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Abstract. Small amplitude electron – acoustic solitons are
studied in a magnetized plasma consisting of two types
of electrons, namely cold electron beam and background
plasma electrons and two temperature ion plasma. The anal-
ysis predicts rarefactive solitons. The model may provide
a possible explanation for the perpendicular polarization of
the low-frequency component of the broadband electrostatic
noise observed in the Earth’s magnetotail.

1 Introduction

Intense broadband electrostatic noise (BEN) are commonly
observed in the plasma sheet boundary layer (PSBL) of the
Earth’s magnetosphere (Scarf et al., 1974; Gurnett et al.,
1976). The frequency of these BENs range from∼10 Hz up
to the local electron plasma frequency∼10 kHz and electric
field intensities from∼ few mV/m to 50 mV/m and higher.
These BENs are observed in conjunction with the ion beams.
However, there are observations which show the presence of
electron beams in the PSBL and their correlation with the
BEN (Parks et al., 1984; Onsager et al., 1993). Matsumoto
et al. (1994) have shown that broadband electrostatic noise
emissions in the plasma sheet boundary layer are not con-
tinuous noise but consists of electrostatic impulsive solitary
waves. The data from Polar satellite shows that at the high
altitude cusp, polar cap and plasma sheet boundary layer,
the solitary waves are positive potential structures (electron
holes) and propagate with velocities of a few thousand km/s
(Cattell et al., 1999). The scale sizes of these structures are
of the order of tens of Debye lengths. It is found that the soli-
tary waves in the plasma sheet boundary layer are an electron
mode waves, either an electron hole or an electron-acoustic
solitary wave.

Several studies on nonlinear electron-acoustic waves have
been done in the past (Buti, 1980; Buti et al., 1980; Yu and
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Shukla, 1983; Guha and Dwivedi, 1984; Mace et al., 1991).
Buti (1980) studied the propagation of electron-acoustic soli-
tary waves and holes in magnetized plasma with electron and
two Boltzmann distributed ion species. Guha and Dwivedi
(1984) examined the linear and nonlinear propagation of
electron-acoustic waves with two electrons and two ions in
an unmagnetized plasma.

The observations (Parks et al., 1984; Onsager et al., 1993)
in the plasma sheet boundary layer have shown that there ex-
ist two types of electrons, namely background plasma elec-
trons and cold electron beams having energies of the order of
few eV to few hundreds of eV and two different species of
ions, namely background cold ions and warm ions/ion beams
with energies from few keV to tens of keV.

Motivated from these observations, we examine the gener-
ation of small amplitude electron-acoustic solitons in a mag-
netized plasma with four components namely, cold electron
beam and background plasma electrons and two temperature
ion plasma. We treat both the electron species as cool in com-
parison to more energetic ions. The effect of various param-
eters such as soliton velocity, electron beam drift speed, is
studied on the soliton amplitude. In the next section, formu-
lation of the problem is discussed and results are concluded
in the last section.

2 Formulation

We consider a homogeneous plasma with two types of elec-
trons, namely, cold electron beam and background plasma
electrons and two ion species in an external magnetic fieldB0
which is assumed to be in thex−z plane. Here, the ions are
taken as unmagnetized and are assumed to have Boltzmann
distribution. These assumptions are valid when the gyro-
periods and Larmor radii of both the ion species are much
larger than the wave period and the wavelength (Buti, 1980).
The electron inertia plays an important role in the electron-
acoustic wave generation, therefore, electron dynamics is
governed by the fluid equations. They are treated magnetized
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as the electron-acoustic frequencies are smaller than the elec-
tron cyclotron frequencies. Thermal effects for both the elec-
tron species are neglected. The electron-acoustic waves are
considered to be propagating alongx-direction.

The basic set of equations for the electrons and ions are
given by
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and the Poisson’s equation is given by
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and θ is the angle between the direction of propagation
of the wave and magnetic fieldB0. The subscripts=e, b

refers to background plasma electrons, and cold beam elec-
trons respectively, andi=l, h refers to cold – tempera-
ture (Tl) and hot – temperature (Th) ions respectively and
φ is the electrostatic potential. The physical parameters
x, t, (ns, ni), (usx, usy, usz) andφ are normalized to ef-
fective electron cyclotron radiusρe, inverse of electron –
cyclotron frequency�−1

e , unperturbed plasma densityn0,
effective electron acoustic velocityCS and effective poten-
tial Tef /e respectively. µ and ν are normalized equilib-
rium densities of low and high temperature ions respectively.
We assume the boundary conditions,ne→1−α, nb→α,
ue→0,ubx→u0 cosθ , uby→0,ubz→u0 sinθ , φ→0,nl→µ,
nh→νas|x|→∞. Hereα is the normalized density of beam
electrons andu0 denotes the normalized electron – beam ve-
locity in the equilibrium state. In the next section, we study
the propagation of rarefactive electron-acoustic solitons.

3 Rarefactive solitons

To solve the Eqs. (1)–(7) for soliton solutions, we shall
use the reductive perturbation method (Washimi and Taniuti,
1966; Reddy and Lakhina, 1991). We introduce the stretched
variables

ξ = ε1/2(x − V t), τ = ε3/2t (8)

where the small parameterε is to be regarded as a measure of
the strength of the nonlinearity andV is the phase velocity.
We expand the dependent variables of Eqs. (1)–(6) around
the equilibrium state as follows:

ne = 1 − α + εne1 + ε2ne2 + · · ·,

nb = α + εnb1 + ε2nb2 + · · ·,

uex = εuex1 + ε2uex2 + · · ·,

uey = ε3/2uey1 + ε5/2uey2 + · · ·,

uez = εuez1 + ε2uez2 + · · ·,

ubx = u0 cosθ + εubx1 + ε2ubx2 + · · ·,

uby = ε3/2uby1 + ε5/2uby2 + · · ·,

ubz = u0 sinθ + εubz1 + ε2ubz2 + · · ·,

and φ = εφ1 + ε2φ2 + · · · (9)

Substituting Eqs. (8) and (9) in the system of Eqs. (1)–(7)
and equating coefficients of same powers ofε, to the lowest
power ofε we get the following relation for the phase veloc-
ity, V ,

1 − α

V 2
+

α

(V − u0 cosθ)2
= sec2 θ (10)

For u0=0 Eq. (10) gives a linear dispersion relation for
electron-acoustic waves asω=kCS cosθ which becomes
identical to that derived by Buti (1980) in the limit of cold
electrons andkρe<<1. To the next order ofε, and by elim-
inating the second order quantities we get the usual KdV
equation
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and
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κ + sin2 θ(
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Substitutingχ=ξ−Mτ in Eq. (11); M is the arbitrary pa-
rameter similar to Mach number which allows the possi-
bility of solitons moving with different velocity than the
phase velocity of the wave, and integrating Eq. (11) twice
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Fig. 1. Rarefactive soiltons for the parametersα=0.1, β=0.3,
µ=0.1, θ=80◦, M=0.01, andκ=0.01. The curves (A)–(C) corre-
spond tou0=0.1, (V =0.175646), 0.30, (V =0.181828), and 0.40,
(V =0.186529) respectively.

by using the boundary conditionsφ1→0, (dφ1/dχ)→0 and
(d2φ1/dχ2)→0 as|χ |→∞, we finally obtain the following
solution for the electron-acoustic soliton

φ1 = φ0 sech2
( χ

3

)
, (14)

whereφ0 and3 are the amplitude and width of the electron
– acoustic soliton respectively, and are given by

φ0 =
3M

A
, 3 =

√
2B

M
(15)

For A6=0, the soliton solution given by Eq. (14) is of rar-
efactive type only ifA<0. For A>0 solitons are of com-
pressive nature. We have undertaken the parametric study
of rarefactive solitons for different values ofu0, β, α, andµ.
Equation (10) which represents the phase velocity for both
rarefactive and compressive solitons has four roots. We solve
Eq. (10) numerically and find that for the chosen parameters,
only one positive real root exists. The other three roots are
a negative real and two complex conjugate roots. Therefore,
we consider only the positive real root for the phase velocity,
V to calculate the soliton amplitudes and widths.

In Fig. 1 we show the variation of the potential,φ1 with χ

for different values of normalized electron beam velocityu0.
The other chosen parameters are, cold to hot ion tempera-
ture ratio,β=0.3, normalized electron beam density,α=0.1,
normalized cold ion density,µ=0.1, κ=0.01, θ=80o and
M=0.01. The maximum amplitude of the rarefactive soli-
ton decreases with increasingu0. However, the width of the
solitons increases with the increase inu0.

Figure 2 shows the variation of potential,φ1 with χ for
various values ofβ andu0=0.3. The other fixed parame-
ters are the same as for Fig. 1. Here, we observe that asβ

increases, the maximum amplitude of the soliton decreases.
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Fig. 2. Same as Fig. 1 forα=0.1, u0=0.3, V =0.181828,
µ=0.1, θ=80◦, M=0.01, andκ=0.01. The curves (A)–(C) are for
β=0.2, 0.3, and 0.4 respectively.
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Fig. 3. Same as Fig. 1 forα=0.1, u0=0.3, µ=0.1, β=0.30,
M=0.01, andκ=0.01. The curves (A)–(C) are for ,θ=70◦

(V =0.358132), 75◦ (V =0.271011), and 80◦ (V =0.181828) re-
spectively.

On the other hand, width of the solitons decreases with the
increase inβ=Tl/Th.

Figure 3 shows the variation of the soliton amplitude with
χ for various values of angleθ between the propagation di-
rection and the ambient magnetic fieldB0, as shown on the
curves. It is seen that as the angle increases the amplitude of
the soliton increases and the width of the soliton decreases.

Since, we have neglected the thermal effects of electrons,
cold electron temperature does not appear explicitly in our
model. To satisfy the assumption of cold electrons, one must
haveTe<<Tef , whereTe is the electron temperature. The
velocity of the rarefactive solitons is given byVrs=V +Mε,
whereε is a smallness parameter.



218 S. G. Tagare et al.: Electron acoustic solitons in the Earth’s magnetotail

For the typical chosen parameters of the plasma
sheet boundary layer, namely, the hot – ion tempera-
ture, Th=1 keV, the cold – ion temperature,Tl=100 eV,
B0=25 nT, which correspond to the near-Earth magnetotail
(Lui et al., 1991)α=µ=0.1, β=0.1, θ=800, M=0.004,
ε=0.1 and electron beam velocityu0∼3800 km/s, the ef-
fective ion temperature is found to beTef ∼525 eV, the as-
sociated soliton velocity is found to be of the order of
Vrs∼1800 km/s. The corresponding normalized electric
field,E=−dφ1/dχ , of the soliton structures can be obtained
by differentiating Eq. (14) with respect toχ . Then, for the
above mentioned parameters, the absolute value of the elec-
tric field is estimated to be in the range∼(3−40) mV/m. The
width, 3, of the rarefactive solitons is given by Eq. (15) and
is found to be∼3.4 km for the above mentioned parameters.

4 Conclusions

We have studied the nonlinear propagation of electron-
acoustic waves in a magnetized plasma consisting of cold
electron beam and background plasma electrons and two
types of ions, i.e. the cold and hot ions with Boltzmann dis-
tributions.

It is emphasized that amplitude of the electron-acoustic
solitons as well as parametric regime where the solitons can
exist is sensitive to the electron beam velocity, electron beam
density, cold to hot ion temperature ratio,β and the cold ion
density. The electron-acoustic soliton amplitude for rarefac-
tive solitons decreases with the increase in the cold to hot ion
temperature ratio.

The model presented here may be applied to explain some
feature of the low-frequency component of BEN observed in
the plasma sheet boundary layer. It is found that the low-
frequency waves are polarized nearly perpendicular to the
background magnetic field (Gurnett et al., 1976; Onsager et
al., 1993). This feature of the low-frequency broadband elec-
trostatic waves could be explained naturally by our model as
the electron-acoustic solitons propagate at large angle toB0.
However, the theory cannot apply to the high-frequency part
of BEN (Onsager et al., 1993) or to solitary structures ob-
served by Geotail (Matsumoto et al., 1994) as their electric
fields are polarized parallel toB0, and also they have much
higher frequencies than the electron-acoustic modes studied
here.

In the present model, the electrons are treated as cold. This
assumption demands electron temperatureTe to be much
smaller than effective ion temperatureTef , i.e. Te<<Tef .
The model can be generalized by including the electron ther-
mal effects.
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