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Abstract The work presented here aims to evaluate the capabilities of Multi-Instrument Data Analysis
System (MIDAS) compared with artificial neural networks (ANNs) to reconstruct storm-time total electron
content (TEC) over the African low-latitude and midlatitude regions. For MIDAS, the inversion was done
based on the Global Positioning System (GPS) measurements from receiver stations extending from
−30∘ to 36∘ in latitude and 30∘ to 44∘ in longitude while for ANNs, individual storm-time models based
on historical GPS data from receivers within the same region covered by MIDAS were used. Based on
the minimum Dst index reached during the storm period, moderate (−50 nT ⩾ Dst > −100 nT), strong
(−100 nT ⩾ Dst > −200 nT), and severe (−200 nT ⩾ Dst > −350 nT) storms were used for validation.
MIDAS and ANNs results were compared with IRI-2016 predictions and validated with real GPS TEC
observations. A statistical analysis revealed that MIDAS and ANNs provide comparable results in storm-time
TEC reconstruction with average mean absolute errors of 4.81 and 4.18 TECU respectively. However, MIDAS
performed better compared to ANNs in following TEC enhancements and depletions as well as short-term
features observed during the selected storm periods. In terms of latitude, it was found that on average,
MIDAS performs 13% better than ANNs in the African midlatitude, while ANN model performs 24% better
than MIDAS in low latitudes. Furthermore, comparisons with IRI predictions showed that both MIDAS and
ANNs produce more accurate estimations of the storm-time TEC than IRI model.

1. Introduction

The ionospheric electron density varies due to a mixture of complex mechanisms that modify temporal and
spatial distributions of ionized particles such as changes in solar radiation intensity, interaction of interplan-
etary and geomagnetic fields, and the atmospheric dynamics (Mitchell & Spencer, 2003). The state of the
ionosphere becomes more complicated during geomagnetic storms since the ionospheric electron density is
redistributed due to electric field perturbations and induced currents in the ionosphere (Tsurutani et al., 2004,
2006), and other mechanisms such as neutral winds (Fesen et al., 1989), expansion of the equatorial ionisation
anomaly (Tsurutani et al., 2004), large-scale traveling ionospheric disturbances (Borries et al., 2009), and neu-
tral composition changes (Prölss, 1980). It is known from the literature that equatorward meridional neutral
winds and associated traveling ionospheric disturbances are responsible for positive ionospheric response.
At high latitudes, a storm-induced surge in meridional winds forces ionized particles to move upward to
a region of lower recombination rate resulting in an increase in electron density and, hence, in total elec-
tron content (TEC) (Fuller-Rowell et al., 1994). Another cause of positive ionospheric response is prompt
penetration electric field, which lifts dayside equatorial and near-equatorial ionosphere to higher altitudes
where the recombination rate is lower (Tsurutani et al., 2004). Enhanced eastward electric field increases
the fountain effect (superfountain effect), which can expand towards midlatitude resulting in TEC enhance-
ment (Tsurutani et al., 2004). Conversely, changes in neutral gas composition have been listed among the
causes of negative storm effects (Tsurutani et al., 2004). Recent studies have shown that a decrease in TEC
observed during midlatitude storms correlated well with a decrease in O/N2 ratio (Habarulema et al., 2013;
Katamzi & Habarulema, 2014).
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For the benefits of the scientific community, ionospheric tomography and modeling are of high importance
for radio communication and satellite navigation for their role in understanding spatial distribution of the
electron concentration and short-term temporal variations in the ionosphere (Chartier et al., 2014; Ercha et al.,
2015). The ionospheric TEC and electron concentration are good indicators of the morphology of the iono-
sphere and can therefore be used for ionospheric studies and satellite applications (Mitchell & Spencer, 2003).
There exist a number of studies related to ionospheric tomography imaging based on an inversion algorithm,
namely Multi-Instrument Data Analysis System (MIDAS; Chartier et al., 2014; Dear & Mitchell, 2006; Giday et al.,
2016; Jayawardena et al., 2016; Materassi & Mitchell, 2005; Meggs et al., 2005; Mitchell & Spencer, 2003; Muella
et al., 2011; Rose et al., 2014; Yin et al., 2004). Using data from a network of GPS receivers over the U.S. midlati-
tudes, it has been proven that MIDAS can produce images of electron concentration and TEC during extreme
geomagnetic conditions (Kp = 9) that are in good agreement with observations (Yin et al., 2004). The max-
imum electron density of the F2 layer (NmF2) and peak height (hmF2) obtained from MIDAS reconstruction
using data from GPS receivers within South Africa have shown good agreement with the ionosonde measure-
ments (Giday et al., 2016). The authors further showed that MIDAS provides more accurate estimates of NmF2

than IRI model while the reverse was noticed for hmF2. With respect to the NmF2 values extracted from MIDAS
reconstruction during geomagnetic storms, it was found that MIDAS performs well for some storms while for
others, relatively high deviations were observed (Giday et al., 2016). For the European and North American
regions, a good agreement between the reconstructed TEC by MIDAS and IRI with observations was observed
despite some discrepancies for some periods of solar activity between 1998 and 2009 (Chartier et al., 2012).
MIDAS has also been applied to generate electron density and TEC maps for the equatorial ionosphere over
the South America using data from GPS receivers distributed throughout the region of interest (Materassi &
Mitchell, 2005). These examples therefore demonstrate that MIDAS has been validated in low-latitude and
midlatitude regions.

MIDAS ionospheric tomographic imaging results were mainly focused on the midlatitudes (Chartier et al.,
2012; Dear & Mitchell, 2006; Giday et al., 2016; Meggs et al., 2005; Rose et al., 2014; Yin et al., 2004). The few
works that are related to ionospheric imaging for the low-latitude region were done for geomagnetically quiet
conditions (Chartier et al., 2014; Materassi & Mitchell, 2005; Muella et al., 2011). MIDAS is a general package
that provides a time varying 3-D image of the ionosphere. However, the parameters and methods of inversions
in the setup of MIDAS need to be fine-tuned and adapted to different latitude regions. Therefore, validating
and adapting MIDAS algorithm in the African low latitude and midlatitude is needed so as to offer the space
weather community more alternatives to characterize the ionosphere, since the African region has limited
research infrastructures and in this case, ground-based Global Navigation Satellite System receivers. This is
particularly important for the African low-latitude ionosphere characterized by high TEC gradients (even more
pronounced during geomagnetic storms) as result of a mixture of complex electrodynamic mechanisms (Tsu-
rutani et al., 2004), and double transport of ionized particles caused by horizontal neutral winds and fountain
effect (Fesen et al., 1989).

On the other hand, artificial neural networks (ANNs) technique has intensively been applied in modeling
of some ionospheric parameters such as TEC (Acharya et al., 2011; Leandro & Santos, 2007; Ma et al., 2005;
Maruyama, 2007; Ratnam et al., 2012; Tulunay et al., 2004) and ionospheric critical frequency of F2 layer,
foF2 (Cander, 1998; McKinnell & Poole, 2004; Oyeyemi et al., 2006; Poole & McKinnell, 2000). Most of these
studies reported a good agreement between the actual data and ANN model predictions. Comparative TEC
results in low latitudes showed superior performance of ANN models over the IRI model (Okoh et al., 2016;
Watthanasangmechai et al., 2012). A similar observation was reported for the African midlatitude region when
evaluating the performance of ANNs and IRI during geomagnetically quiet conditions (Habarulema et al.,
2007, 2009) and geomagnetic storms (Habarulema et al., 2010). Recently, when ANN and empirical orthog-
onal function (EOF) models were applied to storm-time TEC modeling for a midlatitude station (Sutherland
[SUTH]: 32.38∘S, 20.81∘E; South Africa), findings showed that ANN results agree with observations better than
EOF predictions (Uwamahoro & Habarulema, 2015). Overall, ANN model has been reported to perform bet-
ter than other storm-time TEC models such as IRI and EOF (Habarulema et al., 2007, 2009; Okoh et al., 2016;
Uwamahoro & Habarulema, 2015; Watthanasangmechai et al., 2012).

Although MIDAS and ANNs have separately been tested under both geomagnetically quiet and dis-
turbed conditions, no study has compared their performances relative to each other over various latitudes
(low-latitude and midlatitude regions). In this perspective, the main objective of this paper is to statistically
evaluate, for the first time, the capability of MIDAS compared with ANNs to reconstruct storm-time TEC over
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Figure 1. Calibrated (top panels) and uncalibrated (bottom panels) TEC over Nazret (NAZR, 8.57∘N, 39.29∘E, 0.25∘S
geomagnetic), by taking into account cycle slips, satellite, and receiver biases for quiet (16 March 2015, Figure 1a) and
disturbed (16 March 2015, Figure 1a) days. Red and green lines show the average vertical TEC over all satellites and
vertical TEC from individual satellite, respectively. TEC = total electron content.

the African low-latitude and midlatitude regions. Additionally, MIDAS and ANN results are compared with
IRI-2016 TEC predictions.

A study like the one presented in the current work, which compares different modeling/reconstructing
techniques of the ionospheric TEC during geomagnetic storms, is important for future improvements in iono-
spheric modeling. Evaluation of how much percentage and under which circumstances a model is more
accurate with respect to another is a contribution towards the efforts that should be made to implement a
more efficient optimization algorithm for storm-time TEC modeling/reconstruction. This study is particularly
useful for the IRI community considering the fact that, since its establishment, the IRI model has continuously
been improved and is still being updated as new data and more accurate models become available.

2. Data
Storm-time TEC considered as observations (GPS TEC) were derived from RINEX (Receiver INdependent
EXchange) records using a software developed at Boston College (Seemala & Valladares, 2011), which allowed
us to get both slant and vertical TEC (VTEC). For a specific time of the day, TEC values for different satellites
were averaged to get TEC at that time. The cutoff satellite elevation angle was limited to 20∘ in order to reduce
multipath effects. It is well known that during TEC derivation from GPS records, some errors are introduced.
Possible sources of errors are due to instrumental biases, mapping function, and assumptions made during
different steps involved in TEC derivation (Ho et al., 1997). The GPS TEC software used in this study reads the
GPS raw data from RINEX files and calculates phase and code TEC values along with corresponding eleva-
tion and azimuth angles of the satellite(s) for the epochs and then estimates biases as briefly described in the
following steps.

A single shell mapping function (Langley, 2002; Mannucci et al., 1993) is used to calculate the VTEC assuming
an ionospheric pierce point height of 350 km (Rama Rao et al., 2006). Cycle slips in the phase TEC are corrected
arithmetically by computing the difference between successive TEC values and comparing them with the
mean difference of the last 20 values. This helps to reduce any noise at the start of data epoch or for low
elevation angle. If the difference of the phase TEC at current epoch (TECPi) to the previous value (TECPi−1) is
greater than 4 times the mean difference or 2 TEC units (TECUs) (considered for 30-s RINEX data), then the
presence of a cycle slip (CS) is identified. The CS is then defined as CS = TECPi − TECPi−1+ previous mean
difference. And from the values there on, this cycle slip is corrected as TECPi = TECPi − CS.

After the cycle slip correction, the phase TEC is leveled to the code TEC to get absolute TEC
without integer ambiguity. The differential satellite bias corrections published by University of Bern
(ftp://ftp.unibe.ch/aiub/CODE/) are used to remove satellite biases. The differential receiver bias is assumed to
be constant for the current data set (daily RINEX file data) and solved using the least squares method. A range
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Figure 2. Global Positioning System ray traces at IPP altitude for five and half hours worth of observation data, on (a) 6
March 2012, (b) 18 February 2014, (c) 16 March 2015, and (d) 24 October 2016. The Global Positioning System ground
station code names (written in magenta and marked with smaller red dots) from which usable observation data for the
inversion is obtained are listed along with the IPPs. Also, the stations whose code names are written in blue and marked
as bigger dots (magenta) are used for validation only. The central time window is 12:00 UT. IPP = ionospheric pierce
point.

of bias values for different satellites is added to the slant TEC (STEC), which is then used to calculate VTEC.
Using the simple least squares method, the best bias value is selected. In this method, we check differences or
error minimization using a range of possible bias values (e.g., from −300 to +300 TECUs in steps of 0.1 TECU),
each of which is added to STEC and then VTEC is calculated. The resultant VTEC for the entire data set for this
range of biases are checked for minimized difference against average diurnal TEC. The bias value that gener-
ated the minimum difference is then taken as the receiver bias for that day. The procedure is repeated for all
days and final biases are added to STEC followed by the recalculation of final VTEC by the GPS TEC software.
Figure 1 shows a typical example of the difference between calibrated (top panels) and uncalibrated (bot-
tom panels) TEC over Nazret (NAZR, 8.57∘N, 39.29∘E, 0.25∘S geomagnetic), Ethiopia, by taking into account
cycle slips, satellite, and receiver biases for quiet (16 March 2015, Figure 1a) and disturbed (16 March 2015,
Figure 1b) days, using an elevation threshold of 20∘. The green and red curves represent VTEC from individual
PRNs and the average TEC, respectively.

The GPS-TEC software used in this study has been compared with other techniques such as the one presented
in Ciraolo et al. (2007) along side the European Geostationary Navigation Overlay System (EGNOS) algorithm

UWAMAHORO ET AL. 1331



Radio Science 10.1029/2017RS006499

Table 1
Geographic (GLat & GLon) Coordinates and Magnetic Latitudes (MLA) of the Ground Receiver
Stations Used for the Development (Showed With ∗) and Validation of ANN Models

Station name Station ID Country GLat (∘) GLon (∘) MLA (∘)

Debarek DEBK Ethiopia 13.15 37.89 6.21

Sheb∗ SHEB Eritrea 15.85 39.05 9.71

Nazret∗ NAZR Ethiopia 8.57 39.29 0.78

Addis Ababa ADIS Ethiopia 9.04 38.77 1.28

Moiu∗ MOIU Kenya 0.29 35.29 −10.52

Tete∗ TETE Mozambique −16.15 33.58 −33.01

Zomba ZOMB Malawi −15.38 35.33 −31.45

which was taken as a reference (Abe et al., 2017). Generally, both softwares are consistent with EGNOS algo-
rithm but the GPS-TEC software was found to be closer to EGNOS in low latitudes. On the other hand, the
technique described in Ciraolo et al. (2007) was more accurate in mid latitudes, in estimating TEC derived from
the EGNOS algorithm. It is worth noting that the same GPS-TEC software used in the current work has exten-
sively been used to derive TEC in different studies that involved TEC computation (Adewale et al., 2011; Akala
et al., 2013; Matamba et al., 2015; Olwendo et al., 2012; Seemala & Valladares, 2011).

For MIDAS, TEC reconstruction was done based on GPS measurements from receiver stations within −30∘ to
36∘ latitude and 30∘ to 44∘ longitude. The reason for selecting this region for the inversion technique is based
on data availability that covers both African low latitude and midlatitude. Figure 2 shows the positions of GPS
ground receiver stations used for the inversion (shown in small red dots) and GPS ray traces at the ionospheric
pierce point (IPP) altitude of 350 km. Also listed for each storm period are code names of GPS receiver stations
used for the inversion (magenta) and validation (blue). The GPS stations used for validation (listed in blue
and shown with large magenta dots in Figure 2) were not used during the inversion to make validation data
independent.

For TEC modeling, individual ANN models were developed based on historical storm-time TEC data, the storm
criterion being Dst ⩽ −50 nT. Storm-time TEC data used to implement ANN models were derived from GPS
measurements over receiver stations representing midlatitude: Tete (TETE, 16.15∘S, 33.58∘E; 26.94∘S geomag-
netic), Mozambique; low latitude: Moiu (MOIU, 0.29∘N, 35.29∘E; 9.17∘S geomagnetic), Kenya; Nazret (NAZR,
8.57∘N, 39.29∘E, 0.25∘S geomagnetic), Ethiopia; and Sheb (SHEB, 15.85∘N, 39.05∘E; 7.36∘N geomagnetic),
Eritrea. Due to the lack of data specifically for ANN model development, the African midlatitude in the north-
ern hemisphere was not part of this study. Four geomagnetic storm periods were selected to evaluate MIDAS,
ANN, and IRI capabilities to reconstruct/predict storm-time TEC. The selected validation periods were chosen
in different stages of solar cycle: 6–13 March 2012 and 18–24 February 2014, 16–22 March 2015, and 24–30
October 2016, for high, moderate, and low solar activity periods, respectively. For independent validation
data, the four validation storms periods were excluded in databases used to develop ANN models. In the case
of missing data for some of the storm periods selected, the closest stations such as Addis Ababa (ADIS, 9.04∘N,
38.77∘E; 0.18∘N geomagnetic), Ethiopia; Zomba (ZOMB, 15.38∘S, 35.33∘E; 26.07∘S geomagnetic), Malawi; and
Debarek (DEBK, 13.15∘N, 37.89∘E; 4.32∘N geomagnetic), Ethiopia, were used for NAZR, TETE, and SHEB, respec-
tively. Note that it has been demonstrated that a model developed at one station can be validated over
any other location within a latitudinal and longitudinal coverage of 8.7∘ and 10.6∘, respectively (Uwamahoro
& Habarulema, 2015). Table 1 shows geographic coordinates and magnetic latitudes (MLAs) (tan(MLA) =
0.5 × tanI) of GPS ground receiver stations considered to develop and validate ANN models. For each station,
the magnetic inclination I used to compute MLA was obtained from the International Geomagnetic Reference
Field model. Maximum Kp and minimum Dst values reached during the selected validation storm periods as
well as the storm classification based on the National Oceanic and Atmospheric Administration Space Weather
Scales available at http://www.swpc.noaa.gov/noaa-scales-explanation and according to Loewe and Prölss
(1997) are presented in Table 2. For each station considered for validation, IRI TEC data were obtained by run-
ning the online IRI-2016 model available at https://omniweb.gsfc.nasa.gov/vitmo/iri2016_vitmo.html, with
NeQuick as topside option and STORM option on. It is also important to mention that IRI model provides TEC
values up to the altitude of 2,000 km (Chartier et al., 2012; Habarulema & Ssessanga, 2017).
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Table 2
Classification of the Selected Storm Periods Based on Kp (NOAA Space Weather Scales) and Dst (Loewe & Prölss, 1997)

Maximum Classification Minimum Classification

Storm period Solar activity Kp (NOAA) Dst (nT) (Loewe & Prölss, 1997)

06–13 March 2012 High 8 Severe −145 Strong

18–24 February 2014 High 6 Moderate −116 Strong

16–22 March 2015 Moderate 8 Severe −223 Severe

24–30 October 2016 Low 6 Moderate −64 Moderate

Note. NOAA = National Oceanic and Atmospheric Administration.

3. TEC Reconstructing Techniques
3.1. MIDAS
Due to the dispersive nature of the ionosphere, dual-frequency radio signals transmitted from a GPS satellite
experience differential phase changes, which are directly proportional to TEC between a satellite and receiver
(Davies, 1990; Jayawardena et al., 2016; Yin et al., 2004). MIDAS is an inversion method that uses differen-
tial phase measurements of STEC as input data and computes the ionospheric electron density (Yin et al.,
2004). For the ionospheric tomography, the region of the ionosphere that is required to be imaged is subdi-
vided into three-dimensional elements, called voxels, which are bounded in latitude, longitude, and altitude
(Bust et al., 2007; Mitchell & Spencer, 2003). In the current study, the African region within −30∘ to 36∘ lat-
itude and 30∘ to 44∘ longitude was considered during inversion, with voxel elements defined by a grid of
2∘ latitude × 2∘ longitude, and altitude range of 100 to 1,200 km in steps of 40 km. STEC used as input to
MIDAS is an integrated quantity along the satellite-receiver signal path, and thus, ray path elements inter-
cepting within a given voxel contain some plasmasphere contribution. It is therefore likely that an unknown
amount of plasmaspheric TEC is included at ionospheric heights during reconstructions (Chartier et al., 2012;
Kinrade, 2013). Since the matrix of ray path elements is rectangular and therefore can not be directly inverted,
a set of orthonormal basis functions and an appropriate mapping matrix are required to perform the inver-
sion (Mitchell & Spencer, 2003). The introduction of basis functions permits the representation of temporal
and spatial distributions of the ionospheric electron density separately. The set of EOFs can be generated
from ionospheric models such as IRI and Chapman functions (Mitchell & Spencer, 2003; Yin et al., 2017), and
the latter was used in the current work. MIDAS uses observation data from a user-defined time window cen-
tered at the time of the inversion. However, depending on the choice of the length of the time window, which
translates into the amount of observation data ingested in each time step of the inversion process, the final
output may vary. Short temporal variations may not be captured when a wide time window is used but also
the amount of observation data that goes into the inversion matters. Therefore, a compromise needs to be
made between the amount of observation data that goes into a single run for a single solution and width of
the time window. In a region of sparse GPS receivers such as the one considered in this study, shorter time
windows mean less observation data for the inversion. Thus, observations from a sliding time window of 5.5 hr
(shown in Figures 2a–2d) was used in the inversion to obtain electron densities at every 30 min interval. Also a
nonlinear optimization method was used to produce the results presented in this study since it has an advan-
tage of avoiding negative values of electron density. VTEC from MIDAS was computed by vertical integration
of the electron density obtained following the above procedure. Detailed theory about MIDAS can be found
in a number of literature sources (Bust et al., 2007; Jayawardena et al., 2016; Meggs et al., 2005; Mitchell &
Spencer, 2003; Spencer & Mitchell, 2007; Yin et al., 2017) and references therein. For more information about
the recent MIDAS algorithm used in this study, readers are referred to Spencer and Mitchell (2007), Giday et al.
(2016), and Yin et al. (2017).

3.2. ANNs
In the context of modeling, presentation of known inputs and outputs to an ANN allows it to learn the under-
lying relationship between the two data sets and later generalizes to estimate the desired output (McKinnell &
Poole, 2004; Oyeyemi et al., 2006). The information processing is performed within computational units called
neurons or nodes, and signals are transmitted from one neuron to another through connection links (Fausett,
1994). For each connection link, there is an associated weight that strengthens inputs in such a way that the
higher the weight multiplied by a given input, the stronger that input will be (Fausett, 1994). Each neuron is
characterized by its internal state also known as its activation or activity level, which is defined as a function
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Figure 3. Variation of RMSE between Global Positioning System TEC observations and ANN predictions with number of
hidden nodes for validation storm periods. RMSE = root-mean-square error; TEC = total electron content; ANN = artificial
neural network.

of inputs received by that same neuron (Fausett, 1994). The main task of the activation function is to limit the
amplitudes of the output signals of neurons (Haykin, 1994). When neurons are regarded as grouped in differ-
ent layers, an ANN can have input, hidden, and output layers (Fausett, 1994; Haykin, 1994). Depending on the
number of layers of connection links available in an ANN, the later is termed single-layer (one layer) or multi-
layer (several layers; Fausett, 1994; Haykin, 1994). When there are no loops in an ANN, the information flow is
performed in a forward direction, and thus, the output from one layer does not affect that same layer. Such a
network is called feed-forward neural network (FFNN) (Fausett, 1994; Haykin, 1994).

The FFNN was used in the current TEC modeling. The selection of modeling inputs was done based on fac-
tors that influence TEC variability such as diurnal, seasonal, annual and semiannual variations, and solar and
geomagnetic activities (Ercha et al., 2012; Habarulema et al., 2007). Diurnal variation is represented by time
of the day t, while day number of the year d represents annual, semiannual, and seasonal variations of TEC.
Previous studies (Habarulema et al., 2007; McKinnell & Poole, 2004; Oyeyemi et al., 2006; Poole & McKinnell,
2000) recommended that to achieve accurate results, the time of the day and day number of the year should
be decomposed into cosine and sine components of time (tc, ts) and day (dc, ds) as follows:

tc = cos
(2𝜋 × t

24

)
, ts = sin

(2𝜋 × t
24

)
(1)

dc = cos
( 2𝜋 × d

365.25

)
, ds = sin

( 2𝜋 × d
365.25

)
. (2)
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Table 3
ANN Architectures, Data Coverage Periods, and Number of Data Points Within
Data Sets Used to Develop ANN Models

Station Architecture Period Number of data points

SHEB 8-11-1 2004–2016 178,946

NAZR 8-14-1 2007–2016 206,162

MOIU 8-15-1 2008–2016 224,491

TETE 8-15-1 2011–2016 178,258

The above decomposition also gets rid of unrealistic trends sometimes observed at midnight (Poole &
McKinnell, 2000). Such unrealistic trends are not related to the physics around midnight but rather to inap-
propriate treatment of continuity at midnight. The solar activity was represented by the modified solar flux
index F10.7p = (F10.7 + F10.7A)∕2, where F10.7 is the daily solar flux index at a wavelength of 10.7 cm, and F10.7A,
the 81-day running mean of F10.7. Planetary 3-hr ap index, auroral electrojet index AE (5-min time resolution),
and the symmetric disturbance field in the horizontal component of the Earth’s magnetic field H (5-min time
resolution), symH, were all used during storm-time TEC modeling to globally represent different geomagnetic
activity contributors to TEC variability at a latitudinal scale. The number of input neurons was therefore eight
as defined by eight different inputs—tc, ts, dc, ds, F107p, ap, AE, and symH—whereas there was one out-
put neuron corresponding to the modeled parameter, TEC. For a specific station, the ANN architecture used
during training was determined by first selecting the number of hidden neurons that corresponds to the
minimum error. This task was performed based on root-mean-square error (RMSE) defined by the formula

RMSE =

√√√√ 1
N

N∑
i=1

(TECrec − TECobs)2 (3)

where TECrec and TECobs are the reconstructed/predicted and observed TEC, respectively, and N is the number
of observations. For each location, the network was trained by varying the number of hidden neurons from
6 to 20 (range selected randomly), followed by computation of the RMSE between the observed and the
reconstructed/predicted TEC when ANN models are tested on validation data sets. Figure 3 illustrates the
variation of RMSE with number of hidden neurons for different locations.

It is clear from Figure 3 that 15, 14, 11, and 15 hidden neurons were used for MOIU, NAZR/ADIS, SHEB/DEBK,
and TETE/ZOMB, respectively, because they provided the lowest RMSE over the validation period. Therefore,
the corresponding architectures (which gave minimum RMSE values) considered for TEC reconstruction by
ANN are 8-15-1, 8-14-1, 8-11-1, and 8-15-1. The amount of data used for the development of ANN models and
the fact that TEC varies with latitude differently, are likely the main reasons of different ANN architectures.
Table 3 shows the selected architectures, data coverage periods, and number of data points within data sets
used to develop ANN models.

FFNNs with Levernberg-Marquardt backpropagation algorithm were used during training in the current work.
Such type of configuration is preferred especially the training algorithm that is well known for its time saving
while implementing the input-output mapping process (Jang et al., 1997) and has previously been applied
to quiet and storm-time TEC modeling over the South African midlatitude region (Habarulema & McKinnell,
2012; Uwamahoro & Habarulema, 2015).

4. Results
For each validation storm period the intensity and the occurrence time of the storm are shown by Dst and Kp
indices. Figure 4 shows validation results from MIDAS, ANN, and IRI-2016 models along with GPS TEC obser-
vations for storms that occurred during high solar activity period, between 06 and 13 March 2012. The last
panel of Figure 4 shows Dst and Kp indices, which indicate that the 6–13 March 2012 storm period consisted
of a succession of storms with different intensities. For the entire storm period and for all stations, MIDAS
reconstructs the storm-time TEC well and short-term features are accurately captured. Similarly, ANN model
reconstructed TEC well for almost the entire storm period except some overestimations observed during day-
time on 8 March 2012 for DEBK, ADIS, and MOIU. In contrast to what was observed for MIDAS and ANNs, IRI
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Figure 4. Comparison of the observed and reconstructed TEC for the storm period of 6–13 March 2012. GPS = Global Positioning System; TEC = total electron
content; ANN = artificial neural network; MIDAS = Multi-Instrument Data Analysis System.

model shows large daytime underestimations of GPS TEC for the entire storm period specifically for DEBK and
ADIS. While for DEBK and ADIS the RMSE values between IRI predictions and observations are about 9.83 and
15.69 TECU, IRI model provides more accurate predictions for MOIU and TETE with respective RMSE values of
8.77 and 8.17 TECU. However, some discrepancies dominated by underestimations and overestimations for
MOIU and TETE, respectively, are observed specifically during daytime.

Figure 5 is similar to Figure 4 but for the storm period of 18–24 February 2014 and stations DEBK, NAZR, MOIU,
and TETE. The 18–24 February 2014 storm period consisted of a sequence of storms as indicated by Kp ⩾ 4 or
Dst ⩽ −50 nT. It can be seen from Figure 5 that MIDAS TEC agrees well with observations for NAZR and TETE.
However, remarkable discrepancies mainly dominated by daytime overestimations are seen for DEBK and
MOIU. What can also be noticed is the MIDAS good capability to capture short-term variations of the observed
TEC and follow the TEC depletion over MOIU on 20 February 2014. ANN model estimates the observed TEC
accurately in spite of some clear deviations on 19 February 2014 for DEBK, NAZR, and MOIU and on 23 Febru-
ary 2014 for DEBK. Except on 20 February 2014 where a good performance of IRI model in estimating the
storm-time TEC magnitude is noticed for TETE and MOIU, IRI underestimates daytime TEC magnitude for the
entire storm period.

Figure 6 presents MIDAS, ANN, and IRI results along with observations over DEBK, NAZR, MOIU, and TETE
stations during the storm period of 16–22 March 2015. As indicated by the minimum Dst (−223 nT) and maxi-
mum Kp (of about 8) indices, the 16–22 March 2015 storm period consisted of one severe storm. The storm had
a very long recovery phase that lasted for about 5 days as shown by Dst index below −50 nT for a prolonged
time. Both MIDAS and ANNs reconstruct TEC accurately over all stations although for some days, daytime
overestimations and underestimations are observed for DEBK and MOIU. TEC enhancement observed over
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Figure 5. Comparison of the observed and reconstructed TEC for the storm period of 18–24 February 2014. GPS = Global Positioning System; TEC = total
electron content; ANN = artificial neural network; MIDAS = Multi-Instrument Data Analysis System.

TETE on 17 March 2015 is well followed by MIDAS when compared with ANNs. The IRI model mainly under-
estimates TEC during daytime for the entire storm period for DEBK and NAZR and some days for MOIU, while
relatively small overestimations are observed over TETE.

What is illustrated in Figure 7 are GPS TEC observations over DEBK, ADIS, MOIU, and ZOMB stations along with
MIDAS, ANN, and IRI results, for a sequence of moderate geomagnetic storms that occurred between 24 and
30 October 2016. Except on 30 October 2016 where daytime overestimation is observed, MIDAS makes accu-
rate estimations of TEC for DEBK, MOIU, and ZOMB for the rest of the storm period. The TEC depletion observed
on 26 October 2016 over DEBK, MOIU, and ZOMB is also well captured by MIDAS. However, MIDAS underes-
timates daytime TEC over ADIS for almost the entire storm period. On the other hand, ANN model estimates
the magnitude of TEC accurately for DEBK and MOIU but fails to capture the depletion observed on 26 Octo-
ber 2016. For ADIS and ZOMB, daytime TEC is underestimated for almost the entire storm period. Except on
26 October 2016 where the TEC depletion observed over the four stations is not seen by the IRI model, for the
rest of the storm duration IRI predictions are in good agreement with observations specifically for DEBK and
MOIU. However, for ADIS, daytime TEC magnitude is underestimated for some days, while for ZOMB an over-
estimation is observed throughout the storm period. The common characteristics for the three methods used
for storm-time TEC reconstructions are their high accuracy in early morning and sometimes around midnight
hours, and where overestimations/underestimations exist, these are generally observed during daytime.

To be able to determine which model/technique between MIDAS, ANNs, or IRI does better in reconstruct-
ing the storm-time TEC over different African latitude regions, a statistical analysis was done based on the
mean absolute error (MAE) and Pearson’s correlation coefficient between the observed and reconstructed
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Figure 6. Comparison of the observed and reconstructed TEC for the storm period of 16–22 March 2015. GPS = Global Positioning System; TEC = total electron
content; ANN = artificial neural network; MIDAS = Multi-Instrument Data Analysis System.

TEC. Starting from the definition of the absolute error (AE; Habarulema et al., 2007; Leandro & Santos, 2007):

AE = |TECrec − TECobs|, (4)

MAE is given by (Mitchell & Spencer, 2003; Willmott & Matsuura, 2005)

MAE = 1
N

N∑
i=1

|TECrec − TECobs| (5)

where N is the number of observations. MAE represents the average of the vertical distances between the
observed and predicted quantities and has been proven to be a good parameter to use over the RMSE in
assessing the performance of a model (Willmott & Matsuura, 2005). Correlation coefficients were computed
using the following formula in Suhov and Kelbert (2005):

R =
cov(TECobs, TECrec)

𝜎obs𝜎rec

=
∑N

i=1(TECobsi
− TECobs)(TECreci

− TECrec)√∑N
i=1(TECreci

− TECrec)2
√∑N

i=1(TECobsi
− TECobs)2

.

(6)

where cov(TECobs, TECrec) represents the covariance between the observed (TECobs) and reconstructed TEC
(TECrec), 𝜎rec and 𝜎obs are standard deviations of the reconstructed and observed TEC, respectively. TECobsi

and

TECreci
represent the ith observation and the corresponding reconstructed TEC, while TECobs and TECrec are

the mean values of the observed and reconstructed TEC, respectively.
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Figure 7. Comparison of the observed and reconstructed TEC for the storm period of 24–30 October 2016. GPS = Global Positioning System; TEC = total electron
content; ANN = artificial neural network; MIDAS = Multi-Instrument Data Analysis System.

Figure 8 shows the calculated MAE values (left panels) and correlation coefficients (right panels) for all val-
idation storm periods. For the storm periods of 6–13 March 2012 and 24–30 October 2016, smaller values
of MAE generally found for MIDAS reveal that, on average, MIDAS reconstructs storm-time TEC better than
ANN and IRI models. In contrast, for 18–24 February 2014 and 16–22 March 2015 storm periods, ANN model
shows higher accuracy, on average. Except for TETE where MAE values for IRI model are comparable with the
values obtained for ANNs specifically for the storm period of 18–24 February 2014, MAE values for IRI model
are higher for all other cases. This indicates that IRI model is not as good as MIDAS and ANN techniques in
making accurate storm-time TEC reconstructions. A similar observation was highlighted in previous works
that compared MIDAS reconstructions with IRI predictions (Chartier et al., 2012; Giday et al., 2016), and ANN
estimations with IRI predictions (Habarulema et al., 2007, 2009; Okoh et al., 2016; Watthanasangmechai et al.,
2012). The underestimation of TEC by IRI model compared to MIDAS and ANN can be attributed to difference
in altitude ranges TEC is estimated (Chartier et al., 2012; Habarulema & Ssessanga, 2017; Kenpankho et al.,
2011). IRI model does generate TEC for the altitude range 60–2,000 km and the contribution of the plasma-
sphere is therefore not fully taken into account in IRI model. In contrast, it is worth noting that the input for
MIDAS include GPS ray paths that contain information of the plasmasphere (Chartier et al., 2012). Similarly for
ANNs, GPS TEC used to develop ANN models was derived based on the line integral of the electron density
along the signal path from GPS satellites (at the altitude of about 20,200 km) to ground receivers. These may
probably be some of the reasons that make MIDAS and ANNs more accurate in estimating the magnitude of
TEC compared to IRI model. Particularly for ANN models, the amount of data used for training and the choice
of the number of hidden nodes also influenced the modeling results. The fact that MIDAS captures short-term
features and follows TEC enhancements and depletions observed during geomagnetic storms better than
ANN and IRI models can be explained in terms of data used when applying or developing the techniques.
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Figure 8. MAE and correlation between the observed and reconstructed TEC by MIDAS, ANN, and IRI. GPS = Global
Positioning System; TEC = total electron content; ANN = artificial neural network; MIDAS = Multi-Instrument Data
Analysis System; MAE = mean absolute error.

MIDAS uses direct measurements around the specific time of inversion/reconstruction, while ANNs and IRI
are empirical models based on historical data.

It can also be seen from Figure 8 that relatively high values of MAE were generally found for the low-latitude
stations (DEBK, NAZR, ADIS, and MOIU) compared to midlatitude stations (TETE and ZOMB). The average MAE
values computed over the four validation storm periods per location (Table 4) confirm that higher error val-
ues were found for low latitudes. The reconstructing techniques used in this work estimate TEC better for
the midlatitude than the low latitude. This agrees well with what was previously reported about the perfor-
mance of IRI (Kumar et al., 2015) and MIDAS (Chartier et al., 2014) in low latitude and midlatitude. Generally,
the difficulty in reconstructing/modeling the low-latitude ionosphere has been frequently reported (Adewale
et al., 2011; Kenpankho et al., 2011; Materassi & Mitchell, 2005; Panda et al., 2015). Overall high values of MAE
observed for the low latitude compared to midlatitude are likely due to higher TEC gradients caused by the
equatorial ionisation anomaly as a result of the fountain effect. The influence of high TEC variability due to
fountain effect on TEC modeling/reconstruction was reported as the major cause that makes modeling diffi-
cult for the low-latitude ionosphere. This observation was reported by Chartier et al. (2014) when performing
the tomography of the African ionosphere during geomagnetically quiet conditions, and Panda et al. (2015)
during TEC reconstruction with IRI model over low latitude in the Indian sector. It can therefore be considered
that TEC reconstruction is more difficult for the low latitude than midlatitude and this agrees well with what
was previously reported (Chartier et al., 2014; Kumar et al., 2015).
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Table 4
Average Mean Absolute Error Values (in TECU) Computed Over Four Storm Periods for a Specific Station
(First Three Columns) and Over All Stations Considered for Validation (Last Column)

Technique DEBK NAZR/ADIS MOIU TETE/ZOMB Average over all stations

MIDAS 5.35 4.89 5.78 3.20 4.81

ANN 5.16 3.96 3.96 3.63 4.18

IRI 8.19 10.05 7.35 6.16 7.94

Note. MIDAS = Multi-Instrument Data Analysis System; ANN = artificial neural network; TEC = total
electron content.

Owing to the assumptions in bias calculations, single shell mapping function used in conversion of STEC to
VTEC (Mannucci et al., 1998), and computation of average TEC for all visible satellites at a specific time of
the day, TEC accuracy in terms of standard deviation, is of the order of few TECUs (1–3 TECU) during geo-
magnetically quiet conditions, and this error may increase in disturbed conditions to about 3 to 6 TECU as
demonstrated in Figure 9 with light-blue shaded areas. Figure 9 shows diurnal TEC over both midlatitude
(SUTH, 32.38∘S, 20.81∘E) and equatorial latitude (ADIS, 9.04∘S, 38.77∘E) locations, for a disturbed day (9 March
2012) and the most quiet day of 25 March 2012. The average TEC is plotted in blue, while the shaded band
within the red curves represents the range of standard deviation values. For ADIS and SUTH, it is clear that
the error range is mostly between 1 and 3 TECU during quiet conditions (Figure 9, left panels) but also may
increase during storm conditions up to 6 TECU as shown in Figure 9, particularly for SUTH (bottom right panel).

Different algorithms report varying values of observational errors partly due to the nature of treating differ-
ent error sources. Using the TOPEX altimeter data as the “true” reference, Ho et al. (1997) reported RMSE of
about 7 TECU between global ionospheric map products and TOPEX TEC within 1,000-km distance from the
receivers during the geomagnetic storm period of 10–20 March 1993. Their analysis also showed that thin

Figure 9. Diurnal vertical TEC (blue line) observed over midlatitude (SUTH, 32.38∘S, 20.81∘E) and equatorial latitude
(ADIS, 9.04∘S, 38.77∘E) during quiet (25 March 2012, left panels) and disturbed (09 March 2012, right panels) days. The
light-blue shaded areas represent the standard deviations of vertical TEC values for all visible satellites at a specific time
of the day. TEC = total electron content.
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Figure 10. PI values for African low-latitude and midlatitude regions: IRI and MIDAS (left panel), IRI and ANNs (middle
panel), and MIDAS and ANNs (right panel). Also shown above each panel are formulas used to compute PI values.
MIDAS = Multi-Instrument Data Analysis System; ANN = artificial neural network; PI = percentage improvement.

shell approximation errors were significantly more in low latitudes compared to midlatitude regions that gave
an error value of about 3 TECU during the same analyzed geomagnetically disturbed conditions. During quiet
conditions, low-latitude RMSE value reduced to just over 3 TECU and the corresponding error for midlatitude
was 2 TECU (Ho et al., 1997). Recently, Vierinen et al. (2016) developed a procedure of estimating Global Nav-
igation Satellite System biases based on a comprehensive statistical framework and compared their results
with TEC products at the MIT Haystack Observatory. They reported reduction in errors associated with TEC
measurements from 2.25 to 1.60 TECU for 15 March 2015 and the new algorithm was less prone to outliers. A
recent analysis by Abe et al. (2017) indicated that the average error (over low-latitude and midlatitude loca-
tions considered) between TEC estimates from the GPS-TEC software used in this study with respect to the
values provided by the EGNOS algorithm considered as a reference is about 3 and 5 TECU for quiet and geo-
magnetically disturbed conditions, respectively. Therefore the reported MAE errors associated with ANN and
MIDAS (Table 4) are either lower or in the same range of the typical TEC observation errors whereas MAE val-
ues determined from the IRI model are higher than 5 TECU for all the cases considered in this study. The ANN
model can thus be used in providing TEC estimates in areas with insufficient GPS receiver coverage hence
improving the performance of climatological models such as the IRI.

To evaluate how accurate a model performs with respect to another, the percentage improvement (PI) was
computed according to the following equation (Muslim et al., 2015):

PI =
MAEav

1 − MAEav
2

MAEav
2

× 100% (7)

where MAEav
1 and MAEav

2 are the average values of MAE for models 1 and 2, respectively. In the context of
this work, models 1 and 2 represent any of MIDAS, ANNs, or IRI. Equation (7) indicates how much percent-
age model 2 performs better than model 1. Over the storm periods considered for validation, we found that,
on average, ANN model performs 3.69%, 23.48%, and 45.96% better than MIDAS for DEBK, NAZR/ADIS, and
MOIU, respectively. The average PI of 24.37% obtained for the three locations shows higher accuracy of ANN
in the low latitude compared to MIDAS. The fact that individual storm-time ANN models were developed
for different locations and not a regional model that covers the entire region of interest might be another
contributing factor for the good performance of ANNs over MIDAS and IRI in the low-latitude ionosphere.
However, we also note that a regional ANN model over the African region would be prone to significant errors
due to few/lack of observations in some latitude regions. On the other hand, MIDAS performs better for the
midlatitude station TETE/ZOMB by 13.44% compared to ANN model. Figure 10 illustrates PI values computed
for African low-latitude and midlatitude regions. Since we have three locations (DEBK, NAZR/ADIS, and MOIU)
that represented the low latitude in this study, average MAE over these locations was first calculated for each
technique/model to represent the low latitude with a single value. Then the formulas presented in Figure 10
were applied to compute PI values for both low-latitude and midlatitude locations. Positive PI values shown
on the left (IRI and MIDAS) and the middle (IRI and ANNs) panels of Figure 10 indicate that MIDAS and ANNs
perform better than IRI for both low-latitude and midlatitude African regions. However, the right panel shows
good performance of ANNs in low latitude compared to MIDAS, while a reverse situation is noticed in the
midlatitude.
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The high accuracy of ANN model in TEC modeling has previously been reported for both low-latitude (Acharya
et al., 2011; Watthanasangmechai et al., 2012) and midlatitude regions (Huang & Yuan, 2014). Over all stations
considered for validation, we wish to note that the average MAE values of 4.81, 4.18, and 7.94 TECU were found
for MIDAS, ANN, and IRI, respectively. This confirms that, overall, MIDAS and ANN provide comparable results
and are both better than IRI model for storm-time TEC reconstruction.

All three techniques considered in this work gave high correlation coefficients (between 73% and 99%). In
the context of this study, high correlation coefficients confirm good performance of MIDAS, ANN, and IRI
techniques in reproducing diurnal trend of the observed TEC. Over all stations, the highest correlation coeffi-
cients found for MIDAS indicate that there is a strong positive linear relationship between observations and
MIDAS estimations compared to other techniques. It can therefore be concluded that MIDAS reconstructs
short-term features and follows the storm-time TEC dynamics more accurately than IRI and ANN models. The
high performance of MIDAS during disturbed conditions was noticed and reported by (Yin et al., 2004) when
reconstructing the electron density over the United States. As it can be seen from Figure 8, there is no clear
dependence of performances of MIDAS, ANNs, and IRI on the storm intensity. As an example, smaller MAE val-
ues were generally obtained for the severe storms of 16–22 March 2015 (minimum Dst of−223 nT) compared
to strong storms of 18–24 February 2014 (minimum Dst of −116 nT).

5. Conclusion
We have statistically evaluated the capability of MIDAS compared with ANNs to reconstruct storm-time TEC
for the African low-latitude and midlatitude regions. Based on geomagnetically disturbed conditions only,
this study compared MIDAS, ANN, and IRI-2016 TEC reconstructions and validated the results with the real
GPS TEC observations.

We have found that MIDAS and ANNs provide comparable results in reconstructing the storm-time TEC over
different African latitudes with MAE values of 4.81 and 4.18 TECU, respectively. On the other hand, statistics
show that, on average, ANN model performs 24.37% better than MIDAS in estimating storm-time TEC over
low latitudes, while MIDAS accuracy is 13.44% higher than ANN in midlatitude. However, it has been shown
that MIDAS captures short-term variations of the observed TEC and follows enhancements and depletions
observed during geomagnetic storms more accurately than ANNs. Both MIDAS and ANN model provide more
accurate storm-time TEC reconstructions than IRI model in African low-latitude and midlatitude regions.

Similar to previous studies (Chartier et al., 2014; Kumar et al., 2015; Panda et al., 2015), storm-time TEC recon-
struction/modeling is more difficult for the low-latitude than midlatitude ionosphere. The fountain effect and
the resulting higher TEC gradients over low-latitude ionosphere are likely to be the causes of the difficulty in
reconstructing/modeling TEC over this region.

The performance of MIDAS, ANNs, and IRI do not seem to depend on the storm intensity. For example, it was
shown that MIDAS, ANNs, and IRI can even reconstruct storm-time TEC more accurately for severe storms (e.g.,
16–22 March 2015) than it does for strong storms (e.g., 18–24 February 2014).
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