
Pramana – J. Phys. (2019) 92:78 © Indian Academy of Sciences
https://doi.org/10.1007/s12043-019-1740-4

Higher harmonic instability of electrostatic ion cyclotron waves
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Abstract. Electrostatic ion cyclotron instability pertaining to the higher harmonics of proton and helium cyclotron
modes is investigated in three-component magnetised plasma consisting of beam electrons, protons and doubly
charged helium ions. The effect of different plasma parameters, namely, angle of propagation, number density and
temperature of helium ions and electron beam speed, has been studied on the growth of proton and helium cyclotron
harmonics. It is found that an increase in angle of propagation leads to the excitation of fewer harmonics of proton
cyclotron waves with decreased growth rates and higher number of helium harmonics with decreased growth rates.
Also, largely odd helium harmonics are excited, except for one particular case where the second harmonic also
becomes unstable. The number density and temperature of ions have significant effect on the helium cyclotron
instability compared to the proton cyclotron instability. Further, as the speed of electron beam is increased, the peak
growth rate increases. Our results are relevant to laboratory and space plasmas where field-aligned currents exist.
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1. Introduction

Electrostatic ion cyclotron (EIC) waves were first
observed in laboratory plasma, comprising cesium and
potassium by D’Angelo and Motley [1] and Motley
and D’Angelo [2]. These waves propagate nearly per-
pendicular to the ambient magnetic field, with a small
finite wave number along the ambient magnetic field.
EIC instability in the ionosphere and magnetosphere
can arise from different free energy sources such as
field-aligned currents, ion beams, velocity shear, relative
streaming between ions, electron drifts and density gra-
dients [3–15]. EIC waves have been studied in plasmas
having heavy metallic ions or dust grains [16–23]. In
Aditya tokamak, Chattopadhyay et al [24] have studied
the second-harmonic ion cyclotron resonance heating.
EIC waves have been observed in high-latitude iono-
sphere [25]. Many spacecraft observations, e.g. S3-3
[9,26,27], GEOS 1 and 2 satellites [28,29], ISEE-1
[30], Viking [31], Polar [32], FAST [33] and THEMIS
[34] have shown the presence of EIC waves in differ-
ent regions of Earth’s magnetosphere. EIC waves serve
as the main source for ion heating in magnetosphere.
Therefore, they have been of great interest to the space
plasma community. Dakin et al [35] demonstrated that

significant ion heating can occur by EIC modes excited
by electron current. Ungstrup et al [36] found that EIC
waves heat up the ions to superthermal energies trans-
verse to the Earth’s magnetic field. Roux et al [29] also
observed heating of He+ ions associated with EIC waves
in the magnetospheric region.

The presence of heavy ions has been confirmed in
space plasmas. For example, the presence of α (He2+)
particles precipitating into the nightside auroral zone
on a satellite pass over the southern hemisphere on 16
May 1972 during a magnetic storm has been recorded
[37]. These α-particles are of solar wind origin and are
about 4% of the proton density. Recently, Tang et al
[34] observed EIC waves at fundamental and second har-
monic of proton and at doubly charged helium cyclotron
frequencies which establish the presence of He2+ ions
in the magnetopause. Helium and oxygen are often seen
inside the magnetopause and adjacent to it. However,
the THEMIS mission does not make ion composition
measurements to distinguish different ion species. The
doubly charged helium is of solar wind origin and hence
density will be low (<5% or so). Recently, Sreeraj et al
[38,39] have studied the ion cyclotron and ion-acoustic
waves in the solar wind and lunar wake plasmas in the
presence of doubly charged helium.
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Therefore, it is important to study EIC instabilities
involving He2+ ions which are of solar wind origin and
are found in various regions of the Earth’s magneto-
sphere and can impact the growth of EIC waves. In
this paper, instability of higher harmonic of electrostatic
proton and helium cyclotron waves is studied using the
kinetic theory in a three-component magnetised plasma
comprising drifting electrons, Maxwellian protons and
doubly charged helium ions. Although the focus of
the paper is not particularly to explain any specific
observation, our results will be useful in understanding
EIC instabilities in laboratory and space plasmas where
field-aligned currents exist. Theoretical model and the
dispersion relation are presented in §2. In §3, numerical
results are presented and conclusion and discussion are
given in §4.

2. Theoretical model

We consider collisionless, three-component magnetised
plasma composed of electrons, protons and doubly
charged helium ions. The electrons are assumed to
stream with speed Ub along the ambient magnetic field,
B0‖ẑ. Here, protons and helium follow Maxwell distri-
bution (Up = Uα = 0) whereas electrons are having
a drifting Maxwellian (Ub is non-zero) distribution.
The low-frequency electrostatic waves are considered
to be propagating in the x–z plane with wave vector,
k = k⊥ x̂ + k‖ ẑ; k‖ and k⊥ are the parallel and per-
pendicular wave numbers, respectively. The dispersion
relation for the electrostatic waves in magnetised plasma
can be written as [5]

D(ω, k) = 1 +
∑

s

χs

= 1 +
∑

s

1

k2λ2
Ds

×
[

1 +
∞∑

n=−∞

ω − k‖Us√
2k‖vts

�n(bs)Z(ξns)

]
, (1)

where χs is the susceptibility of the species s and sub-
scripts s = e, p, α refer to electron, proton and doubly
charged helium ions, respectively. The argument of the
plasma dispersion function ξs is given by

ξns = ω − n�s − k‖Us√
2k‖vts

. (2)

For wave frequency ω much less than electron cyclotron
frequency, the maximum contribution for electrons will
come from n = 0 terms and hence, susceptibilities for
electrons can be written as [19,20,22]

χe ≈ 1

k2λ2
De

[
1 + ω − k‖Ub√

2k‖vte
�0(be)Z(ξ0e)

]
. (3)

Here, λDs = vts/ωps , ωps = √
z2
s n0sq2

s /ε0ms , �s =
zsqs B0/ms ,Us and vts = √

Ts/ms are the Debye length,
plasma frequency, cyclotron frequency, beam and ther-
mal velocity of the sth species, respectively, ε0 is the
permittivity of the free space, ms , zs and qs are, respec-
tively, the mass, atomic number and charge of the sth
species, �n(bs) = In(bs)exp(−bs), where In(bs) is the
modified Bessel function of order n with its argument
bs = k2⊥v2

ts/�
2
s and Z is the plasma dispersion function.

To arrive at eq. (3), we have used the fact that Larmor
radius of the electron is small with be � 1. As be � 1,
we retain only n = 0 term as �0(0) = 1 and �n(0) = 0
for all n 	= 0. Assuming ω = ωr + iγ (γ � ωr), the
dispersion relation given by eq. (1) can be written as

Dr(ωr, k) + iDi(ωr, k) = 0, (4)

where Dr and Di are the real and imaginary parts of the
dispersion relation, eq. (1). The growth or damping of
the low-frequency wave is given by

γ = − Di(ωr, k)

∂Dr(ωr, k)/∂ωr
. (5)

Analytical results on proton cyclotron harmonics are
presented in the next subsection.

2.1 Proton cyclotron harmonics

In this subsection, we study the instability associated
with proton cyclotron harmonics. To simplify the elec-
tron term in eq. (3), we assume ξ0e < 1. Thus, the
susceptibility for electron (eq. (3)) becomes

χe ≈ 1

k2λ2
De

[
1 + i

√
π

2
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k‖vte
e−ξ2

0e

]
. (6)

For the protons and doubly charged helium ions, we
consider ξnp,nα 
 1. Therefore, from eq. (1), χp,α can
be written as

χp,α ≈ 1
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[
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. (7)

As proton cyclotron harmonics are being studied here,
it is appropriate to assume ω ∼ n�p. Thus, the suscep-
tibility of protons can be written as

χp ≈ 1
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+ i
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, (8)
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where the function G(bp) = ∑
m 	=n ω�m(bp)/(ω −

m�p). The analytical expressions for G(bp) for n = 1
and 2 have been derived by Kindel and Kennel [5].
However, for higher harmonics, it is not easily tractable
analytically, and therefore, has to be evaluated numer-
ically. A computer program has been developed to

evaluate G(bp) in MATLAB and numerical results
have been verified with the results obtained from the
analytical expression obtained for fundamental mode.
Thereafter, it has been applied to obtain the results for
other harmonics.

Under the assumption ω ∼ n�p, susceptibility for
helium ions is given by

χα ≈ 1

k2λ2
Dα

[
− 1 + i

√
π

2
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]
, (9)

where we have used�α = �p/2 and
∑∞

n=−∞ �n(bα) =
1. Combining eqs (6), (8) and (9), the dispersion relation
for proton cyclotron mode can be written as
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The real (Dr) and imaginary (Di) parts of the disper-
sion relation (10) are as follows:
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Assuming that ωr ∼ n�p, the real frequency can be
obtained from eq. (11) and written in the following form:

ωr = n�p[1 + p], (13)

where

p = �n(bp)

1 + k2λ2
Dp − �n(bp) − G(bp) + Tpn0e

Ten0p

(
1 − Tez2

αn0α

Tαn0e

) .
(14)

The assumption of ωr ∼ n�p is justified provided p
is much smaller than 1. The growth/damping rates of
proton cyclotron harmonics can be obtained by using
the definition given by eq. (5), and is written below in a
simplified form:

γ

�p
= −n2

p

k2λ2
Dp

�n(bp)
Di. (15)

For instability to grow Di < 0. It must be noted that the
damping due to the protons and helium ions is included
in the analytical expression given by eq. (12). In the next
subsection, analytical results on the helium cyclotron
harmonics are presented.

2.2 Helium cyclotron harmonics

In this subsection, similar method is adopted as in the
previous section to study the helium cyclotron harmon-
ics. Therefore, at the outset, it is assumed that frequency
ω ∼ n�α . Thus, using the fact that �p = 2�α from
eq. (7), the contribution of protons can be written in
simplified form as
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k2λ2
Dp

[
2 + i

√
π

2

∞∑

n=−∞

ω�n(bp)

k‖vtp
e−ξ2

np

]
. (16)

Further, the corresponding term for helium ions is
obtained as follows:

χα ≈ 1
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The dispersion relation for helium cyclotron harmonics
is obtained by combining eqs (6), (16), (17) and can be
expressed as
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Here, the function G(bα) = ∑
m 	=n ω�m(bα)/(ω −

m�α) and imaginary part of eq. (18) are the same as
eq. (12), whereas the real part is given by
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From eq. (19) the real frequency is obtained by equa-
tion Dr = 0 and is given by

ωr = n�α[1 + α], (20)

where
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The assumption of ωr ∼ n�α is justified provided
α is much smaller than 1. The growth/damping rate
for helium cyclotron modes can be written as

γ

�α

= −n2
α

k2λ2
Dα

�n(bα)
Di, (22)

where Di is given by eq. (12) and for the growth of
the instability, Di < 0. The theoretical results obtained
here are general in nature and can be applied to labo-
ratory or space plasmas. In the next section, numerical
results will be presented on proton and cyclotron har-
monic instabilities for the relevant plasma parameters.
It emphasises that due to the assumptions ω ∼ n�p
and ω ∼ n�α , ξnp,nα 
 1, both protons and doubly
charged helium ions are non-resonant. Therefore, our
analysis is not valid when ω = n�p or n�α and then
both ξnp and ξnα would be �1. Hence, the present ana-
lytical method avoids exact proton and helium cyclotron
resonances. A different analytical approach is needed
to deal with exact resonances. Further, in arriving at

analytical results, we have followed the well-established
procedures laid down by Kindel and Kennel [5] and
Rosenberg and Merlino [22].

3. Numerical results

In this section, numerical results are shown pertain-
ing to proton and helium cyclotron instabilities. The
real frequency and growth rates for proton and helium
cyclotron harmonics are obtained by solving eqs (13),
(15) and (20), (22), respectively. We must mention
here that, for the numerical results which are shown
in §3.1 and 3.2, all the assumptions made in deriving
the analytical results are satisfied. Furthermore, using
plasma parameters from [40] (see their figure 2) and
[22] (see their figure 1) and by putting the helium ion
density to zero, we are able to confirm that the growth
rate of the fundamental mode peaks near kρp ∼ 1 in
both the cases. However, with an increase in angle of
propagation, the growth rate peaks at kρp > 1. Hence,
we would like to emphasise that the peak growth rate is
parameter-dependent and does not necessarily always
peaks at kρp ∼ 1. It is important to mention here that
while carrying out the numerical computations of the
growth rate/damping of proton and helium harmonics,
the dampings due to proton and helium ions have been
taken into account.

3.1 Proton cyclotron instability

For proton cyclotron harmonics, we have normalised the
various physical parameters in the following manner:
frequencies are normalised with cyclotron frequency
of proton, wave number with Larmor radius of proton
ρp = vthp/�p, electron beam speed by electron ther-
mal velocity and the densities by total electron density
at equilibrium. For numerical computations, the follow-
ing fixed plasma parameters are used: zα = 2, ωp/�p =
60, Ub/vte = 0.80, n0α/n0e = 0.10, mp/mα = 0.25,
mp/me = 1837, Te/Tp = 2 and Tα/Tp = 2.

In figure 1, the normalised frequency and normalised
growth rates of proton cyclotron instability are shown
with k⊥ρp for two different values of angle of propa-
gation, θ . The results in the panels, i.e. figures 1a and
1b, are shown for θ = 88◦ and 89◦, respectively. Top
and bottom panels of all the figures presented in this
paper, respectively, show the real frequency and the cor-
responding growth rates of each harmonic denoted by n
values in the figures. In the top left panel, two harmonics
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(a) (b)

Figure 1. Proton cyclotron instability: normalised real frequency (ωr/�p) and growth rate (γ /�p) vs. k⊥ρp for θ = 88◦
(a) and 89◦ (b). Fixed plasma parameters are zα = 2, ωp/�p = 60,Ub/vte = 0.80, n0α/n0e = 0.10, mp/mα = 0.25,
Te/Tp = 2 and Tα/Tp = 2.

are plotted for which all the relevant conditions on
electrons, protons and ions are satisfied. Here and in
all subsequent figures, we are showing only growing
modes. It can be seen that the growth rate of second
harmonic (γ /�p = 0.10) is higher than that of the
fundamental harmonic (γ /�p = 0.092) for θ = 88◦.
In this figure and in all subsequent figures, curves are
restricted to wave number ranges where growth rates
are positive. The peak growth of fundamental harmonic
occurs at k⊥ρp ≈ 1.29 with ωr ≈ 1.29�p and the
absolute value of the argument of plasma dispersion
function for protons is (ω − �p)/

√
2k‖vtp ≈ 4.51, and

it is larger for lower wave numbers and decreases with
increasing wave numbers. This pattern is seen for all the
harmonics. Although not shown here, when the angle of
propagation is increased to θ = 88.5◦, then also two har-
monics become unstable. But, in this case, the maximum
growth rate of both harmonics decreases and the value
of fundamental mode reaches γ /�p = 0.0617 and that
of second harmonic reaches γ /�p = 0.0619. When the
angle of propagation is increased to θ = 89◦ (figure 1b),
the growth rate is seen only for the first harmonic and
maximum growth rate becomes γ /�p ≈ 0.034 at
kρp ≈ 2.19. So it can be seen that the growth rate for
fundamental harmonics decreases with the increase in
angle of propagation.

We have analysed the effect of electron streaming
on the proton cyclotron harmonics in figure 2 on the
normalised real frequency and growth rates for the
parameters of figure 1a with the angle of propagation

θ = 88◦. The results are displayed in two panels, i.e. in
figure 2a (Ub/vte = 0.6) and in figure 2b (Ub/vte =
0.7). It can be seen that for Ub/vte = 0.6 (figure 2a),
only first two harmonics can be excited, with the peak
value of growth rate of fundamental harmonic being
0.047 at kρp ∼ 1.58. Here, the growth rate of the first
harmonic is higher than that of the second harmonic.
On the other hand, for Ub/vte = 0.7 (figure 2b), it is
observed that two harmonics are excited with growth
rate of the second harmonic greater than that of the first
harmonic. This trend continues for Ub/vte = 0.8 (refer
to figure 1a), where, again, only two modes become
unstable. The peak value of the growth rate for each
harmonic increases with an increase in the value of elec-
tron beam speed. It is also found that for each harmonic,
the peak value of the growth rate occurs at smaller
values of kρp, e.g. the peak value of γ /�p for funda-
mental harmonic for Ub/vte = 0.6, 0.7 and 0.8 occurs
at kρp∼1.58, ∼1.42, ∼1.29, respectively. This is also
true for all other harmonics. In the next subsection, the
numerical results on helium cyclotron instability are dis-
cussed.

Although not shown here, we have studied the effect
of variations of n0α/n0e on proton cyclotron real fre-
quency and growth rate for θ = 88◦. It is found that
increasing n0α/n0e from 0.08 to 0.12 tends to slightly
increase the growth rate. The numerical computations
show that for proton harmonics, the contribution of the
helium damping is negligible. However, damping due to
protons reduces with the increase in the number density
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(a) (b)

Figure 2. Proton cyclotron instability: normalised real frequency and growth rate vs. k⊥ρp for Ub/vte = 0.6 (a) and 0.7 (b).
Other fixed plasma parameters are the same as in figure 1a.

of the helium ions. Thus, the growth rate increases with
increase in the number density of the helium ions. We
have also studied the effect of the variation of Tα/Tp
on the real frequency and growth rate (not shown here)
for the parameters of figure 1a, for Tα/Tp = 4 and 6
and the angle of propagation is θ = 88◦. It is observed
that the growth decreases slightly with the increase
in Tα/Tp.

3.2 Helium cyclotron instability

In this subsection, the effect of various parameters on
helium cyclotron instability is studied. The frequen-
cies are normalised with helium cyclotron frequency
and wave number with Larmor radius of helium ρα =
vthα/�α . Other normalisations are the same as in §3.1.
Here we have plotted the real frequency and growth rates
vs. k⊥ρα . The curves have been limited by the plasma
conditions imposed on the argument of plasma disper-
sion function or wherever the damping occurs.

In figures 3a and 3b, the normalised real frequency
and growth rates are plotted for θ = 88◦ and 89◦,
respectively. The fixed plasma parameters are zα = 2,
ωp/�p = 60,Ub/vte = 0.80, n0α/n0e = 0.10,
mp/mα = 0.25, mp/me = 1837, Te/Tp = 10
and Tα/Tp = 0.2. An interesting feature of helium
harmonic is that for all the variations that had been
undertaken, only the odd harmonics are getting exited,
unless stated otherwise. Generally, the even harmon-
ics of the helium cyclotron waves are not excited due

to the proton cyclotron damping at these frequencies.
For instance, consider the case of θ = 88◦ (figure 3a).
Here, only first harmonic is excited with its growth rate
peaking at k⊥ρα ≈ 0.9 with a value of γ /�α ≈ 0.006
and ω/�α ≈ 1.18. Also, here the growth of the wave
is for wider range of wave numbers compared to that
of proton harmonics discussed in the previous sections.
Although, not shown here, when the angle is increased
to θ = 88.5◦, the first and third harmonics get excited
with third harmonic having larger growth rate than the
first harmonic. As the angle is increased to θ = 89◦, the
first, third and fifth harmonics are excited (figure 3b).
Also, with an increasing value of angle of propagation,
the peak growth rate occurs at higher value of k⊥ρα . The
peak growth rate for fundamental harmonic of helium
for θ = 89◦ is γ /�α ≈ 0.0058 at k⊥ρα ≈ 0.92. The
corresponding absolute value of the argument of the
plasma dispersion function is (ω − �pα)/

√
2k‖vtα ≈

8.14, whereas it is larger for lower values of wave num-
bers and decreases with an increasing wave number. This
pattern is seen for all the results presented. For further
increase in angle of propagation to θ = 89.5◦, the first,
second, third, fifth, seventh and ninth harmonics can be
excited (not shown here).

In figure 4, the real frequency and growth rate are
plotted for n0α/n0e = 0.08 (figure 4a) and 0.12
(figure 4b) for parameters of figure 3b with θ = 89◦.
For n0α/n0e = 0.08, the fundamental mode and third
mode can be excited. However, for n0α/n0e = 0.10
(figure 3b), the first, third and fifth harmonics can be
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(a) (b)

Figure 3. Helium cyclotron instability: normalised real frequency ωr/�α and growth rate γ /�α vs. k⊥ρα for θ = 88◦ (a) and
89◦ (b). Fixed plasma parameters are zα = 2, ωp/�p = 60,Ub/vte = 0.80, n0α/n0e = 0.10, mp/mα = 0.25, Te/Tp = 10
and Tα/Tp = 0.2.

(a) (b)

Figure 4. Helium cyclotron instability: normalised real frequency and growth rate vs. k⊥ρα for n0α/n0e = 0.08 (a) and 0.12
(b). Other fixed plasma parameters are the same as in figure 3b.

excited. Finally, for n0α/n0e = 0.12, the first, third,
fifth and seventh harmonics are excited. It is important to
mention here that the growth rate increases substantially
with the increase in helium ion density. The numerical
computations show that for odd helium harmonics,

the contribution of the proton damping is negligible.
However, damping due to helium ions reduces with
the increase in the number density of the helium ions.
Thus, the growth rate of helium harmonics increases
with an increase in the number density of the helium
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(a) (b)

Figure 5. Helium cyclotron instability: normalised real frequency and growth rate vs. k⊥ρα for Tα/Tp = 0.3 (a) and 0.4 (b).
Other fixed plasma parameters are the same as in figure 3b.

(a) (b)

Figure 6. Helium cyclotron instability: normalised real frequency and growth rate vs. k⊥ρα for Ube/bte = 0.6 (a) and 0.7
(b). Other fixed plasma parameters are the same as in figure 3b.

ions. The variation of Tα/Tp on the helium cyclotron
instability is shown in figure 5 for the parameters of
figure 3b with θ = 89◦ for Tα/Tp = 0.3 (figure
5a) and Tα/Tp = 0.4 (figure 5b). It is observed that
the growth rate decreases with an increase in helium

ion temperature. Also, the number of harmonics that is
getting excited decreases with an increase in the helium
ion temperature. In figure 6, the effect of variation of
electron beam speed is shown on the helium cyclotron
instability. It can be seen that for Ub/vte = 0.6
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(figure 6a), Ub/vte = 0.7 (figure 6b) and Ub/vte = 0.8
(figure 3b), the first, third and fifth harmonics are excited
with an increase in the peak growth rate.

4. Discussions and conclusions

EIC instability associated with higher harmonics of
proton and helium cyclotron modes has been investi-
gated. The magnetised plasma consists of three com-
ponents: beam electron, protons and doubly charged
helium ions. The effect of various plasma parame-
ters such as angle of propagation, number density and
temperature of helium ions and electron beam speed
has been studied on the growth of proton and helium
cyclotron instability. In this study, we employed the
method adopted by Kindel and Kennel [5] and later on
used by Rosenberg and Merlino [22] to study the higher
harmonics of EIC waves. However, the method cannot
be applied at the exact proton and helium harmonics,
i.e. ω = n�p and n�α .

It is found that growth rates decrease for both proton
harmonics and helium harmonics with an increase in the
angle of propagation. However, a fewer number of pro-
ton harmonics and higher number of helium harmonics
are excited when the angle of propagation is increased.
The conclusions drawn here are valid for both proton
and helium cyclotron instabilities. The extent of wave
number for which both the proton and helium harmon-
ics are unstable increases with an increase in angle of
propagation and the peak growth rate occurs at higher
wave number. The increase in number density of ions
enhances the growth of the instability. However, the
temperature of ions has inverse effect on the instabil-
ity. Further, as the electron beam speed is increased,
the number of excited harmonics increases and the peak
growth rate also increases and occurs at a larger value
of wave number.

Cluster observations of EIC waves in the nightside
auroral region at 4RE have been reported by Backrud-
Ivgren et al [41]. They pointed out that these waves
can be generated by electron beams. The total density
of electrons was estimated to be 5 cm−3 and proton
cyclotron frequency is 7.6 Hz. If we consider all ions
as protons with small fraction of helium ions, then
ωp/�p ≈ 60 which we have assumed in our numerical
calculations of all the figures presented in this paper.
For proton as well as helium growth rate and real fre-
quency calculations, we have taken Ub/vte = 0.8. For
the plasma parameters used in figure 1a, the peak growth
rate of proton cyclotron fundamental mode comes out
to be 700 mHz at k⊥ρp ≈ 1.29 and the correspond-
ing frequency is ωr ≈ 1.28�p = 9.7 Hz. Similarly,
for helium cyclotron fundamental mode (figure 3a), the

peak growth rate is ≈23 mHz at k⊥ρα ≈ 0.9 with the
corresponding frequency ωr ≈ 1.18�α = 4.84 Hz.

In the auroral region, the EIC waves accelerate the
ions in the direction perpendicular to the magnetic field
of the Earth and the ions are driven upward into the
magnetosphere. Hence, this mechanism is believed to
be one of the primary source of heavy ions in the
magnetosphere [42,43]. Further, EIC waves have the
lowest thresholds of excitation among various current-
driven instabilities. Very recently, Tang et al [34] have
conducted an extensive study of large-amplitude EIC
waves near Earth’s dayside magnetopause and have
concluded that the presence of EIC waves in the magne-
topause boundary layer may contribute to maintaining
the boundary layers. Here, we have given an example of
the auroral region where our results can be applied. The
theory developed here is general in nature and can be
applied to EIC observations in laboratory plasmas [44]
as well as space plasmas [34,41,45]. For example, our
method can be applied to study the first and second har-
monics of proton and fundamental harmonic of helium
cyclotron modes observed by the THEMIS satellite in
the magnetopause [34]. We are trying to get the relevant
plasma parameters for THEMIS observations and the
results will be reported elsewhere.

The role of EIC instability in the heating of solar
corona was studied by Hinata [46] and Luhn [47]. Hinata
[46] has shown that coronal plasma is heated up to a
temperature of a few million Kelvin degrees when the
electron drift velocity is near or above the critical value
of EIC instability. Similarly, Luhn [47] has studied the
selective heating of minority ion species in the corona
by using EIC waves. Luhn [47] has shown that in cer-
tain region of phase space, depending upon the initial
condition of nonlinearly coupled system of waves and
gyrating ions, the energy transfer takes place between
particles and waves, which results in heating of particle
distribution. Therefore, it will be interesting to know
whether the recently launched Parkar Solar Probe can
measure the ion heating associated with EIC waves, and
verify the theoretical predictions.
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