

exp �w
2

� �
I0 �

w
2

� � : (D6)
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