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Abstract. The equal charge-to-mass ratio for both species in pair plasmas
induces a decoupling of the linear eigenmodes between waves that are charge
neutral or non-neutral, also at oblique propagation with respect to a static magnetic
field. While the charge-neutral linear modes have been studied in greater detail,
including their weakly and strongly nonlinear counterparts, the non-neutral
mode has received less attention. Here the nonlinear evolution of a solitary
non-neutral mode at oblique propagation is investigated in an electron–positron
plasma. Employing the framework of reductive perturbation analysis, a modified
Korteweg–de Vries equation (with cubic nonlinearity) for the lowest-order wave
magnetic field is obtained. In the linear approximation, the non-neutral mode
has its magnetic component orthogonal to the plane spanned by the directions of
wave propagation and of the static magnetic field. The linear polarization is not
maintained at higher orders. The results may be relevant to the microstructure in
pulsar radiation or to the subpulses.
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1. Introduction

There is a keen interest in studying large amplitude plasma waves in pair plasmas, such as
electron–positron plasmas in pulsar magnetospheres [1]–[9]. The nonlinear interaction of Alfvén
waves in electron–positron plasmas is relevant for understanding the pulsar radio emission.
Recently, pair plasmas have also been created in the laboratory using charged fullerenes,
consisting of C+

60 and C−
60 molecules in equal numbers [10]. One could thus, in principle, study

the long-term behaviour of nonlinear modes, as one need not worry about the annihilation
problems encountered in (laboratory or space) electron–positron plasmas. In pair plasmas,
the wave characteristics are quite different from those of electron–ion plasmas, since the
natural separation of time and spatial scales associated with the fast and slow motions no
longer exists. For example, the ion-acoustic and lower-hybrid type modes cannot exist in pair
plasmas.

Stenflo et al [6] derived a set of nonlinear equations for the coupling of electromagnetic
modes with cold electrostatic waves. Yu et al [11] and Bharuthram et al [12] investigated,
respectively, Alfvén vortices and shear Alfvén wave instabilities caused by current gradients
in a magnetized electron–positron plasma. Zhao et al [13] were interested in the generation
of Alfvén modes by an electron beam in a non-relativistic electron–positron plasma using
3D particle simulation. Their results showed Alfvén waves propagating along the beam as
damped solitons, accelerating electrons. Verheest and Lakhina [8] and Lakhina and Verheest
[9] studied obliquely propagating solitary Alfvén modes in relativistic electron–positron
plasmas. Recently, Verheest and Cattaert [14] gave the arbitrary amplitude generalization of
obliquely propagating electromagnetic solitons in pair plasmas, while Schamel and Luque [15]
dealt with periodic electrostatic holes and double layers in such plasmas through a kinetic
description.

In several of these treatments, the modes studied were charge-neutral, i.e., there were no
charge separation effects associated with these modes. For propagation strictly parallel to the
external magnetic field, the Alfvén modes in pair plasmas are shown to be charge-neutral in
the linear description (see e.g. [16]). Such charge-neutrality also follows from the reductive
perturbation analysis [1, 17] for moderately nonlinear modes, and has recently been proved for
large solitary structures [14].

For obliquely propagating modes, the picture is more complicated. As we will briefly recall
in section 2, there are then two types of linear waves: one charge-neutral, with a dispersion
law independent of the angle of propagation (see (7)), whereas the other is non-neutral and its
dispersion depends on the angle of propagation (see (8)). The former mode has been studied in the
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weakly nonlinear regime by reductive perturbation analysis, and the algebra shows indeed that
it conserves its charge-neutral character [8, 9]. This was the argument for Verheest and Cattaert
[14] to look for large solitary structures that were assumed to be charge-neutral, in line with the
indications of the weakly nonlinear description.

In the present paper, we study nonlinear Alfvén modes propagating at an arbitrary angle
to the external magnetic field in a pair plasma by employing a reductive perturbation analysis,
in which we retain the displacement current and do not impose a particular polarization for the
electromagnetic field waves. Our paper differs from previous treatments in that we, in particular,
address the modes which are non-neutral, since, as explained, the charge-neutral modes have
been well studied, both for weakly and larger nonlinear amplitudes. To achieve our aim, we let
the reductive perturbation formalism decide how the dependent variables are to be expanded
order by order, but at strictly oblique propagation.

The paper is organized as follows: in section 2, we delineate the theoretical model and
discuss what linear modes are possible in a magnetized pair plasma at arbitrary angles of
propagation compared to the direction of the static field. It turns out that in such plasmas the
modes decouple into those that are charge-neutral and those that are non-neutral. It is for the
latter that we want to find the nonlinear counterpart of, and this is done in section 3. Although
not imposed a priori, the polarization turns out to be linear at the lowest level, but the higher-
order corrections will deviate from that. The nonlinear evolution is governed by a modified
Korteweg–de Vries (KdV) equation, with cubic nonlinearity and which in ordinary (multi-ion)
plasmas describes electrostatic modes at critical ion densities, whereas the electromagnetic modes
obey a derivative nonlinear Schrödinger (DNLS) equation at parallel and a KdV equation at
oblique or perpendicular propagation. Finally, our conclusions are given in section 4.

2. Theoretical model and linear modes

For reasons of mathematical tractability, our model is that of a homogeneous, cold plasma
immersed in a uniform magnetic field, and composed of equal numbers of negative ions or
electrons and positive ions or positrons. Relativistic and thermal corrections do not qualitatively
change the character of the nonlinear evolution equation. We study solitary waves propagating
along the x-axis, so that all quantities depend only on x and t. For oblique modes we take
B0 = B0eB, with eB = cos ϑex + sin ϑez, the unit vector along the static magnetic field with
strength B0. The basic fluid equations include the continuity equations,

∂nα

∂t
+

∂

∂x
(nαvαx) = 0, (1)

together with the equations of motion,

∂vα

∂t
+ vαx

∂vα

∂x
= ± e

m
(E + vα × B). (2)

Here E and B are the electric and magnetic fields, and the label α characterizes the positive ions
or positrons (α = i, with qi = e and upper signs in the equations), and the negative particles
or electrons (α = e, with charge qe = −e and lower signs), with densities nα, velocities vα and
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masses m = me = mi. The description is closed by Maxwell’s equations,

ex × ∂E
∂x

+
∂B
∂t

= 0, (3)

c2ex × ∂B
∂x

= ∂E
∂t

+
e

ε0
(nivi − neve), (4)

∂Ex

∂x
= e

ε0
(ni − ne), (5)

and Bx = Bx0 = B0 cos ϑ is constant. Before going to the nonlinear development, we linearize
and Fourier transform the relevant equations (1)–(5), which yields the linear wave equation,

c2k2(ω2 − �2)Exex + ω2
p�

2(E · eB)eB + [(ω2 − c2k2)(ω2 − �2) − ω2
pω

2]E = 0. (6)

The total plasma frequency ωp is defined through ω2
p = 2n0e

2/ε0m, with n0 = ne0 = ni0 the
common equilibrium density, and � = eB0/m is the gyrofrequency in absolute value, for both
species. There is thus, at all angles of wave propagation, a mode for which Ey, the component
of E perpendicular to the plane spanned by k and B0, decouples from the other components. It
has the dispersion law,

ω4 − ω2(c2k2 + ω2
p + �2) + c2k2�2 = 0. (7)

This mode has been studied in detail before and corresponds at parallel propagation to a
degenerate case of the circularly polarized waves known from standard plasma theory, and
at perpendicular propagation to part of the extraordinary mode in the Allis terminology.

The other components of E, those in the plane spanned by k and B0, obey a more complicated
dispersion law,

ω2(ω2 − ω2
p − �2)(ω2 − c2k2 − ω2

p) − c2k2ω2
p�

2 cos2 ϑ2 = 0. (8)

For parallel propagation, there occurs a further decoupling between Ex and Ez, where the mode
having Ez �= 0 has the same dispersion law (7) as the one with Ey �= 0, while the mode with
nonzero Ex corresponds to the cold plasma remnant of the plasma oscillations, at ω = ωp,
and includes opposite density variations for positive and negative ions. For perpendicular
propagation, the waves also decouple. One of the waves corresponds to the incompressible,
linearly polarized (Ez �= 0) ordinary mode, again in the Allis terminology, having the usual
dispersion law ω2 = c2k2 + ω2

p, whereas the other one is a fixed frequency pure upper-hybrid
mode with ω2 = ω2

p + �2 and Ex �= 0, the other remnant of the extraordinary mode.
In the present paper the mode that we further want to study has dispersion properties given

by (8). This has a low-frequency, long-wavelength branch, for which the (linear) phase velocity
goes as

ω

k
= V − VCk2 + · · · . (9)
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Here V = VA cos ϑ, and C will be encountered later as the coefficient of the dispersive term in
the nonlinear evolution equation,

C = c2[ω4
p cos2 ϑ + (ω2

p + �2)2 sin2 ϑ]

2ω2
p(ω

2
p + �2)2

. (10)

Because V → 0 when ϑ → 90◦, this mode does not exist at strictly perpendicular propagation,
and at parallel propagation it becomes the same generalized X mode that was studied before.
Hence, we will concentrate in the nonlinear discussion on purely oblique propagation, with
0 < ϑ < 90◦, so we assume that both Bx0 = B0 cos ϑ �= 0 and Bz0 = B0 sin ϑ �= 0.

The Alfvén velocity VA itself is given by the equation,

V 2
A = c2�2

ω2
p + �2

, (11)

which reduces in the limit �2 � ω2
p to the expression,

V 2
A � c2�2

ω2
p

= B2
0

2µ0n0m
, (12)

familiar from weakly magnetized plasmas, but with a factor 2 to account for the proper density
definition in a pair plasma. However, in e.g. pulsars, the magnetic field can be large, and hence
modifications can occur in VA if ωp ∼ �. This is also the reason why we cannot a priori neglect
the displacement current in Ampère’s law (4), nor deviations from charge neutrality in Poisson’s
law (5), as usually done in low-frequency treatments.

3. Nonlinear evolution

To describe nonlinear electromagnetic waves in the low-frequency limit, we first determine a
subsidiary equation by taking the scalar product of the equations of motion (2) with B, which
yields the equation,

B ·
(

∂

∂t
+ vαx

∂

∂x

)
vα = ± e

m
E · B. (13)

Similarly, we see from (2) that the parallel equations of motion can be solved for the expression,

Ex = 1
2 [B⊥ × (ve⊥ + vi⊥)] · ex +

m

2e

∂

∂t
(vix − vex) +

m

2e

(
vix

∂vix

∂x
− vex

∂vex

∂x

)
. (14)

Since ω determined from (9) has a cubic correction in k, the stretching is of the form,

ξ = ε(x − Vt) and τ = ε3t. (15)
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We could have equally well taken
√

ε instead of ε, provided concomitant changes are made in the
expansions of the dependent variables. To let the basic equations determine how the dependent
variables are expanded, we could start for all the variables consistently from the equation,

f = f0 + εf1 + ε2f2 + · · · . (16)

All equilibrium quantities like f0 are zero, except for the densities and the components of the
static magnetic field, as indicated already. However, (13) to lowest order gives that

E1 · B0 = B0(Ex1 cos ϑ + Ez1 sin ϑ) = 0, (17)

so that not only Ex and Ez need to have the same type of expansion, but the lowest-order wave
electric field is orthogonal to B0 and lies in the plane spanned by k and B0. Similarly, to lowest
order (14) shows that,

Ex1 = − 1
2B0(vey1 + viy1) sin ϑ, (18)

and together with the y component of Faraday’s law (3), we note that By and vαy also have a
similar expansion as

By = εBy1 + ε3By3 + ε5By5 + · · · , Ex = εEx1 + ε3Ex3 + ε5Ex5 + · · · ,
Ez = εEz1 + ε3Ez3 + ε5Ez5 + · · · , vαy = εvαy1 + ε3vαy3 + ε5vαy5 + · · · . (19)

On the other hand, the continuity equations (1), the y components of the equations of motion (2)
and the z component of Faraday’s law (3) show that the remaining variables have an expansion
going as

Bz = B0 sin ϑ + ε2Bz2 + ε4Bz4 + · · · , Ey = ε2Ey2 + ε4Ey4 + · · · ,
nα = n0 + ε2nα2 + ε4nα4 + · · · , vαx = ε2vαx2 + ε4vαx4 + · · · ,
vαz = ε2vαz2 + ε4vαz4 + · · · .

(20)

One can show (and we have checked) that possible intermediate terms in (19) and (20) either
vanish or can be renormalized away. To avoid needless cluttering of the expressions, however,
these extra terms have been omitted in our exposition.

Substitution of the stretching (15) and the perturbation expansions (19) and (20) into the
basic equations (1)–(5) gives a sequence of equations, upon equating the coefficients of the
various powers of ε. Some of the intermediate expressions to order ε are,

viy1 = vey1 = −VABy1

B0
, (21)

showing that there will be no lowest-order current in the y direction, and

Ex1 = VABy1 sin ϑ, Ez1 = −VABy1 cos ϑ, (22)

corroborating the choice for the expansions.
Just to show that the mode is non-neutral, we give the lowest nonzero contributions to the

density changes,

ni2

n0
= �2B2

y1

2(ω2
p + �2)B2

0

+
VA� sin ϑ

ω2
pB0

∂By1

∂ξ
,

ne2

n0
= �2B2

y1

2(ω2
p + �2)B2

0

− VA� sin ϑ

ω2
pB0

∂By1

∂ξ
. (23)
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The nonlinearities also generate the field components that were missing to lowest order, as shown
in the equation

Ey2 = VABz2 cos ϑ = −VAω2
pB

2
y1 cot ϑ

2(ω2
p + �2)B0

. (24)

Such contributions do not occur at parallel propagation.
Higher-order components quickly become involved, and although the algebra is

straightforward, it has to be done with great care. Proceeding thus to the order ε4, one deduces
a modified KdV (mKdV) equation

1

V

∂By1

∂τ
+ AB2

y1

∂By1

∂ξ
+ C

∂3By1

∂ξ3
= 0, (25)

where C was introduced already in (10) and the new coefficient A is given as

A = 3ω2
p�

2

4B2
0(ω

2
p + �2)2

. (26)

Such an mKdV equation as the governing evolution equation for non-neutral modes in pair
plasmas at oblique propagation is to be contrasted to the KdV equation that obtains for similar
oblique modes in a standard hydrogen or even multispecies plasma [18]–[21]. The fact that the
mKdV equation is odd in its dependent variable, and hence has positive and negative solutions
of the same kind, is an indication of the underlying symmetry between the positive and negative
particles which characterizes a pair plasma.

The standard one-soliton solution of (25) typically is

By1 =
√

6U

AV
sech

[√
U

CV
(ξ − Uτ)

]
. (27)

Given that V = VA cos ϑ, the amplitude of the soliton blows up as ϑ → 90◦, while its width goes
to zero, but, of course, the evolution equation is not valid at strictly perpendicular propagation.
For parallel propagation the mKdV equation and its one-soliton solution tally with earlier results
[17], where an earlier misprint is corrected.

For weakly magnetized pair plasmas, in the sense that �2 � ω2
p, we can approximate the

coefficients in the mKdV equation as

A � 3�2

4B2
0ω

2
p

, C � c2

2ω2
p

, (28)

so that the one-soliton solution becomes

By1

B0
= 2ωp

�

√
2U

VA cos ϑ
sech

[
ωp

c

√
2U

VA cos ϑ
(ξ − Uτ)

]
. (29)
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On the other hand, some pulsars can be strongly magnetized (ω2
p � �2), and then the coefficients

of the mKdV equation have to be approximated as

A � 3ω2
p

4B2
0�

2
, C � c2 sin2 ϑ

2ω2
p

, (30)

with the one-soliton solution

By1

B0
= 2�

ωp

√
2U

c cos ϑ
sech

[
ωp

c sin ϑ

√
2U

c cos ϑ
(ξ − Uτ)

]
. (31)

However, when VA → c, relativistic effects might come into play, which we have omitted in
order to avoid cluttering the picture. We have seen in earlier papers [8, 9, 17] that the relativistic
effects change the details of the coefficients in the relevant nonlinear evolution equation, but not
its generic form, irrespective of it being the KdV or mKdV equation.

4. Conclusions

In pair plasmas, due to the equal charge-to-mass ratios of the negative and the positive charges, the
mixing of different scales leads to substantial modifications of the linear and nonlinear evolution
of waves. For low-frequency, long-wavelength and non-neutral Alfvén waves propagating at
an angle to the external magnetic field and using a proper and consistent reductive perturbation
analysis, we find an mKdV equation. It is, however, not valid at strictly perpendicular propagation,
but reduces for parallel propagation to the generalized X modes studied by Verheest and Lakhina
[8] and Lakhina and Verheest [9].

The pulsar magnetosphere is expected to be dominated by a relativistic electron–positron
plasma, although, in general all the three species, namely, electrons, positrons and ions could be
present [22]. Kennel and Pellat [23] have shown that when the ions are driven relativistically by
large amplitude waves, electrons and ions make equal contributions to the dispersion relation.
Therefore, when the wave energy density greatly exceeds the rest mass energy density, it
is justified to neglect the differences in rest mass energy between ions and electrons, and
such relativistic plasmas can be simply described as electron–positron plasmas with mi = me.
Therefore, the nonlinear, obliquely propagating Alfvén solitons studied here could be relevant
for some problems of pulsar physics, namely, the microstructure in the pulsar radiation or the
subpulses, and the acceleration of charged particles to high energies. It is supposed that the
subpulses are due to modulation by low-frequency Alfvén solitons of the high-frequency pulsar
radiation (itself probably produced by the synchrotron radiation mechanism involving bunches
of electrons/positrons moving along the magnetic field lines). Furthermore, interaction of Alfvén
solitons with electrons may give rise to strong diffusion and scattering, leading to heating and
acceleration of the latter to cosmic energies.
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