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Abstract. The effect of solar wind pressure pulse on geomagnetic field oscillations has been computed by using Green’s 
function technique. The dominance of toroidal oscillations during dawn/dusk sectors appears to be natural consequences of 
solar wind pressure pulse and may not be attributed to K-H instability at the magnetopause boundary caused by velocity shear. 
Pressure pulse generates surface waves at the magnetopause boundary and couples to the field oscillations to give rise such 
effects. The paper adopts the 3-dimensional approach to explain the phenomena.  
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1. Introduction 

The idea of explaining geomagnetic pulsations (10-600s) in 
terms of standing Alfvén waves excited on geomagnetic 
field lines was floated by Dungey (1954). With the 
dawning of satellite era space scientists have been actively 
involved in studying the phenomena from theoretical as 
well as observational points of view (Cummings et al., 
1969; Singer et al., 1981; Anderson et al., 1990; Sinha and 
Rajaram, 1997; Sinha et al., 2005 and references therein). 
Field lines behave as loaded strings with variable loading of 
plasma along the field line. In this paper we make an 
attempt to provide a methodology to compute the field line 
response to an arbitrary external forcing at the 
magnetopause boundary.  The force exerted causes re-
adjustment at the magnetopause boundary and the 
corresponding surface current required for pressure 
balance. We discuss the methodology in general and use it 
to compute the field line response to sudden change in solar 
wind dynamic pressure to demonstrate its utility. A 
primitive model (Mead 1964) , which neglects the plasma 
currents within the magnetosphere and computes the 
magnetic field due to surface currents for a given 
magnetopause stand-off distance caused by sudden change 
in solar wind dynamic pressure, has been used for the 
purpose. The model has been effectively used to estimate 
the magnetic field associated with storm time sudden 
commencement and sudden impulse (cf. Schulz and 
Lanzerotti 1974) to understand the role of these transient 
variations in cross field diffusion and drift echoes. In the 
present context the model will be helpful in understanding 
the excitation of field line resonant oscillations by sudden 
change in solar wind pressure. 
 

Chen and Hasegawa (1974) for the first time made an 
attempt to study the eigen mode excitation by any external 
force. They studied the problem in Cartesian geometry 
using Green’s function technique to address the radial 

structure of oscillations induced by surface eigen modes, 
but the paper did not throw any light on mode structure 
along the field line as regards their response to external 
forcing. Leonovich and Mazur (1997) did the most 
significant work in this direction to study the excitation of 
field lines by the E-layer ionospheric currents in dipole 
geometry. They used natural eigen modes for the 
construction of Green’s function. In the present work a 
similar methodology using spectral representation of 
Green's function has been applied to compute the response 
of magnetospheric transverse mode oscillations to the time 
varying oscillations in current flowing at the magnetopause 
boundary due to sudden change in solar wind dynamic 
pressure.  This is a simplified model for simulating the 
oscillations associated with the solar wind dynamic 
pressure.   Response of the field lines is computed taking 
the ionosphere as perfectly reflecting.  The perfectly 
reflecting ionosphere can be attained in two extreme cases 
viz. (a) the ionosphere acts as perfect conductor that 
amounts to assuming that field lines are rigidly held at their 
feet in the ionosphere, and (b) the ionosphere acts as 
perfect insulator meaning that the field lines are free to 
move at their end in the ionosphere.  Sudden change in 
solar wind dynamic pressure are known to excite field line 
oscillations along select field lines (Baumjohann et al., 
1984) and hence the problem is important from theoretical 
point of view to look into the excitation mechanism of such 
oscillations. The problem has been solved for both the 
'rigid' and 'free' end cases.  The layout of the paper is as 
follows. 

 
Section 2 describes the theory and analysis as to how the 

theory could be applied to bring out the response of 
transverse field line oscillations to the current variations in 
magnetopause associated with sudden change in solar wind 
dynamic pressure. Highlights of the results brought out by 
the present investigations and the main conclusions are 
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stated in section 3. 
 

2. Theory and analysis 
We start with the second order wave equation (Singer et al., 
1981) in the normalized form describing low frequency 
transverse waves in infinitely conducting stationary, 
magnetized plasma with negligible plasma pressure in dipolar 
field geometry imparting time dependence of the type 
exp(iωt) to all the perturbed quantities and taking the density 
distribution due to Cummings et al. (1969) of the type 
ρ=ρo(ro/r)m ; ρo, r and m being proton mass density at ro (the 
geocentric distance to the equatorial crossing point of the 
field line), the geocentric distance to the point of interest on 
the field line and density index respectively. In the original 
derivation of the equation by Singer et al. (1981) 
compression of the magnetic field was completely neglected. 
If we account for the compression the system can be 
described in its modified form by the following equation as:   
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and the quantities are normalized as  
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Fig. 1. The compressional component  of geomagnetic field variation due to 
the oscillations of current at the magnetopause based on Mead’s model 
(1964) along a field line (Ld=6.6) at different latitudes. 
 

In the above equations is the distance measured along the 
field line from the equator, 

s
θ  is the co-latitu e, d ω  is the 

mode frequency, ξα is the plasma displacement, Bo is the 
ambient magnetic field, bs is the change in the magnetic field 
strength due to compression, Re is the radius of the Earth, VAeq 
is the Alfvén velocity at the equator, Beq is the ambient field 
at the equator, the parameter α defines the mode of 

oscillation and determines the direction of field line 
displacement and hα is scale factor for the normal separation 
between the field lines in the direction of displacement and is 
determined by the ambient magnetic field structure. The 
derivative with respect to α in the right hand side means that 
the derivative has to be taken with respect to the longitude φ 
for the toroidal mode and with respect to ν for the poloidal 
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th  forcing term by putt ng rhs of Eq. (1) as zero, we get 

s stem. 

Any fluctuation in the magnetopause current associated 
with pressure change will produce a field bs at the field line 
position. It can then provide the impulse that can in turn 
generate a response in the field line oscillations (Lee, 1996). 
Thus, we can identify bs that appears on the right hand side 
with external forcing and solve for response defined by the 
operator on the left hand side of the equation. Switching

e i
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This is identical to the equation of Singer et al. (1981) 
derived by completely neglecting the compression in the 
magnetic field. The equation represents the normal modes of 
the system and can reproduce spatial and temporal structures 
of field line oscillations if solved under appropriate boundary 
conditions at the foot of field lines in the ionosphere. It 
should be noted that the function   f (S) in right hand side of 
Eq. (1) depends only on the change in the magnetic field due 
to compression caused by external forcing at magnetopause 

o

ed is ensured by 
su jecting them to the following criteria: 

b undary.  
 

We proceed to solve Eq. (1) by spectral representation of 
the Green’s function technique (Dudley, 1994). As a first 
step we have to solve the equation with right hand side zero 
(Eq. (4)) with the specified boundary conditions. It is 
assumed that X(S) satisfies the same boundary conditions as 
that of un(S). We solve the problem in perfectly ionospheric 
conditions viz. (a) ionospheric conductivity is infinitely 
large: fixed-end scenario and (b) ionospheric conductivity is 
infinitesimally small: free-end scenario. In terms of boundary 
conditions it amounts to saying that the eigen function un(S) 
in the first case and its derivative in the second case are 
vanishing at the foot of the field line in the ionosphere for 
both the hemispheres. Eq. (4) was solved numerically for 
both toroidal and poloidal oscillations using second order 
Runge-Kutta method and λn was obtained by shooting 
method using the specified boundary conditions at the 
conjugate points. Proton density at the equator was taken to 
be 1/cm3 and density index m is taken to be 5. Eigen 
functions are symmetric (or asymmetric) about the equator 
for the odd (or even) harmonics for the fixed-end case 
(Cummings et al., 1969), while for the free-end case the even 
(or odd) harmonics are symmetric (or asymmetric) about the 
equator (Newton et al., 1978). The eigen function thus 
obtained is normalized in the domain and hence the 
normalized eigen function un corresponding to a particular 
eigen value λn is obtained as a function of S. The 
orthonormality of solutions thus obtain

b
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As the operator L given by Eq. (2) is real in the domain 
specified by the boundaries at the ionosphere, it is also self-
adjoint which is an essential condition for this analysis. 
Having confirmed that the operator L is self-adjoint, a 
complete orthonormal set of solutions of Eq. (4) can be used 
to obtain the solution  of  Eq. (1)  by  constructing  the 

ion G(S, S’) and  the  solution can be written   as 
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where, the integration is carried out in the domain D of the 
eigen function and G(S,S’) is given as 
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Here, the summation runs over the harmonics. 
 

Finally, the solution of equation (1) can be written by 
combining Eqs (6) and (7) as 
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 Response X(S) of a given mode depends on its 
contribution in the expansion of the forcing term and also on 
the proximity of λ to λn. The response maximizes when the 
frequency of the wave is in the vicinity of one of the natural 
frequencies of field line oscillations and un closely reproduces 
the latitudinal structure of the function f(S). For numerical 
computation, we impart a small imaginary part γ to the wave 
frequency ω in order to avoid singularity at the resonant 
condition i.e. when λ = λn. If we write ω = ωr+iγ then in 
resonant condition it can be seen that |λn − λ|~2γωr. Thus, 
greater responses are expected for the lower harmonics. For 
the present analysis the value of γ is chosen to be 0.005. The 
ratio of γ to the fundamental normal mode angular frequency 
is of the order of 10−4 and the ratio will still be smaller for 
higher mode frequencies. Here, a finite γ has been taken just 
to avoid singularity and to get physically meaningful 
response.  

2. 1 Response to sudden change in solar –wind dynamic 
pressure  
It is obvious from the integral in equation (8) that the 
magnitude of response of the field line oscillations is 
sensitive to the latitudinal structure of the impulse term. It is, 
therefore important to look for a working model that at least 
qualitatively represents the latitudinal structure of impulse. 
Mead’s model (1964) provides an estimate of magnetic 
impulse along a field line caused by distribution of 
magnetopause currents associated with the sudden impulse of 
solar wind dynamic pressure. In the model interplanetary 
magnetic field and plasma pressure within the magnetosphere 
have been neglected and the Earth’s dipole is assumed to be 

normal to the direction of undeflected solar wind. It can be 
seen that the compressional component of geomagnetic field    
due to the oscillations of currents at the magnetopause based 
on Mead’s model is given as 
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where, B1 ~ 0.25 Gauss, B2 ~ 0.21 Gauss, a is the equatorial 
stand-off distance from the point dipole to the magnetopause 
in the noon meridian and Δa is the displacement of the 
magnetopause in the direction perpendicular to its surface. 
The variation of bs along a particular field line (Ld = 6.6) has 
been shown in Fig. 1. 
 

If we take the time variation of Δa as exp (iωt) then f(S) in 
Eq. (1) for toroidal and poloidal modes are of the forms: 
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where, B1 and B2 have been normalized wrt Beq, a and Δa are 

 

normalized wrt Re. 
 

 
 

Fig. 2. The equatorial response of a magnetic shell (Ld=6.6) as a function of 

 for both the toroidal and 
po

wave-periods. Peaks in decreasing sequence of wave-periods for rigid-end 
case correspond to odd harmonics i.e. harmonic numbers 1, 3, . .and those in 
case of free-end correspond to even harmonics i.e. harmonic numbers 2, 4. . . 
The toroidal response at a given longitude can be obtained in kilometers by 
multiplying the ordinate with a factor sin φ. 
 

Eqs. (10a) and (10b) show that
loidal oscillations f (S) is symmetric about the equator. The 

longitudinal variation of f(S) due to the factor sin φ in case of 
toroidal oscillations and its axially symmetric behaviour in 
case of poloidal mode is to be noted. It follows straight away 
that only symmetric modes will respond to the forcing. In 
case of fixed-end the odd harmonics are symmetric and in the 
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case of free-end the even harmonics are symmetric. Also, f(S) 
depends on the amplitude of the magnetopause displacement 
Δa’ and the stand-off distance a’ of the magnetopause. In the 

resent analysis we have taken the value of Δa’ as 0.1 and 
that of a’ as 10. Moreover, f(S) will be different for different 
magnetic shells characterized by their Ld values. In fact f(S) 
decreases with increase in Ld. The presence of a’ in the 
denominator with one power less and the factor cos2θ in the 
numerator in the expression of f(S) for the poloidal mode as 
compared to that of toroidal mode indicate the greater 
response for poloidal mode as compared to that for toroidal 
mode. All these characteristics should be reflected in the 
response X(S) of magnetic field lines. 

 

p

onstructing the Green’s function using the normal mode 
so

3. Results and conclusion 
ts obtained through the present 

g. 1 match with the time-

 magnetic shell, poloidal mode shows larger 

dd harmonics are 

eld line structures of the dominant modes (viz. 

alysis is the 
do

C
lutions of field line oscillations by equation (7) and 

plugging it along with f(S) in equation (6), solution X(S) of 
equation (1) could be obtained. In other words, the response 
of toroidal and poloidal oscillations to the oscillations of 
current at the magnetopause associated with the solar wind 
dynamic pressure is computed using Mead’s model in 
perfectly reflecting ionospheric conditions. The response 
were computed for fixed Ld taking different periods of 
driving oscillations (i.e. for different corresponding λ =Ω 2) 
for both types of boundary conditions (i.e. ‘rigid-end’ and 
‘free-end’) (Fig. 2). The field line structures of response for 
dominant modes (i.e. fundamental in case of rigid-end and 
second harmonic in case of free-end) have also been 
computed taking Ld = 6.6 for both the toroidal and poloidal 
oscillations (Fig. 3). Longitudinal variation of response can 
be obtained by multiplying with sinϕ for various driving 
periods only in case of toroidal oscillations as such longitude 
dependence is not that obvious for poloidal oscillations. This 
could be possible because we took the three dimensional 
distribution of compressional source. It is not possible to get 
the longitudinal variation of response in the simple box 
geometry. The results and their various implications have 
been discussed in the following section.    

Main features of the resul
analysis can be stated as follows: 
 

(a) The positions of peaks in Fi
periods of harmonics of natural modes of field line 
oscillations as given by Cummings et al. (1969). Peaks in 
rigid-end case correspond to the odd harmonics (left panel of 
Fig. 2) and peaks in free-end case correspond to the even 
harmonics (right panel of Fig. 2). Results suggest that the 
waves caused by external forcing at the magnetopause 
boundary may excite the field line oscillations as suggested 
by Lee (1996). 
(b) For a given
response as compared to toroidal. (Fig. 2).  
(c) It is revealed through the analysis that o
excited in case of ‘rigid-end’ boundary and even harmonics 
are excited in case of ‘free-end’ boundary (Fig. 2) as 
expected from expression given in Eq. (6). Thus, it is 
predominantly fundamental mode that responds in the ‘rigid-

end’ case and second harmonic that responds in the ‘free-
end’ case. 
 (d) The fi
fundamental in rigid-end case and second harmonic in free-
end case) have been computed and presented in Fig. 3. The 
displacement gets enhanced almost by the order of three in 
presence of compression. The factor sin φ in case of toroidal 
oscillations clearly indicates the longitudinal dependence of 
the mode and arises due to the three dimensional model of 
the compression at the magnetopause boundary. 
 

The most significant result of the present an
minance of toroidal mode in dawn/dusk sector that is 

brought out by taking the 3-D model of compresional wave 
caused by solar wind dynamic pressure variation at the 
magnetopause boundary. 

 
 

 
 

ig. 3. The latitudinal response-structures of dominant modes (fundamenta

believed that the dominant nature of 
ob

F l 
for rigid-end case and second harmonic for free-end case) along a field line 
(Ld = 6.6). The lower panel shows the mode structure when there is no 
compression whereas the upper panel represents the field line structure in 
presence of compression. 
 

It is traditionally 
served toroidal oscillation in the dawn/dusk sectors can be 

attributed to K-H instability (Anderson et al., 1990), but 
without much observational evidences. The present analysis 
does not account for the propagation aspect (and hence the 
shear in velocity) of the compressional waves generated by 
the solar wind pressure variation at the magnetopause 
boundary and still could reveal the dominance of toroidal 
oscillations in the dawn and the dusk regions. Parallel 
developments (Southwood and Kivelson, 1990; Chen and 
Hasegawa, 1974) have considered the radial propagation 
effect in simplified geomagnetic field geometry, thus 
ignoring the realistic mode structure along the field line and 
the latitudinal structure of the impulse forcing. The two 
approaches have to converge in future. We want to make a 
point about the methodology applied to solve the problem 
through spectral representation of Green’s function that the 
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method has immense potential in the sense that response to 
the coupling of complex forcing associated with K-H 
instability or tearing instability can also be evaluated given bs 
the compression associated with the driving force. 
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