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Abstract. An analysis of low order mode coupling equations mode exists in magnetized plasmas in both collisional and
is used to describe the nonlinear behavior of the Rayleigh-collisionless regimes. For example, in laboratory plasma, RT
Taylor (RT) instability in the equatorial ionosphere. The non- mode arises due to an unfavorable curvature in the magnetic
linear evolution of RT instability leads to the development field in the presence of a pressure gradient. Sometimes this is
of shear flow. It is found that there is an interplay betweenknown as curvature driven interchange mode (Pogutse et al.,
the nonlinearity and the shear flow which compete with each1994). The RT instability is believed to cause the intense
other and saturate the RT mode, both in the collisionless andighttime equatorial F region turbulence, known as equato-
collisional regime. However, the nonlinearly saturated stateyial spread F (Basu, 1997). Thus, we expect that this work
normally known as vortices or bubbles, may not be stablehas a much wider application than might be sought from spe-
Under certain condition these bubbles are shown to be unstaific equations under consideration. A considerable amount
ble to short scale secondary instabilities that are driven by thef work has been done in this area, and yet there is an in-
large gradients which develop within these structures. Someompatibility of theoretical and experimental results which
understanding of the role of collisional nonlinearity in the suggests the possibility of obtaining more physics via non-
shear flow generations is also discussed. linear analysis and computer simulations.

As we will see due to the presence of the nonlinearities, the
RT mode dynamics becomes more complicated. A complete
theory of the full nonlinear system is very difficult. However,

a self consistent numerical simulation might improve our un-
derstanding. Still the question remains what can be done
analytically? To help us answer this question, we do have
some methods for treating certain aspects of complex non-
gations there are many important motivations which still at- linear behav_lor ofa pIa‘sma. O.ne such methpd,,the low or_der
tract attention to different branches of physics, namely as—m,Ode coupling effect, ‘Galerkin approximation’, is used n

trophysics (Arons et al., 1976), plasma fusion (Finn, 1993),thls study. _The_ present day strategy for a better th_eoretlcal
space (Amatucci et al., 1996; Penano et al., 1998), atmoynderstandmg is to apply different levels of perception and

spheric (Sazonov, 1991) and geophysics (Wilcock and Whitelfnowledge' A coarse grained’_ view will lead to a g.eneral
feeling of which processes are important. More detailed and

head, 1991), etc. The primary source by which this insta- . o
narrow views on specific processes are necessary for the un-

bility is triggered is the gravitational force acting on an in- derstanding of the ‘elementary processes'. They will thereby
verted density gradient (e.g. a heavy fluid supported b :
vy (e.g y bp y a\ead to an estimate of the potential that the various ‘elemen-

light fluid). The basic mechanism of this instability, an inter- } _ : :
change of flux tube to tap the gravitational free energy, is thedy Processes do have in the f)\(erall dynam|(,:al gvoluuon.
same mechanism that drives the Rayleigh-Benard instabilit))n this work, we concentrate on 'simple ”.‘Ode's which ha}’e
in the thermal convection of a gravitationally unstable fluid. proven to be good ca,1nd|dates for modeling some of the ‘el-
In this case the mean temperature gradient of the fluid pIay?mentary processes’. However, we should not expect that

a similar role as the density gradient and the buoyancy forcénath_er_natical rigoros_ity can go along .With broad qua_mtitgtiv_e
acts similar to the gravity. Apart from fluid dynamics RT predictions for experiments/observations. The main aim is
to sharpen our understanding of the principal processes that

Correspondence td3. S. Lakhina are possible due to nonlinearities. It will be emphasized that
(lakhina@iig.iigm.res.in) the ‘simple models’ are quite rich in their phenomenological

1 Introduction

The Rayleigh-Taylor (RT) instability has been extensively
studied in a wide range of physical contexts both experimen
tally and theoretically. In spite of a long history of investi-
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aspect. Due to their low-dimensional nature, our increasingsition of velocity shear. Recently, in a complementary inves-
knowledge of nonlinear dynamics allows us to analyze theirtigation, Finn (1993) has demonstrated by numerical simu-
behavior in detail. Many aspects, which previously were lations that the velocity shear may be self consistently gen-
thought to follow only from very complicated descriptions, erated since the RT vortices are themselves unstable to for-
can be explained by simple models. mation of velocity shear. The observed process of shear flow

Rayleigh-Taylor instabilities, as they are applied to the generation is the combination of several processes, but the
ionosphere, can be divided into two categories: collisionalmost ‘robust’ processes are density profile flattening via non-
and inertial. In the collisional limit, the ion-neutral frequency linear convection, and the generation of a shear component
is dominant, and;, > o, wherey;, is the ion-neutral col- via Reynolds stresses. According to the simulation results,
lision frequency andv is the mode frequency; in the iner- these processes seem to be irrelevant to the particular details
tial limit, ® > v;, and neutral collision may be neglected. of the plasma density and potential structures. Therefore,
Most of the research for nonlinear RT mode in the iono- their description in terms of a low-dimensional model, which
sphere has been restricted to collisional domain, althoughwe will be considering here, is quite reasonable. As it has al-
it has been shown that inertial effects are important in theready been mentioned, such a model could help in scanning
high-latitude ionosphere. The influence of transverse veloca wider range of plasma parameters and elucidate the physics
ity shear on Rayleigh-Taylor instability has been well investi- of the phenomenon.
gated in the linear theory by various authors, especially, Guz- The rest of the paper is organized as follows. In Sect. 2,
dar, Satyanarayana, and their collaborators (Guzdar et alg simple physical model for RT instability is presented and
1982; Satyanarayana et al., 1987). They have found thathe basic equations are derived. In Sect. 3, we have rederived
a sheared velocity flow can substantially reduce the growtithe dispersion relation for the RT mode and its collisionless
rate of a Rayleigh-Taylor instability in the short wavelength and collisional branch. In Sect. 4, a few mode representation
regime. They have also discussed the application of this reis outlined and the nonlinear evolution of collisionless and
sultin ionospheric plasma (e.g. equatorial spread F and ionoeollisional RT mode is presented analytically. In Sect. 5, sat-
spheric plasma clouds). It is also known that RT mode mayuration effect of velocity-shear is shown more realistically.
self consistently generate a velocity shear which can then stan Sect. 6, a model calculation is presented for the demon-
bilize the mode (Finn, 1993). In this report we study the ef- stration of secondary instability due to bubbles. The role of
fect of self generated velocity shear on the Rayleigh-Taylorcollisional nonlinearity in the flow generation is discussed
mode to gain a better understanding of the theories of turbuin Sect. 7. We conclude in Sect. 7 with a discussion of our
lence and transport studies. results.

In the literature there exists a systematic numerical simu-
lation (Zalesak et al., 1982) for the evolution of the spread F ) )
bubbles consistent with experimentally measured ESF envi2 Modeland basic equations

ronment. This phenomena is explained in terms of the non- . .
: . o . - Development of a total self consistent and comprehensive
linear evolution of the gravitationally driven collisional RT

instability. Results indicate that there is a possibility of a theory which describes the nonlinear properties of RT mode

. oo :ilpplied to the ionosphere is very difficult in many aspects.
secondary instability in the presence of an eastward neutra\n this report we have taken the vastly used and best illus-

wind. However, in our analysis, we have pomte_d out that thetrated model existing in the literature (Hassam et al., 1986;
large-scale bubble development of strong gradients could b?(eskinen etal.,, 1979)

the source of a ‘'secondary instability'. Therefore, following The nonlineér fluid équations used to describe the electro-
the similar argument given in Burlaga (1991), we can sug-

) . static RT instability are the continuity and momentum equa-
gest thatthe formation anq dgstr uct'|on of'coher.ent structureﬁons for the electrons and ions. We model these equations
in a turbulent state of ESF is indicative of intermittency. Mo-

. . . in a three-dimensional slab geometry with the ambient mag-
tivated by these facts, we have carried out an analytical StUd¥1etic field directed in the, direction. For the purpose of
of equilibrium and stability of nonlinearly generated RT bub- relating this geometry to the ionosbheric situations we em-
bles in this paper. We have taken the point of view that theploy the standard convention whevés vertically upward (in
transition to turbulence may be due to the formation of co-

) . . . the direction of the ambient density gradierty = No(x),
herent vortices by nonlinear saturation effects and their SUbNo‘ldNo/dx — L1 = 0, whereL, is the density gradient

sequent destruction due to excitation of fine scale secondar . ; .
; - : i . cale length andg is eastward which will be referred to as
instabilities when certain critical conditions are met. The . oo -

. ) . the horizontal or zonal direction. The gravitational accelera-
coherent nonlinear vortex solutions of the Rayleigh-Taylor .

wave have been investigated by several authors in one antI nis in the—x direction fg = —ge,). For this situation the
9 y ﬁasma is unstable to RT instability, singe VNg < O.

e . For e system descred sbove e fute ey — 0
y Y y Yho variation along the magnetic field), RT instability is ex-

Finn, and others (Flaherty et al., 1999; Finn etal., 1992). In ected to be the fastest growing instability. The fluid equa-
the past, it has been shown by many authors (Guzdar et aIp L 9 g Ins Y- S q
tlons can be simplified by the following assumptions:

1982; Satyanarayana et al., 1987) that RT instability of a
magnetized plasma may be saturated by the external impo- 1. We assume, that electrons are warm and ions are cold.
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The assumption of cold ions, i.e. the neglect of thedue to the frictional force between electrons and iofis;
ion temperature, is a shortcoming, because this elimi-is the electron temperature agd(E = —V¢) is the elec-
nates the ion diamagnetic drift which introduces the fi- trostatic potential. Similarly, the ion velocity is determined
nite Larmor radius effect (FLR) that could play a sta- from Eq. (3) and is given by

bilizing role on RT instability, particularly in the short

wavelength regimép; > 1, (wherep; is the meanion V;=V;o+V; = iey + e, xV

Larmor radius and is a typical wave number) (Huba §i B ~

et al., 1996). One advantage of settifig< 7, is that B (i . ) V.é- @ﬁv (l) ©)
the kinetic effect, such as Landau damping, will play no )t Qe Q; no)’

I dth tem i Ihd ibe by the fluid model. . . _ .
role and the system Is wetl describe by the fiuid mode where the terms on the right-hand side are equilibrium gravi-

2. The wave electric field is virtually electrostatic, since tational drift and perturtE x B drift, polarization drift, Ped-
the plasma pressure is much smaller than ambient magersen drift and drift due to electron and ion friction, respec-
netic energy density; tively andd/dt = 9/3t + V; - V. In solving V;, we have

) - ) neglected ion viscous term~( v;;), since they are smaller

3. The elggtron a.nd ion dens[tles are eq.ual (quasrneutrahthan Pedersen drift contribution (v;,). Herecf = T,/m;is
ty condition), since we are interested in the wavelengthshe jon sound speed. By substitution of these velocities into
much larger than Debye length; Egs. (4) and (1), we arrive at the coupled set of equations for

4. We assume that a background neutral density exists with€ normalized potentiai#) and density ) fluctuations:
vin, the ion-neutral collision frequency and the electron-

on
neutral collision frequency may be neglected. Since in (— +e, xVo- V) Vid) ~ oy +v;,Vn-V¢ =
the F regionv,,/ Q. < vi,/Q; (; is the cyclotron Y 5
frequency of the specied, we assume;, < ;; —vinVi¢, (7)
) ad
5. The waves are assumed to propagate exactly perpendi¢-— + e, x V¢ - V) n— 8—¢ = DV?n. (8)
y

ular to the ambient magnetic field, since these waves

suffer the least diffusive damping; Note that in the density equation (), = veipez arises, due

6. The electron inertia is neglected, whereas the ion inertid® €lectron ion collisions that introduce an effective damp-
is retained. Itis shown that finite ion inertia polarization ing rate. Whereo, = vi./Qevie = Te/m. andQ, =
drift plays a significant role in the evolution of the RT (¢B/m.c). It may be seen that Egs. (7) and (8) are same as
instability in the inertial regime» > v;,, wherew is the ~ the basic equations in Hassam et al. (1986), except for the

mode frequency. Vn - V¢ termin (7). The variables transform as follows:
With these restrictions, the RT instability in the F region of g X,y 7 ¢ Ly ¢
the ionosphere can be described by the following set of equat . L L. %Y "o -y S 12 - ¢
tions (Huba et al., 1986): " 8 "
L D |L
on A el P lia D
E"FV(YZVJ) =0, (1) Vin g — Vin; L% 2 — D.
1 T, V
0=—i<E+—VexB)——e—n
e ¢ e 7 3 Linear instability
—vei (Ve —=V;), (2
d e 1 Here we shall recapitulate the local {,, > 1) linear disper-
<E + v’”) Vi= mi <E o Vix B) T8 sion of the RT mode that we are interested in via two limiting

e (Vi=Vo, (3 cases: inertial¢g > v;,) and collisional ¢;, > ) (Sudan
_ and Keskinen, 1984). The linear dispersion equation of the
vV.-J=V. Vi—-Vol=0, 4 . . . ..
I [ne (Vi o)l @) system is obtained by linearizing Egs. (7) and (8) and assum-
where the various symbols have their usual meaning. Solvingng that the perturbed quantities vary as @xpx + ik,y —
electron momentum Eq. (2) for their directed velocities, we iwr), wherek, andk, are positive integers. The dispersion

find, to the lowest order equation is given by
v VotV cT, n c vé k2
= = — ey, + —e; x ,
¢ T Fe eBL, > B ° @? +i(vip + Dk + (k—g — kipvm) -0, (9)
_ﬂezxv@)-ﬁi (—) ) A
eB no 2 Qi \no wherek? = kZ + k2. The boundary between linearly stable

which consists of equilibrium diamagnetic drift and perturb and unstable regions @&f space is given by;, D = k)z,/ki.
E x B and the diamagnetic drift velocity. The last term arises The maximum growth rate is obtained for = 0.
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3
In the absence of any dissipation in the inertial regime, wed¢2 ky kxky
, ) : : — =——=ny— —5 — Vin®2, 14
find the dispersion relation dt k%nz 2k3 $od1 = Vind2 (14)
2 dng 1
25 g — = Skekynagn — Do, (15)
k2
y L n— kek ! k2D 16
which gives the growth rate in the inertial regime as 4r yP1 = kaky { no¢1 + snado | —kiDny, (16)

vi = (ky/k1)(g/L)Y?. For D = 0, and a finite ion- 4, 1 )
neutral collision effect, the dispersion relation may be written — = = —ky¢2 + Skikynigo — kz Dn2, (17)
asw? + iviyw + k3/k% = 0 from which we find
wherek? = k2 + k2 andkZ = (2k2 + k2).

iVin . iVin aK? The above six ordinary differential equations have many

2 + 5 |:1 W:| : nice properties which we will discuss in this paper. Before

L in going to the analysis, we rewrite the Egs. (12)—(17) in a sim-
For an ion-neutral collision dominated regimg > 1 tak-  plified scaled form:
ing a positive sign, we can find that the collisional growth
rate of the RT mode ig; = (ky/k1)2(g/LnVin). (— + vm) $0 = —p1¢2, (18)
In the next section we would like to study the nonlinear dt

w=-

evolution of.these instabilities using truncated Fourier mode( ¢ Fvin ) 61 = 271 + doda, (19)
representation. dt k1

d ~ 3kyky 3<ky>2AA

— +Vip |p2=———5"n2— | | ¢od1, (20)
4 Few-mode representation <dl m) 4 k3 4\ k2

d o~
For RT turbulence we represent the state of the system wit!‘(a + 4k§D) no = ni1, (21)

two complete fluctuation dynamic&p1, n1) and (¢2, n2) p .
vyith k1 = (ky, ky).and ko = (2ky, ky). The considera-. <_ + ka> L= ial _;;0;51
tion of mode coupling terms then shows that the convective\ d? k1

nonlinearity of the vorticity and the density drives the con- 3 kf R

vective flowsgg sin(k,x) and flattening of the background ~2\zeie 2o, (22)
density gradientq sin(2k, x). All higher order components roy

(2ky, 2ky), (3ky, 0), etc. are truncated (Galerkin approxima- ( 4 2D\ 7, — Aky~ 23
tion). It is also assumed that the highmodes are heavily dt R 2 3k 92+ nigo. (23)

damped by normal dissipation, such as viscosity and/or dif-

fusion. The procedure is originally proposed by Howard andWhere

Krishnamurty in fluid dynamics literature (Howard and Kris- kke [3K2 + k2

hanamurti, 1986) and later used by many others. The poteng, _ "V "~ + Y b0, Bu= kxky .
tial and density are represented by V/3ky V2

¢ = ¢osin(kyx) + @1 sin(kyx) sin(kyy) - \/§
+ ¢ Sin(2k,) cosk, ), 1) 27V3

n = ngSin(2kyx) 4 ny sin(k,x) cogk,y) o= kyky o, Ty = kxky
+ n2 SiN(2k, x) Sin(ky y). (11) V2k1

ky
We would like to emphasize that thiy andng terms in \/Ekxk,v\/ 3k2 + k%
Egs. (10) and (11) represent the driven convected (shearedy? = §T”2‘

flow and flattening of density, respectively, arising essen-

tially from the nonlinear interactions of the different modes For the simplicity of notation hereafter, we will drop the hat

(see Egs. 12 and 15). Therefor®, andng should not be  symbol. Now we are interested in finding out the nonlinear
confused with the equilibrium value of the potential,and evolution of the long wavelength RT mode amplitude in the
number densityp. Substituting Egs. (10) and (11) in the absence of any dissipation and ion neutral collision, i.e. in
basic equations (7) and (8) leads to the following dynamicalthe inertial regime. For the analytical progress, we drop the

keky, /3k2 + k2
T

ni,

evolution equations for the Fourier coefficients: higher density perturbationy; the term ‘higher’ means per-

d 3 turbation with relatively higtk, i.e. short wavelength. This

% = —kakvqﬁlqbz — Vindo, (12)  assumption does not violate any global behavior of the non-
: )

linear interaction or the conservation property; only the defi-
nition of turbulent kinetic energy and the associated dissipa-
tion changed slightly. Then, without any loss of generality,

dgy  ky kky (3k2 + k2)

_k . 13
r k%nl 22 doP2 — Vind1 (13)
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the self consistent evolution of instability and shear flow be-Note that here we have takei as a parameter to solve the

comes: nonlinear equation, i.e. we have not self consistently solved
42 1 1 the shear flow evolution equation and instead, we are assum-
_21 — aZpr + §¢f =— <2a2 + 5) P31 (24)  ing shear flow is present in the system due to nonlinear inter-
dt actions and we tookg as a flow parameter. For the different
d¢o — Jazbob (25) values of¢o, we are mvestlgatlr_\g its influence on the other
dt modes. We can think of a situation as a ‘nonmodal’ approach

to analyze the shear flow recently used by plasma physicists

(Hassam, 1992; Volponi et al., 2000). In this method, one is
From Egs. (24) and (25) we observed that the fundamentalising a shear flow profile, i.epo(x) = v’mxz/z (for sim-

mode amplitudes; and shear flow amplitudgo are nonlin-  plicity), wherev’, , is constant, to show how the amplitude of

early coupled. Furthermore, the mode coupling effect intro-the mode evolves in time, in presence of a given flow (in this

duces a cubic nonlinearity in the evolution equation. First, inparticular exampleyo(x) = v’ yxe,). For the present prob-

the simplest level, we shall discuss the effect of shear flodem we can mockup this situation considering a sinusoidal

on the RT mode analytically. Therefore, in the present dis-spatial equilibrium flow profile,, (x) = ¢g sinkx.

cussion, we are not solving a shear flow evolution equation;

instead we assumgy as a parameter in Eq. (24). However, ~ Solution of the Eq. (28) is

the evolution of shear flow has been discussed in detailed nu-

merically in the Sect. 7. With the above mentioned assump- 1

tion, we can solve exactl_y Eqg. (24) analytlcally: Fro_m EQ. g1(t) = /v sech”2 2yt + 11) exp(—nt + tl) i (29)

(24), it is now clear that in the absence of nonlinearity and 2

shear flow, we recover the linearly unstable RT mode with

the usual growth rate in the inertial regime. In the presenc&yherey, is an arbitrary constant. Note that, in the absence
of shear flow, we can see that linear RT growth reduces withyt nonjinearity and shear flow we see (from Eq. 28) that
an increasing amplitude i and ultimately becomes zero, he collisional RT mode is growing exponentially with the
thereby indicating that linear RT mode stabilizes for a certain|;g ;31 growth rate~ (ky/kl)z(g/an) and this growth suf-
value of shear flow. Needless to say, due to the nonlinearityfo g g damping due to the presence of/a term in the ex-
the stabilization of RT mode is quite different when the non- ,ression ofy. The origin of the damping term is the elec-

linearity and shear flow work against each other and competiyron, jon collision effect that we have considered in this case
tion between them ultimately saturates the mode. Thereforey,, ~ p ~ ). However, one must emphasize that for

in presence of nonlinearity and shear flow, evolution of the 4 large scale solution, growth rate of the mode overpowers

wherea; = ky/ki andaz = 3k3/4k3.

system is represented by the damping rate and hence one needs to find out alterna-
a4, X 1, tive mechanism fpr the mode saturation. In this calculation
a2 B¢1+ 54’1 ~ 0, (26) we have already incorporated the shear flow (e.g. see the ex-

pression o) which is reducing the RT mode growth rate and
wherep? = a% — Qao + 1/2)¢g_ From the definition of, therefore, can serve as a candidate of saturation. Here also,
it is clear thatpg has a stabilizing effect on linear RT mode. we can estimate the critical value of shear flow for which the
Solution of the Eqg. (26) is given by collisional RT mode is marginally stable. At a first glance

it might appear that due to the exponential time behavior in
¢1(1) = 28 sech(t — 10)]. (27)  the solution (Eq. 29), the collisional RT mode may not be

saturated. A careful inspection of the solution shows that the

Note thatrp, the time of maximum amplitude, is arbitrary. . . .
mode amplitude asymptotically decays in time.

Since amplitudep1 of the solution is proportional t@,we
can see that, in reality, as shear flow grows, the amplitude of 15 very surprising to see the nice symmetric solution (see
.the nonlinear .mode.decreasesf and thereby saturate the 9rog,  27) for the nonlinear equation. This symmetry may be
ing RT mode in the inertial regime. destroyed if we include a large number of modes in the cal-
Next, we can concentrate on collisional regidyd: <« culations. Mode coupling with higher harmonics will extract
vin. Assumingy;, ~ D ~ v for simplicity, and taking shear ~energy from the mode, causing irreversibility, and also a dis-
flow (¢o) as a parameter as before, we find the approximatesipativing effect, such as viscosity and diffusion, can break

evolution equation for the collisional RT mode as this symmetry. Therefore, there is a possibility that the mode
coupling to higher harmonics can enhance the role of dissipa-

dés ¢ —C 3, (28)  tion. One can show that energy moves from the two modes
dt k1, k2 to the shear mode and the flattening term, and then

where returns again during evolution when the shear is small; yet

) ) ) anything that disrupts this exchange of energy will destroy
|:“1 v 1 ( k >¢g] r = k1 this reversibility and yield transport. Therefore, these effects

200 + 5 =_—1. . S e e
2 4k?2 8k2v are important for the estimation of transport coefficients.
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5 Shear-flow stabilization with higher harmonics

ration of Rayleigh-Taylor instability and generation of shear flow

damping coefficients and simultaneously reduce the destabi-
lizing terms K> and K4, leading to the saturation of the in-

In the previous section we have assumed that in the highestability and increasing the characteristic time of evolution.

harmonics of density perturbations, was absent. In the
present analysis we consider finitg, but assume that the
damping rate of thég,, n2) mode is much higher than the
characteristic time of evolution of the whole system. In the

present model we have taken a linear damping mechanisr}

as a perpendicular diffusion in the continuity equation and
ion-neutral collisiongv;,) in the vorticity equation. We de-
note 42D = Do, k2D = D1, k3D = D and sincekp >

k1 > 2k., Dy is larger. Therefore, the modes with dissipa-
tion coefficientD, are heavily damped mode. In principle,
the viscosity effect should also be present as a linear dam
ing mechanism and similar to diffusion, it is very effective
to dissipate the high modes. Keeping this effect in mind,
we propose that in our model;, will representug, vy, v2 as
the dissipation rates for the three harmonics in the vorticity
equations. Assumingz, vo > a1, indicates that the damp-
ing rate for higher harmonics is higher than the growth rate.
Consequently, we can write Egs. (20) and (23) as:

V22 + galaznz = —gﬁquodn, (30)
Danz + gal¢2 = ¢ona, (31)
from which we obtain

o= — (Dzoi)zjgz%-_a;(lzx;rzll)(ﬁo’ (32)
np = (v2n1 + a102¢1)do (33)

vo Do — a%az

whereas = 3w2/4. Substitutingp, andn, into the dynami-
cal equation for; and¢1 (Egs. 22 and 19) we have

dnq
— = —Kini + Ka2¢1 (34)
d¢1
diz = —K3zp1 + Ksny, (35)
where
2

K1 = D1+ <L¢02_) )

v2Dy — afaz

Q1020303

Ko=o1—ng— | ————
voDo — (x%&z

K3=V1+< 2_>,
1%2
K4=011—< )

andas = 3kf/4(3k? + k?). We have assumed thag ~
D> > a1 and we can easily findo = (ky/kz)2 < 1; there-
fore, (voDy — af&z) is always positive. It is now clear from
the definition ofK that the growth ofpg will increase the

Do}

VDo — o

Q10205
voDo — a%&z

p_

6 Secondary instability

is mentioned in the introduction that there exists a well-
known and successful example of a low dimensional model
namely, the Lorenz set for Benard convection in unstable
stratified fluid. In the Lorenz model (Lorenz, 1963), the only
flow structure taken into account is a regular chain of vor-
tices,¢ = ¢1sink, sink,y. As a density structure, it in-
cludes both profile flattening (the amplitudg) and a spike,
such as convective deformation (the amplitudg, so that
n = ngSin Zx + n1sink,x cosk,y. Therefore, the triple
(no, n1, ¢1) constitute a complete Lorenz set. A similar mo-
del has been used before in the ionospheric turbulence to
study the low dimensional chaos (Huba et al., 1986). In the
present 6 ODE problem, we assume that for certain condi-
tions the system evolves to this Lorenz attractor branches for
any initial amplitudegg, n2, ¢ that decays to zero. Now,
our aim is to study the stability of the fixed point given by
¢o = nz = ¢2 = 0 andng, n1, ¢1 in Egs. (12)—(17) to small
amplitude perturbations of three variablgs n, ¢o.

First, we shall show that in the truncated Fourier mode
representation, the fundamental mode, (21) is linearly un-
stable. A linear version of Egs. (13) and (16) reads

doy
k§7 = kyn1 — vipk2e1 (36)
dn
_dtl = ky¢1 — k3Dny. (37)

Taking perturbations in the form a@fy ~ n1 ~ exply,t),
wherey, is the growth rate for the primary RT mode, the
linear dispersion relation may be obtained as

k2

V}% + (Uin + k]Z_D)Vp - k_; + k]z_UinD =0
1

From the dispersion relation, it is clear that the condition for

the first instability is

k2

y 2

g > kjvin D oOr

where the equal sign is for the onset of the instability and

Q = k3/kjvin D.

Next, let us find the quasi steady state ¢f,(n1, ng) for a
Lorenz set of equations which nonlinearly saturates to form a
convective cell or bubble-like solution. Nonlinear equations
of this steady state is obtained by puttidgds ~ 0. Using
Egs. (13), (16) and (15), we have

(38)

kfl)inD
@

<1,

or 0>1

k
21— vipg1 =0,

39
2 (39)
ky¢1 — kekypang — k§Dny =0, (40)
1
Skekynigr — 4k?Dng = 0. (41)
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The solutions of these nonlinear equations provide the equi-  «
librium around which we will perturbed the system. Now, for

clarity, we denote these solutions, ¢1, n1 asnoo, ¢10, 710, 35
so that the solutions become .
1 1
=—\|1-—=), 42
noo ks < Q) ( ) 25
8D 1
¢10==* — <1— —>, (43)
Vinkl 0

15

mk? | 8D 1
nio=omd | 22 <1 - —), (44) .
k}' Vinkl 0

where the upper and lower sign indicates the handedness ¢ °

the sense of rotation of the cells or bubbles. 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
From the solutions given in Egs. (42)—(44), we can see ' ’ K

that for a weak ion-neutral collision effect, the flow velocity

term¢1o becomes large so that tiex B rotation rate inthe  Fig. 1. growth rate for the secondary instability agaibstfor k, =

bubble can exceed the linear growth rate, k.6, ¢10 > v,. 1.0, vj, = 0.3, D = 0.2, which indicates that secondary mode

Also the gradient in the direction of the density becomes grows in the short scale regime.

very strong withk,nio > 1. Thus, we may expect high

fr:?(\)/\é;/?’i(fg)igdbsets;%gizssgb?éi%'??s'gc?f dgjrr;diigggfﬁ Infa.vv state with finite steady shear flow. In_ this case, a sta-

ity’. We assume the secondary perturbations are of the fomP llity boundary can bFT‘ deter_mme_d by se_ttuﬁg = 0. For

(0. b2. n2) EXP(ys1), Wherey, is the growth rate for the sec- B3 > B1B2, there is a bifurcation with a pair of complex con-

ondary mode. Therefore, the dynamical evolution of these|ugate roots becoming unstable for ke = 0. 'F.|gure. L
modes may be obtained from linearized Egs. (12), (14) an hows the growth rate for the secondary instabilitagainst

(17) and are given by y for the typical values of;, = 0.3 andD = 0.2 and

k, = 1.0.
3
Yso = _kaky¢10¢2 — Vinto, (45)
3 7 Collisional nonlinearity in shear flow generation
_ kY 46
vs92 = —k—gnz B %2 1060 = vind2, “6)  in the previous analysis of shear flow generation, we have

1 found that the consideration of the mode coupling term shows
ysn2 = —kyd2 + Ekxkyn10¢0 — k3Dna. (47)  that the E x B convection of vorticity (which essentially
comes from the ion polarization drift nonlinearity) generates
The dispersion relation for the secondary mode is the cubighe convective flowsy sin(k,x). At the same time, we have

equation fory, and is given by ignored the contribution of the Pedersen drift nonlinearity
3 2 (Vn - V¢, which arises due to ion-neutral collision effect)
vs + Py + Bays + B3 =0, (48) i the flow generation. These two nonlinearities are different
where in their character, for example x V¢ - vad), is normally
known as a vector nonlinearity ai:- V¢ is a scalar nonlin-
B1 = 2vin + kg D, earity; therefore, they contribute differently in the flow gen-
X2 D k2K 1 eration. For the two modes we have considered, we have seen
B2 = vm(ZDkg + Vi) — _Z 3= ’; Z (1 — _) i thate, x V¢ - Vviqs generates an anti-symmetric flow in the
k3 Vin k1k3 0 flow profile and similarly, we can see thet - V¢ generates
2 a symmetric flow profile~ cogk,x). Therefore, to find out
B3 = vl-zn Dk% - k—éwn the role of both of the nonlinearities in the flow generation,
2 we have to incorporate symmetric as well as anti-symmetric
k2k? D2 K2k} 1 flows with different amplitudes. In such a scenario, instead
-3 k% D Vin kf <1 N 5) : of 6 ODE, we have to solve 7 ODE system for the amplitude
evolution:
In the above expressiond, — 1/ Q) determines the strength ddo vk~ R
of the primary flowg10 and gradients af 1o, ngo, and, there- = —p1¢2 — . noPo — Vindo, (49)
fore, the stability of the steady state in Egs. (42)—(44). The " _ Y
cubic Eq. (48) is unstable fogfs < 0 and one unstable d¢1  ky . =~ 3 vinkiky ﬁzgo — vindo. (50)

— = 2731 + ¢odp2 —

root may bey;1 ~ —pB3/B2, and the solution evolves to a  dr k1 Eky(3k§ + k§)
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Fig. 2. Potential fluctuation amplitudgy, of the fundamental mode
for ky = 0.4,ky = 1.4,v;, = 0.24 andD = 0.2, which indicates
that long scale radial RT mode saturates in time.

% = —gkz—glﬁz - i—i (%)2?50(751 — Vind2, (51)
dd_ﬁ;’ =11 — 42 Dnp, (52)
dd—h;l = %Zﬁ — fog1 — i—i <$§-k§) fagpo — ki Dy, (53)
dd—h;z = —%%32 +7i1¢0 — k3 Diiz, (54)
dd;zto = %yxkl <$oﬁ0 + gﬁﬁ&\z + %%51) - Ving& (55)

whereg, has the same scaling @s. Note that the amplitude
evolution equation fop, (Eq. 55) arises because we have
added the symmetric flow tergy, cosk, x) in our potential
representation.
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Fig. 3. Temporal evolution of the anti-symmetric shear flow am-
plitude forky = 0.4, ky = 1.4,v;, = 0.24 andD = 0.2, which
indicates that the initial seed flow has transient growth and then os-
cillatory decay due to finite dissipation present in the system.

Perhaps for a highes,, and finiteD, n¢ nonlinearity for var-
ious modes decays faster than thg- nonlinearity; there-
fore, the collisional driving term for the flow is weaker than
the convective driving term. Thus, even in the collisional
regime, the Pedersen nonlinearity may not play a significant
role in the shear flow generation and one can justify the ne-
glecting of the contribution from the symmetric flow in the
analytical calculation in Sect. 4.

8 Discussion and conclusion

Perhaps the most important conclusion of this work is that
the RT mode nonlinearly saturates in both a collisionless and
collisional regime by generating shear flow which has been
demonstratednalytically. First, we have started with a well

We must mention that due to the presence of collisionaldocumented linear instability dispersion relation from which

nonlinearity mentioned above, the system no longer supportsollisionless and collisional RT growth rate had been de-
invariants; therefore, it is practically impossible to analyzerived. Next, we have taken a model for few mode calcula-
7 ODE system analytically. We have solved Eqgs. (49)—(55)tions which represent the essential nonlinear physics of the
numerically using a standard ODE solver routine in MAT- RT mode e.g.E x B convection nonlinearly generates the
LAB. The initial conditions are taken asy, ¢o, g = 0.1 shear flow. At this point we must emphasized that the finite
andng, n2, ¢1, 2 = 0. The nonzero initial valuego, ¢, mode calculation of shear flow has the deficiency that it ig-
implies that we have initialized the system with a seed sheanores the contribution of the higher modes to the generation
flow to study their evolutions. The results are shown in theof ¢g. Thus, it would appear that during the evolution when
Figs. 2—4 for typical parameters. the higher modes also have significant amplitudes, the infer-
We have seen from Eq. (55) that the symmetric shear flonence regarding the magnitude of shear flow may be quantita-
is solely driven by collisional nonlinearity; therefore, in ab- tively incorrect and the whole process of shear flow genera-
sence of ion-neutral collision, no spatially symmetric sheartion and saturation can, at best, be viewed only qualitatively.
flow will develop (i, = 0, ¢g = 0). For largev;,(~ 1), However this is not the case. There are many simulation re-
one might expect that symmetric shear flow will be large, sults existing in the literature which show the plots|¢g|?
but numerical results show that for largg, both symmetric  against time from the complete numerical simulation and few
and anti-symmetric flow decays. Even for moderate valuesmode calculations (Das et al., 1997). The results show rea-
of v;,(~ 0.5) numerical result shows the symmetric shear sonably good quantitative agreement, which can be under-
flow amplitude is lower than antisymmetric flow amplitude. stood on the basis of Kolmogorov's cascade mechanisms of
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since large-scale bubbles are ruled out due to secondary in-
stability. All of these conclusions are qualitative. In the fu-
ture, we hope to address this problem more quantitatively by
numerical simulation to clarify some of these issues.

AcknowledgementsThanks are due to B. P. Pandey and A. K. Sinha
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