Table 1. Comparison of TRMM-derived geolocation with IMD and JTWC best-track positions for four specific cases

<table>
<thead>
<tr>
<th>Date</th>
<th>Time (UTC)</th>
<th>TRMM-derived geolocation (lat/long)</th>
<th>IMD best-track position interpolated to TRMM overflight time</th>
<th>JTWC best-track position interpolated to TRMM overflight time</th>
<th>Difference (km) TRMM–IMD</th>
<th>Difference (km) TRMM–JTWC</th>
<th>Difference (km) IMD–JTWC</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-11-98</td>
<td>00:57</td>
<td>17.31N 87.68E</td>
<td>16.66N 87.50E</td>
<td>16.94N 87.54E</td>
<td>62.9</td>
<td>41.8</td>
<td>31.3</td>
</tr>
<tr>
<td>18-05-99</td>
<td>13:47</td>
<td>19.05N 67.14E</td>
<td>18.50N 67.50E</td>
<td>19.11N 67.27E</td>
<td>71.8</td>
<td>15.2</td>
<td>71.9</td>
</tr>
<tr>
<td>26-10-99</td>
<td>16:33</td>
<td>15.57N 93.05E</td>
<td>15.00N 93.66E</td>
<td>15.45N 93.29E</td>
<td>90.9</td>
<td>28.9</td>
<td>63.7</td>
</tr>
<tr>
<td>27-10-99</td>
<td>00:39</td>
<td>16.14N 92.19E</td>
<td>15.61N 91.78E</td>
<td>16.04N 92.21E</td>
<td>71.8</td>
<td>10.5</td>
<td>66.2</td>
</tr>
</tbody>
</table>

Received 19 September 2003; revised accepted 12 April 2004

Fluvial influx and weathering history of the Himalayas since Last Glacial Maxima – isotopic, sedimentological and magnetic records from the Bay of Bengal

Onkar S. Chauhan1,* and Shiva K. Patil2

1National Institute of Oceanography, Dona Paula, Goa 403 004, India
2Indian Institute of Geomagnetism, New Panvel, Mumbai 410 218, India

From temporal variations in stable isotopes, mineral magnetism, clay minerals and granulometric parameters from a 14C dated core have been used to understand weathering history and influence of climate on the terrigenous influxes into the Bay of Bengal. We deduced well defined events of reduced fluvial influx at 20–15, 12.7, 9.5, ~ 5–4.3 and 1.8–2.2 ka BP and at least two major fluvial pulses initiated around 11.5 and 9.5 ka BP. The intensified monsoon regime appeared to have set in at around 9.5 ka, and had pauses at ~5 and 2.2 ka BP during the Holocene.

The climate variability appeared to have significant control over characteristics of terrigenous flux into the bay, particularly during the glaciation events. Ilite, chlorite, smectite and kaolinite are the clays present in the core. From the abundance of chlorite (the clays produced in arid cold climate) and increased contents of silt, a reduced chemical weathering during...

*For correspondence. (e-mail: onkar@darya.nio.org)
events of glaciations has been inferred. Occurrence of coarser magnetic grains in the lower levels of the cores (35–100 cm), perhaps, suggests higher magnitude of physical weathering in Pre-Holocene in the Hinterland. An intensified chemical weathering in the Himalayas, under an active summer monsoon regime after 9.5 Ka BP, appears to have enhanced fluxes of finer magnetic minerals, clay size detritus and reduced chloride during the entire Holocene (0–30 cm levels).

The Himalayas are mountains ranges in which weathering intensity is one of the highest in the world. It is also, since Miocene, a major source of the sediment for the Bay of Bengal through a large number of perennial rivers, the Ganga, Brahmaputra, Irrawadi, Salween, etc. turning it into one of the highest fluvial and terrigenous input sites of the world oceans. The climate of the Indian subcontinent is regulated by coupled heating–cooling of the Himalayas and the Southern Ocean, and associated changes in wind patterns giving rise to the northeast (NE) and the southwest (SW) monsoons. Under modern climatology, about 80% of the rainfall is contributed during the SW monsoon. Past studies have, however, suggested a stronger NE monsoon during glaciation of Himalayas. The climatic changes in the region, therefore, are expected to have influences on weathering intensity in the Himalayas and the characteristics and supply of fluvial fluxes into the bay. However, studies and understanding of climate-induced variations in the fluvial flux to ocean and weathering intensity at the Himalayas under specific climatologies of active and weak monsoon regimes are still in the state of infancy.

Sea surface salinity (SSS), in response to fluvial flux undergoes large seasonal variations (~7% during peak discharge during the SW monsoon; Figure 1) in the bay. A core, from among scores of cores collected during different cruises of ORV Sagar Kanya, is selected from a location where under the modern hydrography, SSS is influenced largely by the fluvial discharge of the Ganga–Brahmaputra (G–B) system (Figure 1), and by and large, is a depocentre of terrigenous influx of the Himalayan rivers. Because the SSS variations in this area are regulated by the fluvial influx from the Himalayas, δ18O of the planktonic foraminifers (which mostly sustain in the upper mixed layer, and their shell secretion is influenced by local SSS and SST changes), archive the variations in the magnitude of climate-induced fluvial flux of the G–B into this region. The δ18O variations in these two surface-dwelling planktonic species, therefore, are basis of determining prevalent magnitude of fluvial influx from the G–B. Integrated results of magnetic susceptibility data coupled with granulometric and clay mineralogy are used for reconstructing weathering intensity vis-à-vis terrigenous influx under prevalent glacial and deglaciation conditions.

The core (5.4 m) was retrieved during the 31st expedition of ORV Sagar Kanya (location 15°52′00″N; 91°10′00″E, water depth 2713 m; Figure 1). The upper 100 cm of the core was sub-sampled at 2 cm intervals. Washed, salt-free and oven-dried samples were used for the analyses. δ18O (18O/16O sample/18O/16O standard – 1) was determined in 25–30 shells (size 315–400 μm, ultrasonically cleaned) of Globigerinoides sacculifer and Globigerinoides ruber versus PDB standard on a VG Micromass Analyser in the isotope laboratory at the University of Kiel. The results have a standard deviation of 0.04‰.

The salt-free, oven-dried samples were subjected to granulometric studies at 1 φ intervals. Clay mineral analysis was undertaken on oriented, carbonate and organic carbon free, < 2 μm fractions on a Philips X-ray diffractometer (model PW 1840). Clays have been identified and quantified using the methods of Biscaye and Sirocko and Lange. The core was 14C dated (bulk sample) at 10 levels (Table 1). The 14C dates are corrected for global mean sea water age (400 yr) to account for reservoir effects. Twenty-five discrete, air-dried samples of the core were packed into 8 cm3 styren cubic pots and the magnetic parameters were measured.

Low frequency, Xhf, (0.47 kHz) and high frequency, Xhf (4.7 kHz) magnetic susceptibilities were measured on all dried, discrete samples with a Bartington MS-2 susceptibility meter and mass specific values are presented in 10–5 m3/kg. The frequency-dependent susceptibility (Xfd%) was determined using the low and high frequency susceptibilities with a formula; Xfd% = (Xhf – Xlf)/Xhf × 100 to detect the presence of superparamagnetic, ferrimagnetic (magnetite or maghaemite) grains of > 0.02 μm. Anhysteretic remanent magnetization (ARM) was imparted on the samples by superposing a DC biasing field of 0.05 mT on a smoothly decreasing alternating field with a peak of 100 mT. All remanences were measured using a Minispin fluxgate spinner magnetometer. Isothermal remanent magnetizations (IRM) acquisitions were carried out on a Molspin pulse magnetizer. ‘Saturation’ isothermal remanent magnetization (SIRM) was imparted using a maximum field of 1 T. After acquisition of SIRM, the samples were subjected to reverse DC fields of 0.3 T, and the remanence was measured using the Molspin magneto-

<table>
<thead>
<tr>
<th>Laboratory Sample interval</th>
<th>Corrected 14C age (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRL 1686</td>
<td>0–5</td>
</tr>
<tr>
<td>KL 31/11-3</td>
<td>4–6</td>
</tr>
<tr>
<td>KL 31/11-8</td>
<td>14–16</td>
</tr>
<tr>
<td>KL 31/11-10</td>
<td>18–20</td>
</tr>
<tr>
<td>PRL 1687</td>
<td>25–30</td>
</tr>
<tr>
<td>KL 31/11-16</td>
<td>32–34</td>
</tr>
<tr>
<td>KL 31/11-22</td>
<td>44–46</td>
</tr>
<tr>
<td>KL 31/11-28</td>
<td>62–64</td>
</tr>
<tr>
<td>KL 31/11-30</td>
<td>68–70</td>
</tr>
<tr>
<td>KL 31/11-35</td>
<td>78–80</td>
</tr>
</tbody>
</table>

Table 1. Age model for core (source Chauhan).
Figure 1. Study area and location of core in the bay. Sea surface salinity variations during the SW (left panel) and NE (right panel) monsoons are shown.

Figure 2. Temporal variations in granulometric parameters and clay minerals in the core. Note enhanced silt and chlorite during arid events. Corrected ages of core levels are also shown.

HIRM (hard IRM) and S-ratio (S – 0.3 T) were calculated using the definitions of Robinson15 and Bloemendal \textit{et al.}16.

\[
\text{HIRM} = \frac{\text{IRM}_{1T} + \text{IRM}_{0.3T}}{2},
\]

\[
\text{S-ratio\%} = \left(\frac{1 - \text{IRM}_{0.3T}/\text{IRM}_{1T}}{2} \right) \times 100.
\]

HIRM represents the concentration of high-coercivity magnetic minerals such as hematite and goethite. S-ratio, however, indicates the proportion of SIRM carried by the low-coercivity component.

The granulometric data of the core are presented in Figure 2. The core can be broadly divided in two sections. In the upper 32 cm levels, < 4 µm size (clay size) detritus is uniformly higher. Below this section, the clay size is reduced, but the silt contents (size range 45–4 µm) are found to be enhanced conspicuously at 36, 65 and 72 cm levels (Figure 2). Illite, chlorite, smectite and kaolinite are the significant clays present (Figure 2). Abundance of chlorite and illite shows an inverse trend; chlorite being more abundant at 82–100 (15–20 Ka BP), 72 (12.7 Ka BP), 36 (10.5 Ka BP), 18 (4.5 Ka BP) and 8 cm (~ 2.1 Ka BP) levels.

\[\delta^{18}O\] variations in the core are presented in Figure 3. Broadly, derived from the heavier synchronous incursion of \[\delta^{18}O\] in both the planktonic species, we infer reduced fluvial influx due to enhanced glaciation during 15–20, 12.7,
Figure 3. Temporal variations in magnetic parameters and $\delta^{18}O$ (‰PDB) in G. ruber and G. sacculifer in the core. Major glaciation events are schematically shown in grey shades. Events of Fluvial Water Influx (FWI) I and II are shown by thick arrows.

10.5, ~5–4.3 and 2.2–1.8 Ka BP. The events of 20–15 and 10.5 Ka BP are coeval with global glaciation events of Last Glacial Maximum (LGM) and Younger Dryas (YD). Other glaciation events of 12.7, ~5–4.3 and 2.2–1.8 Ka BP have also been reported in continental and marine records. We have observed significant lighter incursions after 11.5 and 9.5 Ka BP.

The X_{lf} and SIRM variations in the core are marginal with average values of 27.78×10^{-8} m3/kg and 169.28×10^{-8} m3/kg respectively. However, these two parameters, representing ferromagnetic contents in the samples, match well with the isotope variations during pre-Holocene section of core (38–100 cm). From these indices, a relatively higher ferromagnetic component is deduced during the arid, glacial events characterized by heavier $\delta^{18}O$ values of G. ruber and G. sacculifer. In order to further understand the grain size-specific variations in the magnetic parameters, we have determined ratio parameters, susceptibility of anhysteretic remanant magnetism (XARM)/SIRM, XARM/X_{lf} (Figure 3). Finer magnetic grain size, interpreted from the higher, uniform XARM/SIRM ratio, is observed in the entire Holocene section of the core. Below these levels, from the reduced ratios during all arid events, particularly at 35, 65 and 72 cm sections, however, we deduce occurrence of coarser magnetic grain size. These interpretations are also reflected in the granulometric parameters – enhanced silt contents are observed at these core levels.

$\delta^{18}O$ of foraminifers is reported to be influenced by SSS and SST changes. The core has about 2.44% changes in $\delta^{18}O$ between LGM and Holocene. A change of 1.2% is attributed to global climate variability. The excess lighter values may, therefore, be attributed to local factors. The estimated temperature variations are 2°C between Holocene and LGM, which can account only for 0.6‰ variability in $\delta^{18}O$. Because temperature variability cannot fully account for the excess lighter $\delta^{18}O$ values in both the species, the bay being the depocentre of large fluvial influx, these excessive lighter incursions appear to be related with the magnitude of fluvial influx into the bay. The core location lies in the region where the SSS is mostly regulated by climate-regulated fluvial influx of the G-B (Figure 1), with least contributions either from peninsular India or Myanmar sources. It may be inferred, therefore, that the $\delta^{18}O$ variability at the core site is regulated by the magnitude of the fluvial influx from the G-B.

Broadly, derived from the heavier synchronous incursion of $\delta^{18}O$ in the core, we infer overall elevated SSS and a reduced fluvial influx due to enhanced glaciation during 15–20 12.7, 10.5, ~4.8 and 2.2 Ka BP. The Himalayas were intensely glaciated during 20–15, 12.7 and ~10.5 Ka BP. These stadials are coeval with global glaciation events. Moreover, from the abrupt large coeval temporal variations in the $\delta^{18}O$ between 15 and 12.5 Ka BP in both the species, we infer a highly variable magnitude of fluvial influx into the bay till 12.7 Ka BP. This implies that the monsoon regime was highly unstable and the fluvial influx into the bay was unstable after last glaciations until 12.7 Ka BP.

We have observed two major lighter incursions of $\delta^{18}O$ after 12.7 Ka BP, culminating after 11.5 and 9.5 Ka BP, with the magnitude of 1.88 and 2.44‰ respectively, later being more or less stable in the entire Holocene. As discussed earlier, these lighter incursions, if induced by local temperature alone, shall require about 5–6°C SST changes, which are much larger than those reported for these times from the bay. Therefore, we interpreted these as an evidence of a large reduction (5–6‰) in the SSS. Being
the depocentre of major rivers, the SSS in the bay is regulated by the precipitation-regulated magnitude of their influx. At the core site, the G-B system is the most important contributor for SSS variations, irrespective of prevalent hydrography, either during the SW monsoon (anticyclonic, polewards) or the rest of the year (equatorwards, western boundary currents)2,3,35,37. We, therefore, infer at least two major episodes of Fluvial Water Influx (FWI) culminating sometime after 11.5 and 9.5 Ka BP. The upper reaches of the Himalayas experienced major deglaciation coupled with humid Tibet during these times26,32 and this may have augmented the fluvial influx of the Himalayan rivers. These events are also coeval with melt water pulses 1A and IB observed in sea-level records of the rest of the year (equatorwards, western boundary currents)1,3,35,37. We, therefore, suggest that the Himalayan deglaciation also responded to the then prevalent global climate variability. Subsequent to the later pulse, δ^{18}O have rather little temporal variability until ~5–4.3 Ka BP. Here, deduced from the heavier δ^{18}O incursion of 0.3‰, we interpret a reversal in Holocene deglaciation and associated reduction in the magnitude of the fluvial flux. At this time, the Himalayas experienced glaciation (Shivling glaciation38) and enhanced aridity at Dokriani glacier30, which appeared to have influenced the fluvial flux of the Himalayan rivers vis-à-vis salinity in the bay. The climate records from the Ganga Plain38, derived from a core at the Sanai Lake, have aridity between 5000 and 2000 calendar year, which is rather prolonged than observed in our study. This prolonged arid event, however, appeared to have stemmed from the limitation of sampling resolution due to slow rate of sedimentation and larger sampling intervals during this episode. The other heavier incursion at 1.8–2.1 Ka BP is coeval with the reduction in influx of the Indus, during this time21,23 related with a pause in the deglaciation of the Himalayas. Coeval with our climatic reconstruction, other studies27,29–33,38 have also shown a weak SW monsoon (and glaciation at Himalayas) from the continental, lake records as well as marine records at these times during mid–late Holocene.

The supply of clays from a source depends upon geology, drainage and climate of the region. For a short geologic time span of the 20 Ka, it may be deduced that the geology had rather insignificant variations. Also, from the soil-profile studies along the different climate zones39, it is established that augmented chlorite is produced under arid, cold climate due to higher magnitude of physical weathering. With increase in the precipitation, production of smectite–illite–kaolinite–gibbsite in the increasing order is observed15. In the bay, derived from the load of the rivers, it is deduced that illite, chlorite with minor kaolinite are found in the suspended sediments of the G-B system40. Smectite, the clay conspicuous by its absence in the load of the G-B system, is the major constituent of rivers draining the Deccan Basalt in the central peninsular India37. From the temporal variations in the clays in the bay27, it is also deduced that chlorite contents, inversely related with illite, are enhanced during glacial events due to enhanced physical weathering with corresponding reduction in illite, Temporal variations in the clay assemblage of the G-B system, therefore, have potential to be used as a proxy to reconstruct weathering intensity in the hinterland.

The abundance of clays in the core varies significantly. Chlorite is a dominant clay species during the entire pre-Holocene. The augmented content of chlorite during all the arid events of 20–15, 12.7, 10.5, 5–4.8 and 2.1–1.8 Ka BP, and the corresponding decrease in illite (Figure 2) appeared to stem from the intensified physical weathering at the glaciated Himalayas. The contents of enhanced illite vis-à-vis reduced chlorite during deglaciation events, particularly during the Holocene and the events of FWI (Figure 2) also suggest higher component of chemical weathering in the Himalayas under intensified precipitation regime. The temporal variability in the content of the silt in the core, being coeval with chlorite – the clays reported to have enhanced production under intensified glacial, further support our view of enhanced physical weathering in the Himalayas during stadials.

The magnetic properties of the sediments stem from composition, concentration and grain size of the magnetic minerals, and are therefore related with changes in sources, climatically influenced concentration and grain size regulated by changes in transport processes, e.g. turbiditic, bottom currents, fluvial input, eolian, melt water and ice rafting13–15. The core being turbidity-free, and located in hemipelagic environment6, suspension is the prominent mode of deposition. X_d variations in the core are the least. Low X_d values (Figure 3) further imply that the core site is not an active depocentre of magnetic material. This is expected since the core location lies far away from the continental margins, and the mouths of the major fluvial sources in the bay. Also, in the bay, the fluvial input is the only major source. The sediments have rather low hard component (around 3%), which is attributed to an insignificant presence of hematite component. S-ratio associated with the occurrence of titanomagnetite is significantly high (~97.34%). Considering the high values of S-ratio, we infer that titanomagnetite is the only major constituent of the sediments. Titanomagnetite has major sources in volcanic, acid igneous and metamorphic rocks41. In the bay there are two potential sources – (i) from the Deccan Basalt and (ii) from the Sylhet Basin in the catchment of the G-B system41. To the core sites, magnetic material can be contributed either through bed load or advection in suspension. The contribution of titanomagnetite from peninsular India appears unlikely because it cannot be transported in bed load for several hundred km across the bay, escaping entrapment within the channel levees system of middle fan regions having physiographic modulation of about 100 m. Its advection in suspension is also unlikely because of the hydrography of the bay. The anti-
cycloonic poleward currents prevalent during the SW monsoon13,36,37 advect the discharge of the Krishna and the Godavari rivers, the major source of titanomagnetite, northwards, and not across 10°E at the same latitude. The hydrography during the rest of the year is mostly cycloonic, western boundary currents (equatorwards), which also advect suspended load southwards13–36,37,42. Therefore, the supply of titanomagnetite from the Deccan Basalt appears unlikely. This implies that the magnetic material has been mostly supplied from the Himalayan source. Other studies have also identified titanomagnetite as the main magnetic carrier contributed from the Himalayas in the central regions of the bay31. Considering supply of magnetic material from a single source and uniform mode of deposition, the temporal variations in the magnetic grain size appear related with climatic changes.

We have consistently found reduced ARM/SIRM ratio during the LGM and YD periods compared to the Holocene – the period with intensified precipitation regime. We have observed enhanced influx of silt size detritus during the glacial events at 36 and 72 cm levels coeval with chlorite (Figure 2). We link this with: (i) a reduced chemical weathering in the hinterland aiding in the augmented supply of coarser material; (ii) change in the land vegetation pattern (reduced during weak precipitation) aiding in contribution of coarser sediments, and (iii) location of the mouth of the fluvial sources farther offshore at the edge of the continental shelf due to about ~120 m low stand of sea8,17. A proximal location of the river mouth during the low stand of sea level has been found to induce an enhanced terrigenous flux into the bay25, and further supports our thesis. A higher ARM/SIRM ratio, coupled with high (low) clays (silt) fraction, similarly, may also be attributed to higher intensity of chemical (physical) weathering and augmented influx of finer magnetic grain from the catchment area under intensified monsoon regime during the entire Holocene.

It is summarized that climate variability has influenced the characteristics of terrigenous influx. During glaciation events, under the intensified regime of physical weathering, there was an enhanced flux of coarser material, which has reduced considerably under intensified monsoon regime during the Holocene.

RESEARCH COMMUNICATIONS

Seismic reflection data: their utility in estimation of gas hydrates in deep marine sediments

Uma Shankar, N. Satyavani, Babita Sinha and N. K. Thakur*
National Geophysical Research Institute, Uppal Road, Hyderabad 500 007, India

The occurrence and significance of low-velocity sedimentary layer corresponding to free gas in the sediment beneath the bottom simulating reflector have long been a subject of debate. Either velocity or amplitude information in isolation is inadequate to estimate hydrate concentration. Reduction in amplitude (amplitude blanking) calibrated by interval velocity has been used to quantify hydrate concentration in the Kerala–Konkan area of western continental margin of India. The tentative estimate of hydrate in the representative sediment has been made using the time-average equation, in which the velocity structure of pure methane hydrate is inferred from the seismic data and known properties of pure hydrate.

...