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Abstract The Sun is the major driver of space weather events, and as a result, most applications requiring
modeling/forecasting of space weather phenomena depend largely on the activities of Sun. Accurate
modeling of solar activity parameters like the sunspot number (SSN) is therefore considered significant for
the quantitative modeling of space weather phenomena. Sunspot number forecasts are applied in
ionospheric models like the International Reference Ionosphere model and in several other projects requiring
prediction of space weather phenomena. A method called Hybrid Regression-Neural Network that
combines regression analysis and neural network learning is used for forecasting the SSN. Considering the
geomagnetic Ap index during the end of the previous cycle (known as the precursor Ap index) as a
reliable measurement, we predict the end of solar cycle 24 to be in March 2020 (±7 months), with
monthly SSN 5.4 (±5.5). Using an estimated value of precursor Ap index as 5.6 nT for solar cycle 25, we
predict the maximum SSN to be 122.1 (±18.2) in January 2025 (±6 months) and the minimum to be 6.0
(±5.5) in April 2031 (±5 months). We found from the model that on changing the assumed value of
precursor Ap index (5.6 nT) by ±1 nT, the predicted peak of solar cycle 25 changes by about 11 sunspots
for every 1-nT change in the assumed precursor Ap index.

Plain Language Summary A combination of regression and neural network methodology is used
to forecast the solar activity using the current and past observed solar parameters. To test the method,
the current solar cycle 24 activity is forecasted using previous solar cycles and then the same method is used
to predict the upcoming solar cycle 25. The results are presented in this publication.

1. Introduction

Sunspots are darker, and colder regions on the Sun’s surface that are marked by the intense magnetic activity
and act as a base to the explosive solar flares and coronal mass ejections from the Sun’s corona. The sunspot
number (SSN) has long been used as an indicator of solar activity level of the entire visible disc of the Sun
(e.g., Duhau, 2003; Hoyt & Schatten, 1998; Kirkwood, 1869) and exhibits a day-to-day variability with periodi-
city of about 11 years of cycle. It is a measure of the number of sunspots and groups of sunspots present on
the surface of the Sun. Its historical record dates as far back as the 17th century. SSN was first introduced in
1848 by Rudolf Wolf, and the measurements of solar activity are available continuously thereon
(Kiepenheuer, 1953; McKinnon & Waldmeier, 1987; Waldmeier, 1961). Initially, the SSN measurements were
maintained by the Swiss Federal Observatory in Zürich, Switzerland. Now it is provided and maintained by
the Solar Influences Data Center in Brussels, Belgium, where monthly updates are available online.

Sunspots have a significant role in the prediction of solar activity and space weather events and are needed
to plan long-term space missions. The minimum solar activity (lowest SSN) has also been found associated
with atmospheric cooling. In particular, the Dalton minimum (1795–1830), the Maunder minimum (circa
1635–1705), and the Spörer minimum (circa 1450–1550) are considered as associated with significantly
cooler climates (e.g., Eddy, 1981). Jiang and Xu (1986) dispute this generalization about the Spörer minimum.
During high SSN transient solar phenomena such as coronal mass ejections and solar flares are most frequent
(Ramesh, 2010; Uwamahoro & McKinnell, 2013). These phenomena often lead to geomagnetic storm phe-
nomena that represent adverse aspects of space weather.
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Sunspot number forecasts have, for example, been applied in projects like the International Reference
Ionosphere (IRI), NeQuick, and IRI-Plas (IRI extended to the plasmasphere). These models are usually updated
in time intervals of about 2–5 years, and so SSN forecast lead times of about 5 years are sufficient for this
application. For this reason, a lot of research resources are put into modeling of the SSN and hence the solar
activity. There exist various techniques that have been used in the past for the prediction of the occurrence
and amplitude of solar cycles (SCs). Early predictions of the amplitude and timing for SC 24 have been listed
by Pesnell (2008), which included 54 different predictions obtained by applying various techniques based on
climatology (past behavior), dynamo models, spectral analysis, neural networks, and geomagnetic and solar
precursor methods. The different techniques have given the different predictions.

The precursor method is one of the recently developed models for the prediction of amplitude of SC
(Conway, 1998; Hathaway, 2010; Svalgaard et al., 2005). These precursor techniques based on the geomag-
netic activity near or before the time of solar minimum to forecast SSN in the subsequent SC are gaining
the most attention (Bhatt et al., 2009a, 2009b; Feynman, 1982; Gonzalez & Schatten, 1988; Ohl & Ohl, 1979;
Thompson, 1993; Wilson et al., 1998). Also, neural network is one of common techniques used to search
for relationships among indicators (Herbrichet al.,1999). Gholipour et al. (2005) proposed a method based
on spectral analysis and neurofuzzy modeling and made an early prediction of the maximum SSN for cycle
24 to be 145 in 2011–2012. Svalgaard et al. (2005) predicted Cycle 24 to be the weakest in 100 years
(R24 = 70 ± 2) based on the polar field strength, whereas Dikpati et al. (2006) predicted a strong Cycle 24
(R24 = 155–180) based on applying a dynamomodel. Bhatt et al. (2009a) using the precursor technique found
the maximum amplitude of SC 24 to be 111.

Neural network forecasts are derived from nonlinear, statistical algorithms that determine and model com-
plex relationships between inputs and outputs to find patterns in the data that can be extrapolated. Some
researches (e.g., Habarulema, 2010; Okoh et al., 2016) have demonstrated that neural networks are efficient
for modeling ionospheric variations that depend mostly on the Sun’s activities. For parameters like SSN that
have shown variations in the SC properties (e.g., the value of SSN at the cycle peaks and the cycle durations),
neural networks can be guided in techniques that combine other methods to increase their accuracies. We
present here a novel technique (known as the Hybrid Regression-Neural Network, HR-NN) in which the
method of regression is used to derive key parameters of a SC, and then these key parameters are subse-
quently fed in as inputs for a trained neural network procedure from which instantaneous SSN values can
be forecasted. The idea in using regression to derive key parameters of the SCs is to provide the neural net-
work with guided information regarding the cycle amplitudes and durations. Ultimately, the method of
neural network is used to learn how the SSNs vary through the cycles by relying on the wealth of information
obtainable from the large volume of available SSN data. Section 2 describes the data used in the study,
section 3 gives the method and results, and discussion and conclusions from the study are provided in sec-
tions 4 and 5, respectively.

2. Data Used

There exists several indices that are indicators for the geomagnetic activity: Kp, Dst, aa, ap, Ap, and AE. The
geomagnetic activity indices, viz., Ap and aa, have been shown to be good precursors for forecasting the SSN
(e.g., Bhatt et al., 2009a, 2009b; Maris & Oncica, 2006; Uwamahoro et al., 2009). In the present analysis, we
exploit the Ap index as geomagnetic precursor to estimate the maximum amplitude of upcoming SCs. The
Ap index provides a daily average level of the geomagnetic activity. The 3-hourly values of Kp is converted
to ap values, and the average from 8 daily ap values gives the daily Ap index of a certain day, with units of
nT. Related to the Kp index, they are average values of the irregular disturbance levels in the horizontal geo-
magnetic field components, observed at the selected magnetic observatories worldwide. Definitive values of
Ap are maintained and provided by GeoForschungsZentrum Potsdam, Germany, on behalf of the
International Service of Geomagnetic Indices of the International Association of Geomagnetism and
Aeronomy. The Ap index is thus a geomagnetic activity index where days with high levels of geomagnetic
activity (magnetically disturbed days) have higher values of daily Ap indices. The Ap index data were obtained
from the GSFC/SPDF OMNIWeb interface at https://omniweb.gsfc.nasa.gov. The data from OMNIWeb are
available from year 1963, and all available Ap index data till year 2017 were used, which makes the Ap data
set from SC 20 to SC 24.
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Sunspot number data used in this work are the revised SSN version 2
(Clette et al., 2015) obtained from the WDC-SILSO, Royal Observatory of
Belgium, Brussels (http://www.sidc.be/silso/datafiles). The data are a daily
record of SSNs from January 1818 to November 2017. Due to nonavailabil-
ity of reliable data before 1818 and the need to ensure accuracy of results,
SSN for days earlier than 1818 were not used in this work.

3. Methods and Results
3.1. Regression Method

The daily values and monthly averages of the daily SSN are noisy and must
be smoothed in some manner in order to obtain significant information
like minima, maxima, etc. To ensure smoothness of the data profile, a
monthly average of the SSN was constructed, and the 13-month running
average was further computed using the formula in equation (1) as
defined by Conway (1998). The 13-month running mean is a standard
smoothing that is centered on the month in subject and using half-
weights for the months at the start and end of the series.

R13i ¼ 1
12

∑5j¼�5Ri�j þ 1
2

Ri�6 þ Riþ6ð Þ
� �

(1)

where i is the index of themonth for the 13-month runningmean computation; Ri is themonthly average SSN
for month i, and j is the index from the preceding to the subsequent months of which the monthly average
SSNs are used to compute the running mean. In the samemanner, we calculated the monthly mean values of
Ap indices (smoothed using 13-month running average as in equation (1)). The Ap index for the month at the
end of a cycle is considered as the precursor Ap index for the next cycle.

Figure 1 illustrates the variability of SSN over the period from 1818 to 2017 using the 13-month running
average of SSNs derived in this work. The period covers SC numbers 7 to the present 24. Figure 1 shows
that there is conspicuous variation in the peak values of the SSN for the cycles varying from SC to cycle.
The cycle properties (minimum and maximum values of SSN, the times taken to rise from onset to peak
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Figure 1. Illustration of solar cycles 7 to 24 using 13-month running average
of the sunspot number. The numbers inscribed indicate the respective solar
cycle numbers for each cycle.

Table 1
Observed Characteristics of Solar Cycles 7–24

SC Start year Peak year End year
SSN at
start

SSN at
peak

SSN at
end

Rise duration
(years)

Fall duration
(years)

Total duration
(years)

7 1,823.416 1,829.833 1,833.833 1.6 119.2 12.2 6.417 4.000 10.417
8 1,833.916 1,837.167 1,843.500 12.4 244.9 17.6 3.251 6.333 9.584
9 1,843.583 1,848.083 1,855.917 18.1 219.9 6.0 4.500 7.834 12.334
10 1,856.000 1,860.083 1,867.167 6.3 186.2 9.9 4.083 7.084 11.167
11 1,867.250 1,870.583 1,878.917 10.0 234.0 3.7 3.333 8.334 11.667
12 1,879.000 1,883.917 1,890.167 4.1 124.4 8.3 4.917 6.250 11.167
13 1,890.250 1,894.000 1,902.000 9.7 146.5 4.5 3.750 8.000 11.750
14 1,902.083 1,906.083 1,913.500 4.6 107.1 2.5 4.000 7.417 11.417
15 1,913.583 1,917.583 1,923.583 2.5 175.7 9.3 4.000 6.000 10.000
16 1,923.666 1,928.250 1,933.667 9.5 130.2 5.8 4.584 5.417 10.001
17 1,933.750 1,937.250 1,944.083 6.0 198.6 12.9 3.500 6.833 10.333
18 1,944.166 1,947.333 1,954.250 13.0 218.7 5.1 3.167 6.917 10.084
19 1,954.333 1,958.167 1,964.750 5.5 285.0 14.3 3.834 6.583 10.417
20 1,964.833 1,968.833 1,976.167 15.0 156.6 17.8 4.000 7.334 11.334
21 1,976.250 1,979.917 1,986.667 18.4 232.9 13.5 3.667 6.750 10.417
22 1,986.750 1,989.833 1,996.333 14.7 212.5 11.2 3.083 6.500 9.583
23 1,996.416 2,001.833 2,008.917 11.6 180.3 2.2 5.417 7.084 12.501
24 2,009.000 2,014.250 NA 2.5 116.4 NA 5.250 NA NA

Note. NA is used for characteristics of the present solar cycle (SC 24) that have not been measured at the time of devel-
oping this research.
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of cycles, the times taken to fall from peak to end of cycles, and
the total durations for each cycle) are found to be different. To
investigate the connections between various parameters of the
SCs, we used the regression analysis. Table 1 summarizes proper-
ties of the SCs as obtained using the computed 13-month running
averages. Each SC is distinct. The minimum values of SSN varied
between 1.6 and 18.4, while the maximum values varied between
107.1 and 285.0 for different cycles. The SCs have total durations
that vary between ~9.5 and ~12.5 years, with a mean value of
~11 years.
3.1.1. Peak Value of SSN in a Cycle Versus Precursor Ap Index
There is a long standing observation of the connection between the
solar activity and the precursor geomagnetic activity (Bhatt et al.,
2009a; Cliver et al., 1999; Gonzalez & Schatten, 1988; Pesnell, 2017).
From Ruzmaikin (1985), the relationship between SSN and the corre-
sponding geomagnetic aa/Ap index can also be viewed as indirect
evidence for the solar dynamo. The state of geomagnetic activity dur-
ing the end of a solar activity cycle has been found to be a reliable
indication of the amplitude of the following solar activity maximum
or peak SSN (Cliver et al., 1998; Hathaway & Wilson, 2006). Figure 2

illustrates a plot of the peak values of SSN versus the precursor Ap index for SCs 20 to 24 (as Ap values are
available on website for SC 20–24). The precursor Ap index is the value of the Ap index at the end of the
preceding SC.

Figure 2 shows a direct relationship between the peak of SSN and the precursor Ap index, suggesting that
higher/lower peak of SSN for next SC is associated with higher/lower Ap precursor values; the value of corre-
lation coefficient (r) is ~0.97, and the best fitted linear regression is illustrated in equation (2).

Rpeak ¼ 55:56þ 13:65 Ap ±9:52ð Þ (2)

where Rpeak is the peak of SSN and Ap is the precursor Ap index for the cycle. The relationship in equa-
tion (2) shows that, at the onset of a SC, the peak value of SSN (Rpeak) for the cycle can be reliably pre-
dicted using the observed precursor Ap values. Pesnell (2017) had also illustrated a direct relationship
between the peak of solar radio flux at 10.7 cm (F10.7 peak) and the precursor Ap index;

F10.7peak = 121.1 + 8.5 Ap.
3.1.2. Mean Rise Rate Versus Peak Value of SSN
To understand and explore the characteristics of the SCs, we obtained
the mean rise rate for each cycle (defined as the mean rate of increase
of the SSNs from the onset to the peak of the cycles). The relationship
between the mean rise rate and the peak value of SSN was investi-
gated, and the results are shown in Figure 3.

Figure 3 reveals that there is a direct relationship between the mean
rise rate and the peak value of SSN for each SC 7 to 24; the rate of
increase of SSN is higher if the SSN at the peak of the same cycle is
higher, and vice versa. The correlation coefficient between the rise
rate and the peak value of SSN is ~0.94, an indication that the connec-
tion between the two is strong. The best fitted linear regression is illu-
strated in equation (3a).

RΔþ ¼ 0:33 Rpeak � 16:23 ±6:20 yr�1
� �

(3a)

RΔ+ is the mean rise rate of SSN for the cycle, computed as defined in
equation (3b).
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Figure 2. Relationship between the peak of sunspot number and cycle precursor
value of Ap index for SC 20–24 (RMSE: root-mean-square error).
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Figure 3. Relationship between the mean rise rate and the peak value of sunspot
number for each SC 7–24.
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RΔþ ¼ Rpeak � Ronset
T rise

(3b)

where Ronset is the SSN at onset of the cycle and Trise is the time taken for
the cycle to rise from the onset to the peak of the cycle. Equations (3a) and
(3b) reveal the possibility to compute (at the onset of an SC) how long it
will take to reach the peak of the cycle from the onset (i.e., the rise dura-
tion, Trise) provided that Rpeak is “known,” which can be obtained in
advance using the Precursor Ap index using equation (2).
3.1.3. Fall Duration Versus Rise Duration
The relationship between the rise duration (Trise) and the fall duration (the
time taken from the peak to the end of the cycle, Tfall) for each SC 7 to 24
was also investigated, and the results are as shown in Figure 4.

Figure 4 shows that there exists a moderate inverse correlation (correlation
coefficient ~�0.55) between the rise duration and the fall duration, imply-
ing broadly that cycles that take longer times to rise will take shorter times
to fall, and vice versa. The rise duration and fall duration for SCs vary
between 3 to 6.5 years and 5 to 8.5 years, respectively. The best fitted lin-
ear regression is shown in equation (4).

T fall ¼ 9:29� 0:64 T rise ±0:83 yearð Þ (4)

where Tfall is the fall duration. Following from equation (4), it is therefore possible to compute (at the onset of
the cycle) the fall duration provided Trise is known, which can be obtained using equation (3b), and hence, the
total duration of the cycle (Trise + Tfall) can be calculated.
3.1.4. Mean Fall Rate Versus Mean Rise Rate
Finally, the relationship between the mean rise rate and the mean fall rate (defined as the mean rate of
decrease of the Sunspot numbers from the peak to the end of the cycle) was investigated. The results are illu-
strated in Figure 5. The SSN rise and fall rates vary between 20 to 75 SSN/year and 15 to 40 SSN/year, respec-
tively, during SC 7–24. The figure shows that there exists a positive correlation (correlation coefficient ~0.79)
between the mean rise rate and the mean fall rate, implying broadly that cycles with higher rise rates also
have higher fall rates, and vice versa. Equation (5a) shows the best fitted linear regression between the mean
rise rate and the mean fall rate.

RΔ� ¼ 0:30 RΔþ þ 12:84 ±4:12 year�1
� �

(5a)

where RΔ�is the mean fall rate, computed as defined in equation (5b).

RΔ� ¼ Rpeak � Rend
T fall

(5b)

where Rend is the SSN at the end of the cycle. Following from equations (5a)
and (5b), it is therefore possible (at the onset of the cycle) to estimate the
SSN at the end of the cycle using Rpeak (equation (2)), Trise (equation (3b)),
and Tfall (equation (4)).
3.1.5. Summary of Regression Application and the Need for a Neural
Network Procedure
From the foregoing sections, it is evident that using the regressionmethod
(equations (2) to (5a) and (5b)), the characteristics of an SC (e.g., the peak
value of SSN for the cycle, the time it takes to reach the peak, the total
duration of the cycle, and the value of SSN at the end of the cycle) can
be derived. There is, however, emphasis on the fact that reliable predic-
tions for a cycle can be made only after the onset of the cycle. This is
because the precursor Ap index is required, and this can only be obtained
after the end of the previous cycle to predict/forecast the forthcoming
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Figure 4. Relationship between the rise duration and the fall duration for
each SC 7–24.
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Figure 5. Relationship between the mean rise rate and the mean fall rate for
each SC 7–24.
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cycle. We emphasize here that the parameters derived using the regression equations were not used as data
for the neural network training but were rather used as inputs to the already-trained networks to estimate
values of the parameters where observations are not yet made.

While these properties explicitly characterize a SC, they do not provide required information on the progres-
sion of SSN from the start of the cycle to its end; there is additional requirement also to be able to predict the
value of SSN at any given instance of the cycle. A crude procedure will be to fit this progression using one or
more interpolation schemes. There will, however, be enormous considerations to make. For example, the fol-
lowing questions will need to be addressed: What should be the shape of the SC curves? If sinusoids are used,
how, and at what locations should the sinusoids be shaped differently since the cycles are not identically
shaped? The results may either be oversimplified approximations of the SSNs or exaggeratedly modeled out-
puts of the SSNs. In either case, the prediction errors will be large.

Hence, a neural network procedure is recommended to accomplish a reliable progression; this is because
neural networks have the capability to learn patterns of the SSN variations in time series over the SCs. As a
large amount of SSN data, spanning about 200 years (~18 SCs), is available, the neural network can learn
the SSN progression patterns over the SCs. Besides building a reliable pattern for the SSN progression in a
SC, the neural networks (since they have machine learning capability) will be able to automatically adjust
the regression-derived SC properties using information they learn from the training data. So that, for instance,
the peak value of the SSN obtained for a cycle using the neural network predictions will not be exactly as that
obtained using the regression method; the neural network will adjust the value, within the limits of the
regression errors, to conform to information it obtains from the training data.

Several researches (e.g., Ajabshirizadeh et al., 2011; Maris & Oncica, 2006; Uwamahoro et al., 2009) have pre-
viously used neural networks in solar physics modeling. A review of these researches(and as also summarized
in Pesnell, 2016) shows that time series based neural network training alone is not adequate to obtain reliable
results. This is especially true because the available record of SSNs does not contain consistent clues to fore-
casting the amplitudes and durations of the SCs. For this reason, we supported the neural network model in
this work with a regression-guided estimation of the cycle properties that makes use of the precursor value of
the Ap.

3.2. Neural Network Training Method

Decision about the input parameters to be used for a neural network training largely affects what the network
is able to learn and therefore contributes significantly to the accuracy of predictions that will be obtained
using the network. Since the SSN has been established to vary in a cyclic period of about 11 years, it is intui-
tive (and as in nearly all neural network based predictions of the SSN) to include a time series indicator as
input for the neural network. To enable the network’s learning of time series variations in this work, the year
fraction (= year + (month � 1)/12) was used as the first input neuron for the network trainings.

Introducing additional input neurons that characterize each cycle will facilitate the network’s learning of the
cycle extents (in time and SSN values). To this end, four additional input neurons were introduced to facilitate
the networks learning of the cycle extents as described below:

1. The peak of SSN for each cycle: This was introduced to facilitate the networks’ learning of the SSN profile
heights for each cycle.

2. The rise duration for each cycle: This was introduced to enable the networks’ learning of how long it takes
to reach the peak of SSN from the cycle onset.

3. The fall duration for each cycle: This was introduced to enable the networks’ learning of how long it takes
to reach the cycle end from the peak of SSN.

4. A normalized fractional value (which we shall refer to hereafter in this paper as the SC time index, τsc)
defined as given in equation (6).

τsc ¼ year fraction� start year
total duration of cycle

(6)

By this definition, τsc is constrained to have values in the range from 0 (at the beginning of the cycle) to 1 (at
the end of the cycle). At any instance in the cycle, τsc describes and provides an indication of the fraction of
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the cycle that has been completed. This input neuron is introduced to facilitate the neural network’s learning
of the SSN profile in a progression from the start of a cycle to the end of it. The neural network training
procedure is elucidated below:

1. A total of five input neurons were used, namely: the year fraction, the peak of SSN, the rise duration, the
fall duration, and the SC time index.

2. Before the trainings, we excluded data for the period of SC 24 from the training data set. This is because of
our intention to use the SC 24 data set as test data (to evaluate the performances of the networks after
their trainings).

3. A total of 50 neural networks were trained; the difference between them is in the number of hidden layer
neurons we applied (we varied the number of hidden layer neurons from 1 to 50). Using a larger number
of hidden layer neurons usually leads to better predictions (because the prediction errors will reduce) for
data within the range of the training data set. If however, the same network is used to predict data outside
the range of the training data set, the errors decrease, and then increase after a certain number of hidden
layer neurons. This scenario has been fully discussed later in this section. We define the best network as
the one that gives the least prediction error on forecasted data.

4. (a) Each of the trained networks were then used to predict the SSN values for SC 24, and by using corre-
sponding SSN observations for the cycle, we computed the RMSEs using the formula in equation (7).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ni¼1 predictioni � observationið Þ2

n

s
(7)

(b) We similarly used each of the trained networks to predict the SSNs at
the onset, peak, and end of SC 25. And by referencing corresponding
values calculated using the regression equations and the HR-NN, the var-
ious characteristics are obtained for SC-24 and 25, respectively, as shown
in Table 2.

(c) For each of the 50 trained networks, we computed the mean of the
RMSEs obtained in stages 4a and b. Figure 6 shows the mean of the
RMSEs vary with the changing number of hidden layer neurons. The mean
of the RMSEs for SSN provides performance of a network in forecasting the
SSNs for SCs 24 and 25. We found the least RMSE (~10.2) from the network
with 5 hidden layer neurons, and hence, we adopted this network.

Figure 6 shows a trend in which the mean of the RMSEs decrease as we
increase the number of hidden layer neurons from 1 to 5. And thereafter,
the mean of the RMSEs increase with increasing number of hidden layers.
This reveals that the network with five hidden layer neurons gives the least
prediction errors when used for forecasting. Oscillations in the graph are as
a result of random changes in the values of the RMSEs; the RMSEs could
get high if the optimization procedure for a neural network leads it to a

Table 2
Regression and HR-NN Predictions of SC 24 and SC 25 Properties

Method Start year Peak year End year
SSN
at start

SSN
at

peak
SSN

at end

Rise
duration
(years)

Fall
duration
(years)

Total
duration
(years)

Regression
(SC 24)

2,009.000 2,014.000 2,020.090 2.5 121.1 �0.5 5.000 6.090 11.090

HR-NN
(SC 24)

2,009.000 2,013.583 2,020.167 7.4 113.6 5.4 4.583 6.584 11.167

Regression
(SC 25)

2,020.250 2,025.043 2,031.266 1.0 132.0 1.1 4.793 6.222 11.015

HR-NN
(SC 25)

2,020.250 2,025.000 2,031.250 7.2 122.1 6.0 4.750 6.250 11.000
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Figure 6. Plot showing the variation of the forecasting errors with changing
number of hidden layer neurons.
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local minimum (rather than the global minimum). The result is that RMSEs
for such networks will be higher. The RMSEs will be lower when the opti-
mization procedure leads the neural network to the global minimum.

To investigate the effect of including the year fraction as an input node, we
trained two sets of neural networks that are similar in every way except
that one has the year fraction as an input node while the other does not.
We tested the networks using a test data set that comprised 15% of ran-
domly selected data which were excluded from the training set. For each
set, we trained 50 neural networks (that differ in the number of hidden
layer neurons). Figure 7 shows results of how the RMSEs vary with the
number of hidden layer neurons. Figure 7 shows that the network with
the year fraction included gave an improved performance in terms of
reducing the prediction error.

We also use Figure 7 (in comparison to Figure 6) to highlight the effect of
using a forecast test data set rather than a randomly selected data set. In
Figure 7 (where a randomly selected data set is used), the RMSEs generally
keep decreasing as the number of hidden layer neurons increase. This
trend suggests that using an excessive number of hidden layer neurons
will lead to an improved neural network; this is not correct because using

an excessive number of hidden layer neurons will cause the neural network to predict interpolated data so
well, whereas the prediction accuracy grows worse for extrapolated data. The randomly selected test data
set evidently contains data that are within the time-series range of the training data set. When the neural net-
works fit the training data set so well, they also fit the interpolated data well; this is especially because of the
smoothed SSN data used for the training. However, in using the forecast test data set (Figure 6), the predic-
tion errors are observed to decrease generally to an extent (around when the number of hidden layer neu-
rons is 5–9), and then to generally increase thereafter. Clearly, the figures do also demonstrate the
expectation that neural networks perform better on interpolated predictions than on extrapolated predic-
tions; this is why the RMSEs in Figure 6 are relatively higher than those in Figure 7. The scenario we explain
is rather one in which, including more number of hidden layer neurons (above some limits), causes the net-
works to more accurately fit interpolated data than it does for extrapolated data as discussed in Okoh
et al. (2015).

Training of the neural networks was done using the Bayesian regularization back-propagation algorithm
(Bayes, 1763; Laplace, 1812). The algorithm is implemented within the Levenberg-Marquardt optimization
(Levenberg, 1944) as it updates the weights and bias values according to the Levenberg-Marquardt
optimization (https://in.mathworks.com/help/nnet/ref/trainbr.html). The Bayesian regularization back-
propagation algorithm is admired for its robustness and has been shown to yield better results when com-
pared to standard back-propagation training algorithms (Aggarwal et al., 2005; Burden & Winkler, 2008).
We used the MATLAB programming for the development and implementation of the HR-NN model, and
the complete program has been made available at Mathworks Central (https://in.mathworks.com/matlab-
central/fileexchange/65686-sunspot-number-prediction-forecasting-via-a-hybrid-regression-neural-net-
work-based-model).

All the observed SSN data from SC 7 to 23 are used for the neural network training, and the data of SC 24 are
used for testing. The Bayesian regularization algorithm (which is used in this work) does not require a valida-
tion data set, as it has its own form of validation built into the algorithm and so no validation data set is used
in this work. The point of checking validation is to see if the error on the validation set gets better or worse as
training progresses, and the idea is to stop training if the error gets worse. However, the Bayesian error is not
just based on how well the model is performing on the data set; it is also based on how large the weights are.
The larger the weights, the higher the error. So throughout training, the Bayesian regularization algorithm
does not let the network explore larger weights, even though larger weights may lead to the global minimum
errors (Foresee & Martin, 1997; MacKay, 1992).

In the MATLAB implementation of this algorithm, the validation stops are disabled by default (Mathworks,
2018a). Normalization of the training data was done using the mapminmax processing function, which is
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Figure 7. Plot showing the variation of the prediction errors with changing
number of hidden layer neurons using a randomly selected test data set.
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default for the MATLAB Bayesian regularization training algorithm used in
this work. The mapminmax function normalizes the training data so that
inputs fall in the range [�1, 1] by mapping the minimum and the maxi-
mum values to �1 and 1, respectively(Mathworks, 2018b). For the year
fraction input node, we intentionally set the minimum and maximum
values to 1,818 and 2,031, respectively, to cover the time frame within
which the neural network can be used to for SSN predictions. Monthly
values of SSN were used for the neural network training, but the final
neural network model also allows prediction/forecasting of daily
SSN values.

4. Discussion
4.1. Predicting SC 24

Since the greater part of SC 24 has already been witnessed, it may not
seem significant to predict SSNs for the cycle. We, however, emphasize
that since we did not include data for SC 24 in the neural network training
data set, the neural network in this study was used to predict the SSNs for
SC 24 in a forecasting mode. And additionally, the neural network is actu-
ally used to forecast the SSNs for the remaining part of SC 24.

To predict SC 24, equations (2) to (5a) and (5b) were first used to derive the cycle properties as listed in Table 2.
The observed Ap index at the end of SC 23 (= 4.8 nT) was used as the precursor Ap index, and the observed
SSN (= 2.5) was used as the onset value of SSN for the cycle SC 24. Table 2 also summarizes the final SC 24
properties obtained from the HR-NNmodel. We found that the peak of SSN predicted by using the regression
method was 121.1, while the HR-NNmodel gave a value of 113.6. Whereas the observed peak value of SSN for
the cycle is 116.4 (see Table 1). Therefore, the regression prediction is about 5 units greater than the observa-
tion, while the HR-NN prediction is only about 3 units lower. Although the difference is not significant, the
scenario shows that the neural network procedure can be used to reduce over-shooting of the cycle peaks
as estimated using the regression equations.

Another striking feature to note in Table 2 is that the SSN at the end of SC 24 is predicted to be negative; by
definition, the SSN should always be positive, and at least zero. This is one example of shortfall in applying
regression techniques alone. This problem was taken care of in this work by applying hyperbolic tangent sig-
moid transfer functions during the neural network trainings. Transfer functions are used in neural network
trainings to compute next layer values from the previous layer values. The hyperbolic tangent sigmoid trans-
fer function or the log-sigmoid transfer function is usually used to avoid negative values in the output of a
neural network, especially in cases when the targets are bounded for a physical or mathematical reason
(Heath, 2014). This transfer function provided better predictions of the SSN profiles (in terms of shape and
prediction accuracy) than the log-sigmoid transfer function.

Figure 8 illustrates the comparison of predictions from the HR-NN model and the observations for SCs 7–24.
The values for SC 25 were forecasted (as explained in the next section) based on an estimated precursor Ap
index for the cycle as 5.6 nT. The RMSEs for predicting the peak and end values of SSNs for SCs 7–24 are 18.2
and 5.5, respectively, and for predicting the rise and fall durations are respectively 6 and 5 months. The max-
imum error observed in predicting the total duration was 7 months.

4.2. Forecasting SC 25: An Illustration

Again, we emphasize here that the predictions for SC 25 were strictly done for illustrative purpose; the pre-
cursor Ap index value was estimated to be 5.6 nT by investigating the mean rate of change of the Ap index
during the last 3 years of SCs 20 to 23 as follows. As the final minimum value of Apwill not be known until the
very solar minimum, we investigated the phases of SSN andmagnetic activity index (Ap) during years 1964 to
2017 as shown in Figure 9. The minima in geomagnetic activity tend to occur just after those for the SSN and
the geomagnetic activity tends to remain high during the declining phase of each cycle (Hathaway, 2015).
Feynman (1982) decomposed the geomagnetic variability into two components—one which is proportional
to and in phase with the sunspot cycle (relative SSN component) and the other out of phase with the sunspot
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Figure 8. Sunspot number observations and predictions for solar cycles 7–
24. Prediction of solar cycle 25 is illustrated based on an estimation of the
precursor Ap index value as 5.6 nT.
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cycle (interplanetary component). The author found a baseline level (with
5.38 as the intercept) of geomagnetic activity that increases with the
increase in the SSN. We found from Figure 3 that Ap index generally
decreases for 3 years during the end of the SCs with a rate of ~1.7 nT/yr.
Hence, considering our predicted end of cycle SC 24 to be in March
2020 and Ap index during March 2017 as 10.7 nT, we obtained the esti-
mated Ap index at the end of SC 24 as 5.6 nT (10.7 � [3 × 1.7 for 3 years]).
The onset value of SSN for the cycle was also arbitrarily assumed to 1,
which is the minimum it can be. More reliable predictions of the cycle
properties can be obtained when we know the actual precursor Ap index
value and the onset value of SSN. These values can only be known at the
end of SC 24. The parameters derived in this section are therefore strictly
for illustrative purpose.

Using the above mentioned assumptions, parameters for SC 25 are
derived using equations (2) to (5a) and (5b) as shown in Table 2. The para-
meters (year fraction, peak of SSN, rise duration, fall duration, and SC time
index) are further fed into the neural networkmodel to obtain the SSN pro-
file for SC 25 as illustrated in Figure 8. The HR-NN predictions in Figure 8

show that the peak of SSN for SC 25 will be about 122 and will occur in January 2025. Details of parameters
for SC 25 as predicted using the HR-NN model are summarized in Table 2.

As the value of the precursor Ap index may change from the estimated value of 5.6 nT, we use the HR-NN
model to simulate four other scenarios in which the precursor Ap index is varied in steps of 0.5 nT around
the 5.6-nT value; that is for cases where the precursor Ap indices are 4.6, 5.1, 6.1, and 6.6 nT. The results
are illustrated in Figure 10. The figure shows that variations in the precursor Ap index value will significantly
alter the SSN profile for the cycle. The SSN values at the cycle peaks are respectively 111, 117, 128, and 133 for
the four scenarios, and occur in the months of September 2024, January 2025, February 2025, and January
2025, respectively. The values show that the predicted peak of SC 25 changes by about 11 sunspots for every
1-nT change in the assumed precursor Ap index. Recently, Helal and Galal (2013) forecasted the SC 25 using
the precursor technique of spotless events and obtained maximum amplitude and time of rise to be 118.2
and 4.0 years, respectively. While their rise time is only about 9 months different from our value of4.75 years,
simulations from our HR-NNmodel indicate that the peak value of SSNwill agree with their value of ~118 only
if the precursor Ap index value gets as low as ~5.2 nT.

Recently, using the Advective Flux Transport code, Hathaway and Upton
(2016)simulated the evolution of the Sun’s polar magnetic fields from early
2016 to the end of 2019 (which is near the expected time of Cycle 24/25
minimum). They found that the average strength of the polar fields near
the end of Cycle 24 will be similar to that measured near the end of
Cycle 23, and so gave the indication that Cycle 25 will be similar in strength
to the current cycle. Similar results were obtained by Cameron et al. (2016)
using surface flux transport simulations for the descending phase of Cycle
24 and estimated the value of the dipole moment around year 2020 as
2.5 ± 1.1 G. They observed that this value is comparable to that observed
at the end of Cycle 23 (which is about 2 G), and they therefore suggest that
Cycle 25 will be of moderate amplitude, not much higher than that of the
current cycle. The conclusions from these physics basedmodels are similar
to the predictions from our neural network model, and so our method
offers a lightweight empirical method that is in agreement with the phy-
sics based models. By using some classical statistical relations among fea-
ture parameters of SC profiles, Li et al. (2015) predicted that the start of SC
25 will be in November 2019 and that the maximum amplitude of SC 25
will be 109.1 in October 2023. Table 3 (updated from Li et al., 2015) pre-
sents a summary of the predictions of the peak of SC 25 from other
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Figure 9. Plot of smoothed sunspot number an Ap index values from years
1964 to 2017.
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Figure 10. Sunspot number predictions for solar cycle C 25 using the Hybrid
Regression-Neural Network model with precursor Ap index values varied
from 4.6 to 6.6 nT in steps of 0.5 nT.
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previous studies. These predictions consistently indicate that the peak of
SC 25 will be moderate when compared to the peaks of the previous
cycles. And these results agree with that of the present study.

A major limitation for using the HR-NN model to make SSN predictions for
a given SC is that it relies on the precursor Ap index value, which can only
be measured at the end of the previous cycle. This means that the model
can be reliably used for predictions in a given SC only after the end of the
cycle. One way to overcome this limitation is to depend on reliable fore-
casts of the Ap index. At the moment, the Space Environment Prediction
Center, Center for Space Science and Applied Research (http://eng.sepc.
ac.cn/index.php) uses an autoregressive method to make 27-day forecasts
of the Ap index at http://eng.sepc.ac.cn/ApForecast.php. The short-term
nature of the forecasts, however, still places a limitation to the duration
over which the forecasted Ap indices are available. The highly erratic nat-

ure of geomagnetic activity has made long-term forecasting of the Ap index a challenging task, given the
present-day level of available data and information from space science studies.

5. Conclusions

The SSN is an important physical parameter that characterizes the solar activity, and efficient space weather
predictions require accurate forecasts of SSN. In this research work, a HR-NN model is presented for forecast-
ing SSN values for upcoming cycle 25 using precursor Ap. The method of regression is used to derive relation-
ships between various parameters of a SC, and then used to forecast parameters for the upcoming SCs. The
obtained parameters are further fed as inputs for a neural network procedure to obtain instantaneous predic-
tions of the SSN values.

The neural network procedure was recommended to harness the huge amount of SSN data available for
learning the SSN progression patterns over the SCs. And given their machine learning capabilities, the neural
networks are also able to automatically adjust the regression-derived SC properties using information they
learn from the training data. Five input neurons (year fraction, peak of SSN, rise duration, fall duration, and
SC time index) were used for the neural network training.

The HR-NN model was also used to forecast SSN values for the remaining part of SC 24 at a RMSE value of 3.5,
and to give indications of the expectations for SC 25. Forecasts by themodel show that total duration of SC 24
will be 11.167 years (±7 months), and the end of the cycle will be in March 2020 (± 7 months).

Using an estimated precursor Ap index of 5.6 nT for SC 25, we found the peak SSN ~122.1 (±18.2) of the cycle
to occur in January 2025 (±6 months) with a total duration of 11 years (±7 months). Further simulations of the
SSNs by varying the precursor Ap index between 4.6 and 6.6 nT showed that peak SSNs for SC 25 will change
by about 11 units for every 1-nT change in the assumed precursor Ap index.

The major limitation for the model is that it depends on the Ap index value at the end of one cycle to make
SSN predictions for the next cycle, and so reliable SSN predictions can be obtained at the end/onset of the
previous/upcoming cycles when the precursor Ap index values have been measured.
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