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Abstract: The equatorial plasma bubbles (EPBs) are depleted plasma density regions in the ionosphere
occurring during the post-sunset hours, associated with the signal fading and scintillation signatures
in the trans-ionospheric radio signals. Severe scintillations may critically affect the performance of
dynamic systems relying on global navigation satellite system (GNSS)-based services. Furthermore,
the occurrence of scintillations in the equatorial and low latitudes can be triggered or inhibited
during space weather events. In the present study, the possible presence of the EPBs during the
geomagnetic storm periods under the 25th solar cycle is investigated using the GNSS-derived total
electron content (TEC) depletion characteristics at a low-latitude equatorial ionization anomaly
location, i.e., KL University, Guntur (Geographic 16◦26′N, 80◦37′E and dip 22◦32′) in India. The
detrended TEC with a specific window size is used to capture the characteristic depletion signatures,
indicating the possible presence of the EPBs. Moreover, the TEC depletions, amplitude (S4) and phase
scintillation (σϕ) indices from multi-constellation GNSS signals are probed to verify the vulnerability
of the signals towards the scintillation effects over the region. Observations confirm that all GNSS
constellations witness TEC depletions between 15:00 UT and 18:00 UT, which is in good agreement
with the recorded scintillation indices. We report characteristic depletion depths (22 to 45 TECU)
and depletion times (28 to 48 min) across different constellations confirming the triggering of EPBs
during the geomagnetic storm event on 23 April 2023. Unlikely, but the other storm events evidently
inhibited TEC depletion, confirming suppressed EPBs. The results suggest that TEC depletions
from the traditional geodetic GNSS stations could be used to substantiate the EPB characteristics for
developing regional as well as global scintillation mitigation strategies.

Keywords: equatorial plasma bubble; multi-GNSS constellations; ionospheric irregularities and
scintillation; TEC depletion; geomagnetic storm

1. Introduction

The equatorial plasma bubbles (EPBs) are the regions of depleted electron density in
the post-sunset equatorial and low-latitude ionosphere surrounded by enhanced electron
density areas, leading to ionospheric electron density irregularities with scale sizes ranging
from a few meters to thousands of kilometers [1–5]. Based on horizontal scale sizes, the
EPBs are generally classified as large (>100 km), intermediate (10 km–100 m), and small
(<100 m) scale structures, respectively [6]. Irregularities in the intermediate range constitute
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an important part of EPBs and primarily affect the very high-frequency (VHF) radio waves
whereas those in the small-scale ranges are responsible for the disturbances in the L-band
transmissions. There is a particular interest in the characteristics of these irregularity
scale lengths as it may critically affect the operation of satellite-based communication
and navigation systems by introducing degraded signal strengths or even loss of lock [7].
Plasma irregularities and depletions associated with EPBs are generally observed during
the nighttime, shortly after sunset, and may even persist until a few hours after midnight.
The general morphology of EPBs including the source mechanism, evolution processes,
spatial structures, and global distributions have been presented in the past through ground-
and satellite-based observations. From the analysis of these observations, it has been
established that the EPBs are often initiated in the post-sunset hours under the action of
pre-reversal enhancement (PRE) in zonal electric field by suddenly uplifting plasma to a
higher altitude with a steep plasma density gradient in the bottomside F-layer. This favors
the growth of the irregularities by the Rayleigh–Taylor instability (RTI) in the bottomside
ionosphere and their subsequent transportation to topside ionosphere and higher latitudes
along the magnetic field tubes [8–12]. The eastward post-sunset electric field enhances the
RTI, while the westward electric field may suppress the instability. The structures that form
due to this instability can grow to become large-scale ionospheric depletions, often called
equatorial plasma bubbles. The variability due to the uplift of the F-layer after sunset by
the PRE may dictate the onset or inhibition of these ionospheric depletions [12,13]. Radio
wave propagation, satellite communication, and Global Navigation Satellite System (GNSS)
signals are substantially affected by the EPBs, making them of great interest to researchers
in the field of space weather and ionospheric physics.

Although the spatiotemporal occurrence distributions of EPBs are strongly controlled
by local time, season and geographic location of observation, they are often driven by
the disturbances of solar origin such as solar flares, coronal mass ejections, geomagnetic
storms, etc. [14,15]. The plasma density irregularities within the EPBs can scatter and
diffract the traversing radio waves, causing abrupt fluctuations in the amplitude (amplitude
scintillation) and phase (phase scintillation) of the received signal. Based on the severity, the
scintillations can interrupt or degrade GNSS receiver operation by potentially introducing
fading, cycle slips, ranging errors or even loss of tracking and may take considerable
amount of time for reacquisition [16]. Further, during extreme space weather events, the
probability of failures in measurements of GNSS navigational parameters increases and
the positioning error could increase up to 10 times compared to its quiet time background
level [17]. The significant magnitude of TEC gradients associated with the inner edges
(very steep with large magnitudes) or the plasma density irregularities in the interior (lesser
magnitude but more prevalent) of the bubble could potentially cause malfunctioning of
GNSS receivers by affecting the functional accuracy and reliability [18–20]. Although there
are progressive results on the ionospheric irregularities and loss of lock mechanism in the
past, the complex origin and the dynamics of the ionospheric irregularities relevant to
their effects on GNSS and communication systems are not yet fully understood. Using
data from the European Space Agency (ESA) Swarm mission, De Michelis et al. [21,22]
inferred that plasma bubbles certainly exhibit scaling properties that are associated with
large density gradients arising from the turbulent nature of the irregularities. Their studies
suggest that the turbulent characters are reflected in the high rate of change in electron
density index (RODI) values inside bubbles. Pezzopane et al. [23] highlighted that the
GNSS loss of lock events is strongly correlated with well-defined values of both RODI and
the rate of change in the TEC index (ROTI), suggesting their origin in the regions with high
electron density gradients. Recent investigation of De Michelis et al. [20] on loss of lock
events using long-term Swarm observations reported that the GNSS loss of lock is very
often confined to the turbulent plasma density irregularities with intermittent structures
and extremely high RODI.

Detecting EPBs is a challenging task as they are dynamic and often exhibit complex
spatial and temporal characteristics. An EPB may travel across different longitudes and



Remote Sens. 2023, 15, 4944 3 of 25

change its shape and strength of irregularities before diminishing in the background
electron density [24]. Post-event detection methods provide us with a detailed description
of bubble characteristics like bubble depth, bubble occurrence period, and the impact of the
bubble on TEC depletion. Numerous techniques have been developed to detect EPBs using
data from ground-based instruments, Radar observations [25], ionogram analysis [26],
airglow data [10], and Global Navigation Satellite Systems (GNSS) [27–29] which include
Global Positioning System (GPS), European Global Navigation System (Galileo), Russian
Global Navigation Satellite System (GLONASS), Quasi-Zenith Satellite System (QZSS),
Satellite-Based Augmentation System (SBAS), Chinese BeiDou Navigation Satellite System
(BeiDou) [30,31]. Kelly et al. [32] first observed the EPBs using the RADAR data as the
plumes or wedges. The ionograms describe the presence of EPB as the equatorial spread F
phenomenon in the ionospheric F layer [33]. The all-sky imager captures the night airglow
in the optical imager 630 nm images in which the dark bands or intensity-depleted regions
are the signatures of EPBs [5].

Continuous observational data of the F-region anomaly were observed in Sanya from
2009 to 2010 at the equinox months using VHF radar data, GPS observations, and ionosonde
observations [34]. The results indicated that the observed field alignment irregularities,
scintillation values, and TEC depletion may be related to the possible development of
EPB. Nakata et al. [35] used the 630 nm airglow data from the visible light and infrared
spectrum imager to identify the EPBs. The electron density inside the EPB decreases, which
is visible as a dark patch in the airglow image, considering it as an EPB occurrence. The
EPBs marked in the airglow data are in line with the EPB occurrence observed through
the ionosonde and GPS observations. Studies on EPB occurrence based on GNSS-derived
TEC depletion or ROTI are emphasized nowadays as there exists a direct relationship
between the ROTI, irregularity strength, and scintillation indices [19]. Zakharenkova
and Cherniak [36] highlighted the strong connection between phase fluctuation intensity
specified by ROTI and degradation in precise GPS during an extreme EPB prevailing
condition. Astafyeva et al. [37] analyzed the global ROTI maps along with data from
other ground- and space-based observations during geomagnetic storm to present a global
multi-instrumental overview of ionospheric TEC and electron density irregularities during
the storm. It shows that a relatively denser coverage of global ROTI datasets from a
huge infrastructure of conventional geodetic GNSS receivers than any other ground-based
monitoring units across the globe appeals exploitation of TEC depletion strengths and ROTI
for understanding long-term global morphology of EPBs [38–41]. TEC or slant total electron
content (sTEC) is the number of electrons present in the ray path between the satellite
and the receiver measured in TECU where 1 TECU = 1016 electrons/m2 [42]. Magdaleno
et al. [13] used the sTEC data obtained from the GPS satellites at six stations all over the
world to find the plasma bubble occurrence. The model response at different seasons and
temporal variations was observed. The in-depth analysis showed a TEC depletion ranging
from 6 TECU to 18 TECU from all the stations. Portillo et al. [14] collected the sTEC values
every 10 min to find out the plasma bubble formation in the equatorial Africa region for the
early 6 months of 2004. The results show that the average plasma bubble depletion depth
is 9 TECU while the average apparent depletion time is 90 min. Mersha et al. [38] used
the sTEC data from high-rate GNSS receivers at African GNSS stations in 2014 and 2015 to
verify the possible EPB occurrence. The preliminary observations in the TEC detrended
curve showed the characterization depth of EPB ranging from 10 TECU to 40 TECU, and
the depletion time ranging from 15 to 68 min. Nishioka et al. [39] used data from 23 GPS
receivers along the dip equator to verify the plasma bubble occurrences from 2000 to 2006.
Their observations from the monthly occurrence rates of the EPB in all the longitudinal
stations emphasize that sunset time lag played a crucial role in the evolution of EPBs.
With the introduction of a greater number of low earth orbiting (LEO) satellites, a great
opportunity was provided for studying the global spatiotemporal features of EPBs and
ionospheric irregularities from using onboard high resolution magnetic field measurements,
GNSS radio occultation (RO) or Langmuir probe (LP) measurements which can address the



Remote Sens. 2023, 15, 4944 4 of 25

limitations of sparse coverage from ground-based observations up to some extent. Unlike
other available constellations, the special configuration in Swarm constellation provides
an opportunity for investigating the plasma irregularities in both meridional and zonal
directions for understanding their relationship with plasma depletion and transient loss of
lock in GNSS signals [43]. Cherniak et al. [44] conducted a multi-instrumental analysis with
F3/C1 RO electron density profiles and scintillation indices along with in situ plasma probe
observations from C/NOFS, Swarm, and DMSP satellites to characterize development of
the storm induced EPBs and scintillation effects. Global DMSP profiles of plasma densities
during the high solar activity periods detects the post-sunset variation of electric fields in
the equatorial ionosphere, which is the source of increased occurrence of EPBs as closely
aligned magnetic field lines with the terminator favors the formation of bubbles [45].
Unlike other ground-based or LEO observations, with the two-dimensional images of
the equatorial and low-latitude ionosphere taken by Global-scale Observations of the
Limb and Disk (GOLD) imager from geostationary orbit provide scopes for unambiguous
measurement of the formation, drifting direction, and evolution of EPBs on a global scale
morphology [46]. Martinis et al. [47] investigated the longitudinal discrepancies in the
onset time and occurrence rate of plasma depletions using GOLD data, demonstrating
that the depletions can occur an hour or more after the onset of EPBs depending on the
season and longitude of observation. Results of Cai et al. [48] reported that EPBs are
clearly discernable in the GOLD nighttime OI 135.6 radiance and may serve as reference
for identifying its link with TEC depletion as observed by GNSS-based measurements.
Recent work of Karan et al. [49] pointed out the unusual appearance of differently shaped
EPBs within a narrow longitude range using GOLD data. This could be due to small-
scale longitudinal discrepancies in the electric field, E-layer electron density, alterations
in neutral wind, or an amalgamation of these parameters. Concurrent investigation of
GOLD and ionosonde observations to determine EPB occurrence rate and EIA morphology
over an extended longitude region have been performed during the 23–29 September 2020
geomagnetic storm [50]. Statistical analysis of GOLD observations resulted in a significant
knowledge on EPB climatology, its periodicity (3 and 6 days), and inverse geomagnetic
activity dependencies during various phases of storms [51].

The development of EPBs can be modulated or inhibited depending on the orientation
and strength of the ionospheric electric fields, the regular characteristics of which are modi-
fied during the magnetically disturbed periods. The consequences, however, can be very
confined and vary from storm to storm and location to location. Earlier researchers have
reported the presence of enhanced [52–55] or suppressed [56,57] scintillations/EPBs during
different geomagnetic storms. Their studies suggest relatively stronger E × B vertical drifts
in the local evening sector due to the superposition of storm-induced eastward penetrating
electric fields with the regular electric fields to favor RTI manifestation. Conversely, Nayak
et al. [56] showed a clear absence of scintillation over the anomaly crest region station
Pingtung, Taiwan during the St. Patrick’s Day geomagnetic storm (17 March 2015). Dugassa
et al. [57] also conducted a regional study over American, African and Indian longitudinal
sectors where the Indian sector exhibited the storm inhibition characteristics in five major
geomagnetic storms of the equinoctial months during 2012–2013. The suppression in
scintillation is due to westward penetrating electric fields and disturbance dynamo electric
fields which creates an unfavorable scenario for RTI manifestations by bringing down the
altitude of PRE [58,59]. Further studies on the ROTI parameters along the Asian longitudes
during different equinoctial geomagnetic conditions reveal triggering and suppression
effects of EPBs during the main and recovery phases, respectively [60]. Tulasi Ram et al. [61]
employed multi-instrumental (ground-based and spaceborne) and multi-station data to
study the onset and suppression of ionospheric perturbations across large longitude sectors
during moderate to severe geomagnetic storms. The results show that the enhancement
(suppression) of the EPBs varies with the onset of the storm and eastward (westward)
penetrating electric fields. Further, modeling studies of Sripathi et al. [62] emphasize the
role of penetration electric fields in the enhancement or suppression of the EPBs around the



Remote Sens. 2023, 15, 4944 5 of 25

global equatorial belt. Although most extreme scintillation activity is expected to occur near
the equatorial region during geomagnetic storms, the severity of the scintillations may vary
depending on the onset time of the storm and phase of the storm (main or recovery) [52,62].
Despite many studies, the occurrence of equatorial plasma bubbles during magnetic storms
has not been fully understood.

Concerning the frequency of scintillation activity at the geographic location of the
present study, Brahmanandam et al. [63] conducted a campaign mode study earlier in
November 2011, confirming intense scintillation scenarios on 6 November 2011 that in-
stigated the ionospheric group to exploit TEC irregularities and scintillation indices at
the location with the establishment of a GNSS ionospheric scintillation and a TEC moni-
tor (GISTM) receiver at KL University, Guntur, India (Geographic 16◦26′N, 80◦37′E and
dip 22◦32′). The recordings from this monitoring unit report weak to strong scintillation
activities at times, associated with a specific number of GNSS satellite signals [64–67]. Con-
sidering the importance of the location, a modern multi-constellation and multi-frequency
GISTM receiver (Septentrio-PolaRx5S) has been established recently in the year 2021 that
records the slant TEC from all the available constellations along with the scintillation
indices and several other parameters [68]. Preliminary observations from this high-end
monitoring unit confirmed instances of scintillations and loss of lock scenarios due to
intense scintillation activity in October 2022 [69–71]. However, most of the earlier inves-
tigations conducted at this particular location are based on observation, modeling and
forecasting of GPS scintillation indices and belong to the previous solar cycle, i.e., Solar
cycle 24. To the best of our knowledge, the multi-constellation scintillation indices and TEC
depletion characteristics are barely explored at this location.

Hence, in this work, we focus on probing the presence of EPBs over the present
location by analyzing the satellite to the receiver slant TEC (sTEC) depletions as well as
phase and amplitude scintillation indices across multi-constellation and multi-frequency
GNSS signals prevailing during the most geomagnetically disturbed days (Dst < −100 nT)
under the 25th solar cycle. It involves addressing the influence of geomagnetic storms on
EPBs in the equinoctial storm days when the regular EPB occurrences prevail over low
latitudes. Our results revealed the strengthening of EPBs on the 23 April 2023 storm event
amongst the three most disturbed equinoctial geomagnetic periods considered in this study
by substantiating the relationship between TEC depletion and scintillation intensities across
multi-constellation and multi-frequency GNSS signals which are discussed in detail in the
rest of the sections. Section 2 provides Materials and Methods, and Section 3 provides
Results and Discussion followed by Summary and Conclusions in Section 4.

2. Materials and Methods

The total electron content (TEC), amplitude scintillation index (S4) and phase scintilla-
tion index (σϕ) data used in this study are obtained from the GNSS ionospheric scintillation
and TEC monitoring (GISTM) multi-constellation, multi-frequency GNSS receiver (Septen-
trio make PolaRx5S) established at a low-latitude location, KL University, Guntur, India
(Geographic 16◦26′N 80◦37′E, dip 22◦32′). The raw data recorded by the receiver at a 50 Hz
frequency is converted to ionospheric scintillation monitoring record (ISMR) format that
contains the TEC values every 15 s along with many other parameters including scintilla-
tion indices, time of the week, elevation angle, azimuth angle, etc., for every minute. To
validate the TEC values recorded by the GISTM receiver, we employ the recorded RINEX
observation files in an alternative TEC calculation software, such as TayAbsTEC [72–74] and
GPS-TEC analysis [75]. It is observed that the results are quite comparable to the GISTM
recordings with GPS-TEC analysis plots apparently coinciding with the recorded TEC out-
puts. The signal combinations and satellite biases handled by the GISTM receiver for each
constellation to determine TEC are presented in Table 1. The station biases corresponding
to the antenna, connecting cable, and receiver are routinely calibrated against SBAS for
better accuracy. In brief, the TEC is measured from P-code measurements, whereas the
dTEC is computed from the carrier phase measurements only. On the contrary, in GPS-TEC
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analysis, the satellite differential code biases (DCBs) are taken from IGS CODE files and
receiver biases are estimated by itself, whereas TayAbsTEC estimates both of the biases
independently for determining TEC. It is worth mentioning that in the present case, the
detrending method is used in the individual PRN signals for calculating TEC depletion
assuming that the common receiver-specific errors are eliminated in the analysis and hence
no external calibration is involved in this study. Table 1 shows the available signals from
various GNSS constellations and their combinations used by the PolaRx5S receiver unit for
estimating scintillation indices and TEC, respectively. At present, the station records data
for GPS, Galileo, and BeiDou at three available frequencies, GLONASS and GAGAN at two
frequencies, and Navigation with Indian Constellation (NavIC) at only one frequency. In
the present study, we do not include NavIC and GAGAN constellations for the TEC variable
as NavIC records data only in L5, whereas TEC recorded by the latter is uncorrected with bi-
ases. In the present study, we select four geomagnetically disturbed days (see Table 2) in the
ascending phase of the 25th solar cycle with a typical threshold of disturbance storm index
(Dst) < −100 nT for analyzing the triggering/suppression of EPBs through signatures of
TEC depletion and scintillation indices in the GNSS signals. The associated interplanetary
magnetic field (IMF Bz) as well as geomagnetic ap index (ap), and Kp indices downloaded
from the Omni Web-NASA server (https://omniweb.gsfc.nasa.gov/form/dx1.html, ac-
cessed on 5 August 2023) are also explored for a clear understanding of the onset and
evolution of the storms.

Table 1. The available frequencies and signal combinations used in the PolaRx5S receiver monitoring
unit established at KL University, Guntur, India for scintillation indices and TEC retrievals under
different GNSS constellations.

S.No.
GNSS
Constellation
(RINEX Symbols)

Available Frequencies (GHz) for Scintillation Indices
Signal Combinations for TEC

Signal 1 Signal 2 Signal 3

1 GPS (G) L1 (1.57) L2 (1.22) L5 (1.17) L1P-L2P

2 GLONASS (R) L1 (1.60) L2 (1.24) NA L1CA-L2CA

3 Galileo (E) E1 (1.57) E5a (1.17) E5b (1.20) E1-E5a

4 BeiDou (C) B1 (1.56) B3 (1.26) B2 (1.20) B1-B2

5 GAGAN (S) L1 (1.57) NA L5 (1.17) L1CA-L5

6 IRNSS/NavIC (I) NA NA L5 (1.17) NA

Here, NA implies not applicable; the GAGAN TEC is not included as the bias is uncorrected and NavIC TEC is
not recorded by the receiver as only one frequency (L5) is available.

Table 2. The extreme values for the geomagnetic indices (IMF Bz, Dst, ap, and Kp) for the strong
storm days in the ascending phase of the 25th solar cycle.

S. No Geomagnetic Indices 27 February 2023 23 March 2023 24 March 2023 23 April 2023

1 IMF Bz (nT) 6.7 0.3 4.6 21.7
2 Dst (nT) −132 −126 −156 −165
3 ap (nT) 94 94 94 56
4 Kp 6.7 7 8 8.3

The presence of bubbles is discovered by monitoring the sudden fall in TEC revealed
in the detrended TEC curve. The detrended TEC curve is obtained by subtracting the
observed TEC from its moving average with a specific window size which determines the
number of observations required to calculate the moving average. Earlier studies used
different window sizes like 10 min [13,76,77], 60 min [38], and 91 min [14], based on the
location and resolution of the input data. We also try a 120 min window size to check
for the fitting of the detrended TEC for possible plasma bubble detection. All 4 window
sizes are used to obtain the detrended TEC curves as shown in Figure 1 (upper panels).

https://omniweb.gsfc.nasa.gov/form/dx1.html
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To ensure that the depletion is due to plasma bubbles and not because of ionospheric
shift perturbations or any bias in the data, we impose thresholds on the depletion curve
characteristics [14]. The TEC depletion depth ∆(sTEC) ≥ 10 TECU, the apparent duration
(tsTEC) of the depletion should be 10 < tsTEC < 180 min, the absolute minimum of the TEC
depletion should be ≥5 TECU, and the maximum value of detrended TEC across the left
and right side of the depletion ≥5 TECU. ∆(sTEC) is defined as the difference between the
minimum value of the detrended TEC curve and the mean of the maximum left and right of
the depletion value. The tsTEC is the time taken by the depletion depth and is the difference
between the times of maximum value on the right and left of the depletion. To demonstrate
the retrieval of TEC depletion parameters through employing different moving average
window sizes, we show the sTEC, its moving average and detrended sTEC for a specimen
GNSS signal (PRN 32 of GPS and PRN 89 of Galileo constellations) in Figure 1. From our
observations, it is realized that the 60 min window size is the most suitable candidate for
inferring the TEC depletion characteristics coping with the plasma bubble criteria. The
10 min window size underfits the TEC detrended curve, with shallow TEC depletions
that relate to the medium-scale travelling ionospheric disturbances (MSTIDS) and lower
atmospheric gravity waves [77,78]. The 90 min and 120 min window sizes overfit the data
and include some of the depletions with more values of depletion depth and depletion
duration from the plasma bubble criteria. The window size with the 60 min moving average
is best suited for both shorter and longer plasma bubble operations.
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Figure 1. Detrending sTEC to determine depletion in (a) PRN 32 (GPS) and (b) PRN 89 (Galileo) on
23 April 2023. The upper panels show observed sTEC (black) and sTEC trend with variable window
sizes (10 (cyan), 60 (red), 90 (green), and 120 (blue) minutes). The lower panels show detrended sTEC
(sTEC depletion) in respective PRNs.

In Figure 2 (upper panel), we show the sTEC (black line) for PRN 32 of GPS and PRN 89
of Galileo constellations along with the 60 min moving average (blue line) and their detrended
TEC (red line with marker ‘x’). The zoomed-in version of respective depletions (red line with
marker ‘x’) indicating the calculation of depletion depth (∆(sTEC)) and its apparent duration
(tsTEC) is presented in Figure 2 (lower panel). A zero line (dark grey) is drawn in this figure to
differentiate the positive and negative values in the detrended TEC curve.
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storm event on 23 April 2023.

The depletion depth (∆(sTEC)) is calculated as in Equation (1):

∆(sTEC) = abs(sTECminimum) +
sTECdL + sTECdR

2
, (1)

where sTECminimum is the minimum value in the detrended TEC curve, sTECdL and sTECdR
are the nearby maximum values on the left and right of the absolute minimum value in the
detrended TEC curve as shown in Figure 2b. The apparent duration or the depletion time
(tsTEC) is calculated as in Equation (2).

tsTEC = UT(sTECdR)−UT(sTECdL), (2)

where UT (sTECdL) is the time at the sTECdL, and UT (sTECdR) is the time at the sTECdR
in the TEC detrended curve as shown in Figure 2b. PRNs from all the GNSS constellations
fulfilling the threshold values for the indication of plasma bubble occurrence are chosen
in this study. TEC depletion is observed in some PRNs that do not fulfil the thresholds of
possible plasma bubble occurrence. This depletion may be due to the F layer anomalies,
ionospheric density redistribution or MSTIDs. Further, the ionospheric delays corresponding
to the frequencies are calculated using the sTEC depletions for the satellite PRNs affected by
the EPB.

The ionospheric delays corresponding to the depletion depth in any radio signal can
be obtained by using Equation (3).

I =
40.31071

f2 ∗ ∆(sTEC) (3)
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where ‘I’ denotes the ionospheric delay in meters, ∆(sTEC) is depletion depth in TECU,
and f is the frequency of the radio signal in Hz.

In this study, the sTEC is used in all the computations and observations which is
sometimes mentioned as TEC. The effect of the EPB on the other available frequencies of
all the constellations is observed in terms of S4 and σϕ that are recorded by the GISTM
receiver along with observational TEC. To further substantiate the connection between
TEC depletion at the location and prevailing EPBs over the Indian longitude sector on
23 April 2023 geomagnetic storm day, the ROTI variations at the present location (KLEF)
and the available geodetic GNSS stations under International GNSS Service (IGS) stations
(IISC, HYDE, and LCK3), ranging from near equatorial latitude to outer edge of equatorial
ionization anomaly (EIA) crest latitude, are obtained from SIMuRG: System for Ionosphere
Monitoring and Research from GNSS [79].

3. Results and Discussion

The possible plasma bubble occurrences for selected geomagnetically disturbed days,
whose Dst index (Dst < −100 nT) falls in the category of strong geomagnetic storms
under the ascending phase of Solar cycle 25, are investigated using the sTEC depletion
characteristics. Based on the above criteria, only four storm days, namely 27 February,
23 and 24 March and 23 April 2023 (referring to three geomagnetic storm events), are
chosen for analysis in this study [80]. Figure 3 presents the variation of interplanetary and
geomagnetic indices (IMF Bz, Dst, ap, and Kp) for the chosen storm days. All selected
days show a high Kp value (Kp > 5) with an increased ap (ap > 90 nT) except for April
23 which presents the highest ap index (ap = 56 nT). Lan et al. [81] showed that some
days with ap <50 nT showed strong ionospheric irregularities. The Dst is also reported
to be less than −100 nT on all days, suggesting strong geomagnetic storms [82]. April 23
recorded the lowest Dst (−165 nT) of all the disturbed days. Earlier research showed an
increase in the occurrence probability of EPBs with magnetic activity wherein the main
phase of the storm coincides with the local dusk time, thereby uplifting the F layer plasma
through penetrating eastward electric fields and facilitating the RTI development [54,83].
However, some studies revealed the magnetic activity inhibiting the occurrence of the
EPBs in the presence of disturbance dynamo electric fields (DDEFs) and westward electric
fields, forcing the F layer electron density downward [58,84]. It can be marked that the
IMF Bz variance is higher (22 nT) on 23 April than on the other days, suggesting that a
sudden change in its polarity can manipulate the equatorial electric fields for triggering
the pre-reversal enhancement (PRE) scenario that seeds the formation of EPBs [42,85]. The
extreme values of all the geomagnetic indices for the storm days are given in Table 2.

The σϕ, S4, and sTEC for all the available constellations of the storm day, the preceding
day, and the successive day for the three storm events (27 February, 23, 24 March, and
23 April) are presented in Figures 4–6, respectively. We observe a severe scintillation
activity in terms of high S4 and σϕ on the 23 March and 23 April 2023 storm days. It is
also evident that during all the storm days, the pre- and post-storm periods presented
high scintillation activity in terms of S4 and σϕ except for the 24 March and 23 April
post-storm periods. Although there is a high geomagnetic activity observed in all the
storm days (see Figure 4), the scintillation activity is suppressed in the 27 February and
24 March (Figures 5 and 6) storm days compared to pre- and post-storm periods. The
possible reasons for the suppression of the scintillation are due to the reduction in the F
layer height due to westward prompt penetration or the disturbance dynamo electric fields
(PPEFs/DDEFs) reducing the PRE which is responsible for the possible plasma bubble
manifestation and thereby enhancing the scintillation activity. The role of PPEF or DDEF
during the geomagnetic storm to trigger/suppress EPBs by manipulating the zonal electric
field is summarized in the earlier literature [7].
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To identify the PRNs affected by significant depletions and thereby meet the criteria
for their association with EPBs, we concentrate on the regular occurrence duration of EPBs
(15:00 UT to 18:00 UT) for all storm events. From Figure 7, it can be seen that the TEC
depletions (red color) meet the plasma bubble criteria only on 23 April 2023. On the other
hand, the rest of the geomagnetic storm events (27 February, 24 March) hardly evidence
any noticeable TEC depletion (grey color), inferring that the regular post-sunset EPBs
were suppressed during these periods owing to the disagreement of electrodynamics for
manifesting a PRE at the evening terminator. The TEC value is additionally reduced by
processes such as the rapid nighttime recombination of the F-layer followed by density
re-distribution. These two processes result in shallow TEC slopes and lack the recovery
section; however, they both were removed from our TEC depletion statistics as they do not
satisfy the association criteria for the presence of EPBs. Although there are TEC depletions
(blue color) observed on 23 March 2023, they hardly meet the thresholds set for EPBs and
may rather incur noises due to gravity waves, neutral wind shear, medium-scale travel
ionospheric disturbances (MSTIDs), etc.
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Figure 7. The observed sTEC for all the available GNSS constellations (GPS, GLONASS, Galileo, BeiDou)
with depletion depths ∆(sTEC) < 5 TECU (grey), 5 ≤ ∆(sTEC) < 10 TECU (blue), and ∆(sTEC) ≥ 10
TECU (red) during the four geomagnetic storm days considered in this study.

Figure 8 depicts the ionospheric piercing points (IPP) at each time of the observed
satellites above the receiver location during the geomagnetic storm event on 23 April
2023 determining the localization characteristics of EPBs corresponding to GNSS-observed
scintillation indices. The color bar in each plot (left and right) indicates the intensities
for the S4 and σϕ, respectively. The shaded points represent the IPP positions with no
significant scintillation intensity. The red and green line shows the location of the magnetic
equator and the approximate equatorial ionization crest anomaly (EIA) location. We note
that lower threshold limits are considered for the respective S4 and σϕ index plots to
eliminate the presence of noises which are irreverent to the scintillation phenomena. In
Figure 9, we analyze the ROTI variation on 23 April 2023 geomagnetic storm day at the
present location (KLEF) and that obtained from SIMuRG for other geodetic GNSS stations
under the IGS network (IISC, HYDE, and LCK3), ranging from near equatorial latitude
to outer edge of equatorial ionization anomaly (EIA) crest latitude. The results confirm
the prevailing TEC irregularities confined to the EIA region, substantiating the connection
between TEC depletion at the location and prevailing EPBs over the Indian longitude sector.
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The results are in good agreement with the earlier review of EPBs in the global equatorial
and low-latitude region indicating the latitudinal extent of bubbles of approximately ±15◦

geomagnetic latitudes [7].
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Figure 8. Geographic map of India showing the location of the GISTM receiver and EPBs overhead
from the recorded scatter points of S4 (left) and σϕ (right) indices at ionospheric piercing points
(IPPs; gray color). The color bars indicate the level of the scintillation indices. The approximate
locations of magnetic equator and EIA crest are shown in red and green color contours, respectively.
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Figure 10 depicts the TEC (black) retrieved from PRNs 2, 10, 18 and 32 belonging to
the GPS constellation and the respective scintillation indices (S4 in blue and σϕ in orange)
for Signal 1 (refer to Table 1) along with the elevation angles (pink) on 23 April 2023. The
possible association of EPBs can be inferred from the significant TEC depletions in the
signals from selected PRNs. We note that the TEC depletion time and the scintillation
activity are between 15:00 UT and 18:00 UT. In all the above PRNs, the minimum in the
TEC depletion curve synchronizes with the maximum value of scintillation indices (S4 and
σϕ). All the depletions in the TEC detrended curve satisfy the plasma bubble criteria in
terms of depletion depth (10 to 45 TECU), apparent duration (10 to 45 min), and maximum
values (12.6 to 18.5 TECU) around the depletion. When an anomaly is observed in multiple
station satellite pairs, the anomaly is due to the real ionospheric effect and not due to the
receiver bias or data error. To further emphasize the association of EPBs, we analyze TEC
depletions from other available GNSS constellations like GLONASS, Galileo, and BeiDou
as multi-GNSS measurements could contribute to increasing the spatial coverage of the
ionosphere and better understanding the local morphology of its fluctuations [86].
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Figure 10. The sTEC (black), elevation angle (pink) and their respective scintillation indices S4 (blue)
and σϕ (orange) of the GPS PRNs 2, 10, 18 and 32, confirming depleted TEC between 15:00 UT and
18:00 UT on the 23 April 2023 geomagnetic storm day.

In Figure 11, we show the TEC (black) with elevation angle (pink), S4 (blue) and σϕ
(orange) of Signal 1 for PRNs 44, 58 and 59 under the GLONASS constellation. PRN 59
seems to be indicating the presence of EPB for a longer period than the other two PRNs
as it is showing multiple depletion depths. All the depletions in the span of 15:00 UT to
18:00 UT satisfy the plasma bubble criteria and agree well with the S4 and σϕ variations.
Figure 12 depicts the TEC (black), elevation angle (pink), S4 (blue) and σϕ (orange) of
Signal 1 for the PRNs affected by the plasma bubble in the Galileo constellation. Only two
PRNs (82 and 89) are affected by the plasma bubble. The depletion in PRN 89 is higher than
in PRN 82 and the elevation angle is >40◦. Figure 13 projects the TEC (black) with elevation
angle (pink), S4 (blue) and σϕ (orange) of Signal 1 for the PRNs affected in the BeiDou
constellation due to EPBs. A good number of satellites (PRN 142, 148, 149, 152, 153, and 156)
from this constellation witness depletions fulfilling the criteria for possible association of
EPBs. In the BeiDou constellation, more than two depletion depths are observed in all the
PRNs showing the sensitivity of the constellation to the EPBs which are verified to match
well with the collocated scintillation indices (S4 and σϕ). Hence, from Figures 10–13, it is
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evident that in all the constellations, the observed PRNs are encountered with depletions
in TEC for a short period within the span of 15:00 UT to 18:00 UT (20:30 LT to 23:30 LT) that
falls in the local post-sunset hours to midnight. The results are in good agreement with
the earlier studies [38,39,87]. It is important to mention that an elevation angle threshold
(>30◦) is applied throughout the study irrespective of PRNs to avoid contaminations with
possible multipath and ground interference errors. The S4 and σϕ indices recorded by the
receiver are also seen to be ranging from moderate to high-intensity levels, whose peaks
follow the TEC depletion characteristic curves, suggesting a close relationship between the
depletion and scintillation indices under the influence of EPBs.
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The maximum ∆(sTEC), tsTEC, and the corresponding delays of available frequencies
in the respective constellations are given in Table 3. The GPS shows the highest depletion
depth of ~45 TECU within the maximum apparent duration of 48 min. The Galileo and
GLONASS also show extended duration but with lesser depletion depths, suggesting
that there may be less impact of EPBs on these constellations. The GPS exhibits a high
ionospheric delay of 7.29 m in their L1 frequency followed by the GAGAN with a delay of
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6.8 m in L1. BeiDou shows the least ionospheric delay in B1 (5.28 m) and the highest in B2
(8.83 m), unlike the GPS which exhibited the lowest in L1 (7.29 m) and the highest in L3
(13.09 m). Galileo shows the lowest ionospheric delay of 3.56 m out of all the constellations.
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TEC between 15:00 UT and 18:00 UT on the 23 April 2023 geomagnetic storm day.

Table 3. The maximum sTEC depletion depth ∆(sTEC), apparent duration tsTEC, and their corre-
sponding ionospheric delay for all the GNSS constellations and their available frequencies.

S. No GNSS Constellation
Maximum Depletion

Depth ∆(sTEC) in TECU
Apparent Duration
(tsTEC) in Minutes

Ionospheric Delays in Meters

Signal 1 Signal 2 Signal 3

1 GPS (G) 45 48 7.29 12.05 13.09
2 GLONASS (R) 25 45 3.92 6.47 -
3 Galileo (E) 22 40 3.56 5.87 6.40
4 BeiDou (C) 32 28 5.28 8 8.83
5 GAGAN (S) NA NA NA NA NA
6 IRNSS/NavIC (I) NA NA NA NA NA

Here, NA implies not applicable, the GAGAN TEC is not included as the biases are not being corrected in the
present receiver, whereas NavIC TEC is not recorded by the receiver as only one signal (L5) is tracked at present.

To further understand the severity of scintillation activity, we classify S4 and σϕ into
weak (0.17 ≤ S4 < 0.3; 0.15 ≤ σϕ < 0.5), moderate (0.3 ≤ S4 ≤ 0.5; 0.5 ≤ σϕ ≤ 0.8), and
strong (S4 > 0.5; σϕ > 0.8) following the acceptable limits [88,89]. Figure 14 shows a clear
enhancement of scintillation indices (S4 in blue and σϕ in orange) from 15:00 UT to 18:00 UT
in Signal 1 under GAGAN (PRNs 127, 128, and 132). We note that all the above PRNs are
geostationary satellites (GEOs) having a fixed elevation and azimuth from the location of
observation. Further, scintillation indices S4 (blue) and σϕ (orange) for Signal 2 are given
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in Figure 15a for GPS, GLONASS, and Galileo and in Figure 15b for BeiDou constellations.
It is important to mention that GAGAN does not have any frequency matching with Signal
2, whereas the NavIC system does not carry legacy Signals 1 and 2 as per the categories of
signals listed in Table 1. The high intensities of the S4 and σϕ coincide with the depletion
depth. While the GPS constellation has the maximum S4 values compared to all the
other constellations, BeiDou shows the maximum level of σϕ among all constellations. In
Figure 16a,b, we present S4 and σϕ variations for Signal 3 under global (GPS, Galileo, and
BeiDou) and Indian (GAGAN and NavIC) constellations. However, we cannot present the
corresponding scintillation indices for GLONASS as it does not include Signal 3 at present
in the ISMR recordings. Figures 15b and 16a show frequent enhancement of scintillation
indices corresponding to signals under the BeiDou constellation, demonstrating relatively
longer effects of EPBs. The scintillation values in all the PRNs in Figures 13–16 lie within
moderate to strong scintillation activity as per the classification scheme for S4 and σϕ
followed in our study. A quick overview of the maximum levels of S4 and σϕ in all the
GNSS constellations and their respective frequencies can be obtained from Table 4. It is
also clear from S4 and σϕ variability that the level of the scintillation effect is inversely
proportional to the signal frequency demonstrating relative dependance of scintillation
effects on the penetrating power of the signals. The results reported are consistent with the
previous studies showing the scintillations associated with EPBs during the post-sunset
hours and their decaying after the midnight period [14,39,76]. Moreover, the impact of the
depleted TEC during scintillation activity is realized in terms of ionospheric delays that are
supported by enhanced S4, σϕ, and ROTI indices in our study.

Table 4. The maximum scintillation indices (S4 and σϕ) of the available frequencies in the GNSS
constellations on the 23 April 2023 geomagnetic storm day.

S.No GNSS Constellation
Signal 1 Signal 2 Signal 3

Max S4 Max σϕ Max S4 Max σϕ Max S4 Max σϕ

1 GPS (G) 0.79 0.61 1.00 0.64 1.09 0.69
2 GLONASS (R) 0.45 0.73 0.70 0.90 NA NA
3 Galileo (E) 0.58 0.57 0.90 0.73 0.86 0.72
4 BeiDou (C) 0.68 0.80 0.99 0.99 0.92 0.86
5 GAGAN (S) 0.62 0.75 NaN NaN 0.94 0.93
6 IRNSS/NavIC (I) NA NA NA NA 0.97 0.98

Here, NA implies not applicable as the corresponding parameters are not available in the respective constellations
recorded by the receiver.
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Figure 15. (a) The S4 (blue) and σϕ (orange) of Signal 2 for all the available PRNs, showing the TEC
depletions in the GPS, GLONASS and Galileo constellations between 15:00 UT and 18:00 UT on the
23 April 2023 geomagnetic storm day. (b) The S4 (blue) and σϕ (orange) of Signal 2 for all the
available PRNs showing the TEC depletions in the BeiDou constellation.

Concerning the association of TEC depletions and scintillation activity with the occur-
rence of EPBs at the present low-latitude location, the EPBs are considered to be the depleted
plasma density regions typically seen under the influence of the equatorial electrodynamics.
In the present work, we determine the TEC depletion characteristics by detrending the
high-resolution (15 s) sTEC observables from signals under different GNSS constellations
at a low-latitude location with a 60 min window size during the geomagnetically disturbed
days. Threshold constraints like depletion depth (10 TECU) and depletion duration (10 to
180 min) are applied to selectively choose the sTEC depletions that highly correspond to
the EPB occurrences over the region. Magdaleno et al. [90] employed a moving average
window of 10 min to extract the depletions associated with EPBs by a depletion depth
threshold of 5 TECU. Similarly, Mersha et al. [38] used a 60 min window size to calculate
the moving average and obtained the detrended TEC to find out the possible occurrence
of the plasma bubble with a minimum depletion depth of 10 TECU. A similar method
was applied by Portillo et al. [14] with a 91 min window size and 10 TECU depletion
depth threshold for a 10 min resolution sTEC data to find the plasma bubble activity in
the African region. However, the earlier literature and the observations from the present
work demonstrate that a 60 min window size with a depletion depth of 10 TECU is the best
combination of thresholds to suitably identify the depletions highly associated with EPBs.
Thus, the present method of indirectly detecting the presence of EPBs could disregard TEC
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depletions due to the travel ionospheric disturbances, F-layer disturbances, and reduced
density owing to the spread of ions by the Fountain effect.
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Figure 16. (a) The S4 (blue) and σϕ (orange) of Signal 3 for all the available PRNs showing the TEC
depletions in the GPS, Galileo, and BeiDou constellations between 15:00 UT and 18:00 UT on the 23 April 2023
geomagnetic storm day. (b) The PRNs of the GAGAN and NavIC in constellation having severe scintillations
(S4 (blue) and σϕ (orange)) between 15:00 UT and 18:00 UT on the 23 April 2023 geomagnetic storm day.

Moreover, attributing the TEC depletion characteristics to the prevailing EPBs is
supported by a strong agreement with the high-intensity scintillation indices in our study.
It is important to mention that the shallow sTEC depletions correspond to the weak
or no-scintillation intensity in all the above PRNs and constellations, emphasizing the
weakening of the EPB after the local midnight periods that is in agreement with the
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previous studies [91]. The upward E × B drift is a crucial factor in the investigation of
ionospheric scintillations because it triggers plasma density anomalies, which produce
greater scintillations at far low-latitude locations than at the magnetic equator [9]. The
present study at a low-latitude location enabled us to emphasize the strong relationship
of the TEC depletion and scintillation indices which are altogether associated with the
EPBs and are responsible for degrading the performances or even causing loss of locks in
satellite-based services.

4. Summary and Conclusions

In this study, the sTEC depletion characteristics are investigated during the geomag-
netic storm days (Dst < −100 nT) in the ascending phase of Solar cycle 25 to ascertain
possible triggering or suppression of the EPBs. Following the criterion for detecting the
presence of EPBs from the corresponding sTEC depletion characteristics, such as depletion
depth ∆(sTEC), apparent duration (tsTEC), and maximum values around the depletion,
we confirm that out of the three storm events considered in this study, only one event
(23 April 2023) is associated with an enhanced EPBs, whereas, during the rest of the events,
the regular EPBs are notably suppressed. The storm events on 27 February as well as
23 and 24 March in 2023 report inhibited TEC depletion, confirming suppressed EPBs
during the period that is supported by subdued S4 (0 to 0.48) and σϕ (0.01 to 0.59) indices.
However, the observations on 23 April 2023 confirm that all GNSS constellations witness
sTEC depletions between 15:00 UT and 18:00 UT, which is in good agreement with the
recorded scintillation indices (S4 and σϕ). The ROTI variations at locations ranging from
near equatorial latitude to the outer edge of the EIA crest latitudes in the same longitude
sector corroborate the prevailing irregularities due to EPBs above the region. In brief, the
characteristic depletion depths (22 to 45 TECU) and depletion times (28 to 48 min) across
different constellations confirm the triggering of EPBs during the geomagnetic storm event
on 23 April 2023. We argue the possible enhanced dusk time pre-reversal enhancement
(PRE) is the cause for the instability observed in the sTEC magnitudes.

Moreover, 23 April 2023 witnessed moderate-to-strong scintillations across signals
from all constellations as per the classification scheme based on the scintillation indices.
The signals from GPS show the largest depletion of ~48 TECU within an apparent duration
of 45 min, whereas that of Galileo present the least depletion depth of ~22 TECU with an
apparent duration of 40 min. Although the signals from the BeiDou constellation have the
smallest duration of 22 min, they evidence repeated depletions during the observed span,
confirming relatively more vulnerability to the storm onset. We perform an analysis of the
equivalent ionospheric delay to realize the consequences of TEC depletions in respective
frequencies of the GNSS constellations that confirms the maximum delay (~13.09 m) in GPS
L5, whereas the minimum delay (3.56 m) is seen in Galileo L1. Similarly, the maximum
S4 is observed in the GPS constellation, while the largest σϕ is observed in the BeiDou
constellation in all three frequencies.

In brief, the present objective attempts to strengthen the relation between sTEC deple-
tion and scintillation indices observed through a high-rate GISTM receiver; both effects are
the consequences of the development of EPBs at the equatorial and low-latitude regions.
The future assignment of this work is to include a greater number of geomagnetic storms
as they occur for substantiating the hypothesis adopted in this study. An established
relationship between TEC depletion and EPBs could pave the way for employing the most
abundant traditional geodetic GNSS receivers established under IGS and UNAVCO along
with other regional and individual stations to participate in understanding and modeling
the sTEC depletions associated with EPBs and developing regional as well as global scin-
tillation mitigation strategies. In addition, the opportunity of multi-constellation signal
availability opens a doorway for maneuvering the adaptation of interoperability among
signals to enhance the performance of satellite-based navigation, positioning and timing
solutions under intense ionospheric scintillations. The supporting method trailing the
presence of EPBs through TEC depletion threshold criteria used in this study opens the
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scope for utilizing non-scintillation geodetic GNSS receiver observations as the abundance
of scintillation monitoring receivers, ionosonde, radar, and other observatories are sparse
across any region compared to the spread of geodetic GNSS observatories. Nevertheless,
the study foresees scopes for a better understanding of the effects of plasma irregularities
(scintillations, fading and depletions) on GNSS signals due to the occurrence of EPBs
and developing their mitigation techniques through improved modeling and forecasting
services. Our attempts at such objectives coincide with the global efforts for mitigating
scintillation effects in satellite-based critical and dynamic services and applications.
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