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An analytic approach to toroidal eigen mode 

A. K. Sinha a,nd R. Rajaram 
Indian Institute of Geoma. gnetism, Mumbai 

Abstract. It has been shown that the failure of the classical WKB approach 
in reproducing the correct frequency spectrum and spatial structures of field line 
resonances should be attributed to the inabihty of the method to provide a natural 
solution close to the turning points. A direct analytic solution has been formulated 
to derive the toroidM field hue resonance structure. Finally, the solutions thus 
obtained have been compared with the numerically found exact solutions in order 
to test the authenticity of the formalism. 

1. Introduction 

Long-period geomagnetic pulsations are well-observed 
phenomena in the Earth's magnetosphere. Their exis- 
tence in the Earth's magnetosphere has been clearly 
demonstrated by conjugate point and spacecraft ob- 
servations. It was Dungey [1954] who first proposed 
that these pulsations might be the result of standing 
Alfven waves being excited on geomagnetic field lines. 
Later, Sugiura [1961] verified that these waves are ob- 
served simultaneously a.t both ends of the same field line 
showing that these waves were guided along field lines. 
Finally, with the advent of rapid-run magnetograms, 
Nagata et al. [1963] confirmed the standing nature of 
these waves by matching them cycle for cycle at the con- 
jugate points. Cummings et al. [1969] made extensive 
observations of long-period waves with the magnetome- 
ter on board the geosynchronous satellite ATS 1. They 
showed that the waves were long-lived and occurred fi'e- 
quently. They also for the first time gave a quantitative 
estimate of the field line eigen periods by integrating the 
second-order wave equation numerically. Thus, by the 
end of 1960 the standing waves on geomagnetic field 
lines were established observationally, confirming 
Dungey's idea. 

However, no convincing analytic picture of the phe- 
nomena of long-period geomagnetic pulsations has been 
developed so far. It is important to obtain the correct 
analytic picture of field line resonance for the simple 
reason that it will provide a better insight into the phe- 
nomena, which should prove to be important in more 
thoroughly understanding the generation mechanism of 
these pulsations, It would also help to study the cou- 
pling of these hydromagnetic waves with the plasma and 
all those physical phenomena where the field line struc- 
tures play an important role in a much simplified way. 
Though Warner and 0rr[1979] made an attempt in this 
direction by using the Mead and Fairfield [1975] mag- 
netic field model and solved for wave periods by using 
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the WKB approximation to the toroidal wave equation, 
the result was very poor, particularly for the fundamen- 
tal mode of oscillation a.s regards the time period of the 
wave. Singer e! al. [1981] attributed the large discrep- 
ancy to the breaking down of WKB method since the 
wavelength of the oscillation is comparable to the scale 
size of the system. If this arguement were valid, the 
actual error (not the percentage of error) in the com- 
puted spectrum of WKB frequency should improve with 
increasing harmonic number where the wavelengths are 
progressively smaller. In section 2.2 we shall note that 
this does not happen. The problem with the classical 
WKB method probably lies in the fact that the solu- 
tion breaks down a,s we approach the singularities a.t the 
turning points where the solution is not finite. Thus the 
classical WKB method does not provide a, natural solu- 
tion of the problem. We must look for such a. solution 
which is finite and continuous at the turning points. 

In this paper an analytic method based on Langer's 
[1949] approach has been developed which gives an esti- 
mate of the eigen period as well as the spatial structures 
of the toroidal field line oscillations with remarkable 

improvement over the estimates provided by the WKB 
method. Like the WKB approximation, this method 
also provides the solutions in the variational form whose 
first-order consideration itself gives a fairly good esti- 
mate of frequency as well as the spa.tiaJ structures of 
electric and magnetic field fluctuations along a field line. 
Analytically, the present formalism is an improvement 
over the formal WKB formalism and ensures that the 

solutions are well behaved near the turning points. The 
solutions thus obtained are more natural and physical. 
Henceforth, throughout the paper we call the WKB 
method as the formal WKB method, and the present 
method we direct analytical method (DAM). 

2. Theory and Analysis 

Low-frequency transverse waves in a.n infinitely con- 
ducting, stationary, magnetized plasma with zero pres- 
sure are described by the second-order wave equation 
[Singer et al., 1981] as 
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02 1, [h, 7• 
where H,o is the magnetic permeability in the vacuum, 
p is the plasma mass density, • is the plasma displace- 
ment perpendicular to the field line, Bo is the ambient 
magnetic field, the parameter c• signifies the mode of os- 
cillation and determines the direction •; of the field line 

displacement, and ha is the scale factor ['or the normal 
separation between the field lines in the direction 5 and 
is determined by the ambient mag•etic field struct. ure. 

We solve (1) under the following assumptions: 
(1) The ambient magnetic field is dipolaf in nature. 
(2) The time dependence of all the perturbed quanti- 
ties is of the form exp [,wt]. (3)The field lines are rigidly 
fixed at their ends in the ionosphere. (4) The density 
distribution is given by the power law p - p•, (to/r) , 
where m is the density index and po is t. he proton mass 
density at to, the geocentric distance to the equatorial 
crossing point of the field line considered, and r is tl!e 
geocentric distance to the position of interest on the 
field line. 

If s is the distance measured along the field line, then 
according to the above assumptions (1) takes the follow- 
ing dimensionless form where the variables have been 
normalized with respect. to the equator. 

with 

s •R• • Bo 
- - x - B - (:3) 

where/g• is the Earth's radius, VA,,• is the Alfven veloc- 
ity at the equator, B•.q is the ambient field a.t the equa- 
tor, and 0 is the colatitude. Once •, is determined, we 
can obtain the electric and magnetic field perturbations 
as 

- (4) 
(5) 

where (Bo/Bo, G,•) form a right-handed orthogonal 
system. 

It should be noted that under the dipole approxima- 
tion h•, B and B•q are given as h• = L sina0 for the 
toroidal mode, 
h• = (sin 3041 + 3 cos 20,)/(sin a 0, •1 + 3 cos 20) for 
the poloidal mode, B = •1 + 3 cos 2 0/sin6 0, and B,q: 
0.311/L a Gauss, where the suffix c indicates the value 
at the conjugate point and L: 1/sin 2 0• is the geocen- 
tric distance in Earth radii of the point where the field 
line crosses the equator. 

2.1. Numerical Exact Solution 

Equation (2) can be decoupled into two first-order 
equations 

dX 1 
= •• (6) 

dS' - B si• 2'"' O 

Equations (6) and (7) could be solved numerically by 
using the second-order Runge-Kutta method, and t, he 
frequency w was obtained by shooting method using the 
boundary condition that the eigen function X should 
vanish at the conjugate points. The spatial structures 
of electric and lnagnetic field fluctuations obtained by 
this method were in perfect. agreement with that of 
Cummings et al. [1969]. These fluctuations have been 
plotted along with those obtained by the WKB method 
and direct analytic method a.nd will be discussed in due 
course. 

2.2. Formal WKB Solution 

Equation (2) can be written in standard WKB form 
[Wasow, 1985] by choosing 

dv 1 

(8) 
and noting that h• - L sin 3 O, L being the geocentric 
distance in Earth radii of the point where the field line 
crosses the equator. 
Thus (2) can be written a.s 

e2 d 2 X d• + •(,v)X - 0 (9) 
where e- 1/L 2 and (•(v)- •2 sin•2-2m 0 
The solution of (9) in the formal WKB form (which is 
applicable for •(v) • 0) up to the first-order correction 
is given as 

X exp - -- + (10) 
( 

where ,5'0 - f •-•(v)dv and ,5't - -/n[-•(r)]/4 
It turns out that 

• ,/VAeq 1 
where 

ds LR• /i ø sin7_ m 19 dO 
The lower limit asterisk denotes any arbitrary point of 
reference froln where the integration has to be carried 
out. 

In order that the displacements simultaneously van- 
ish at the two conjugate points (as required by the 
boundary conditions adopted in section 2.1), it is nec- 
essary that 

2w = 2n• 
s• VA 

where n is a natural number describing the harmonics, 
and the limits of integration indicate tha• i• is being 
carried out between the two conjugate points along a 
field line. The corresponding time period T• is then 



S1NHA AND RAJARAM: AN ANAI,YTIC APPROACII TO TOROIDAL EIGEN MODE 17,651 

0.1 

0.08 

0.O0 

0.04 

0.02 

o 
o 

00000000000000000 m 0 ' ++ 

+++++++++++4'+++++ m 
xOOOOOoOOOOOOOOooo0 m• - x 

•Xx x x x x xx x Xx x x x x x x m• 

I 3 5 7 9 11 t3 15 17 19 21 

Figure 1. Vriable n is the harmolfiC number' Aw - 
ww•xB -W•xact is the difference between the frequen- 
cies obtained by formal WKB method and numerical 
method. The circles on the X a.xis represent the values 
for m-6. 

given by T• - 2•/w. Physically, this condition simply 
means that the resonance will occur only when the time 
taken by the wave to move from one conjuga.te point to 
another and back matches exactly with that required 
to complete one oscillation tbr the fimdamental and n 
oscilla. tions for the nth harmonics. The difference be- 
tween the numerica. lly calculated exact frequency and 
the WKB frequency of a field line (i.e., for given L) 
for different values of m has been plotted as a func- 
tion of harmonic number in Figure 1. It is seen that 
though the difference is large for lower harmonics, it 
does not improve appreciably as we progressively go to 
the higher harmonics. This implies that apart from the 
wavelength phenomena applicable to lower harmonics 
as argued by Singer et al. [1981] there is something else 
which is contributing to the discrepancies, otherwise the 
differences would have considerably decreased in higher 
harmonics where the wa,velength is small compared to 
the size of the system. Thus the methodology needs to 
be reexamined thoroughly. 

The formal WKB solution up to the first order can 
be written as 

1 
X - [A cos(w,-) q- B sin(wv)] (11) 

sin •-'"/• 0 

where the arbitrary constants A and B are to be de- 
termined by imposing the condition that the solution is 
vanishing at the conjugate points. 

After the evaluation of the arbitrary constants the 
solution and its derivative ca, n be written as 

1 

X - sina_./_. 0 [cos(wr) + (/sin(wr)] (12) 

ax__[ (3-m/2)½os0 x dS - Lv/1 + 3 cos 2 • sin 2 • 

w dr [sin(wr) - C cos(wr)]] (13) +sin 3-"'/2 0 dS 
where C - B/A - - cos(wr)o=o•/ sin(wr)o=o. 

One should note the singularities in the solution at 
the turning points (0 • 0, 0 -.• 7r) where the solution is 
not, finite and the derivative changes sign. These singu- 
larities a,t the turning points have not been accounted 
for at all in the formal WKB method. As we move away 
from the equator towaxd the pole along a field line, it 
is seen that the solution becomes progressively worse, 
showing that the solution obtained is not a natural one. 

The major problem witl• the formal WKB method 
is its inability to handle the singularities at the turning 
points, that is, (0 • 0, 0 • 7r). The methodology should 
be such that we should be able to solve the equation in 
the complete domain of the independent variable ensur- 
ing that the solution is finite and well behaved at the 
turning points prior to the l'•nposition of the boundary 
condition. This will provide a more na.tura.1 • solution of 
the problem. It is this point which has been emphasized 
in the present work. Using the treatment attributed to 
Langer [1949], the singularities have been taken care of 
on a purely ma. thematica01 basis as described in section 
2.3. 

2.3. Direct Analytic Method 

This method is based on Langer's [1949] approac h 
of tackling the singularity at the turning point. The 
method ensures that the solution i.s continuous and well 
behaved at the points of singularity. The philosophy of 
the methodology is as follows' 

(I)(v) in (9) is expressed near the turning point in the 
form v"•,(v) as adopted by Langer [1949], where r is 
any real number and the singularity is attributed to v •', 
whereas •b(v) is a. well-behaved function. Thus (9) can 
be written in the Langer's [1949] formalism as 

e2 d 2X • + ,•,• ½(v)X - 0 (14) 

where •b(v) is obtained by expanding (I)(v) around the 
turning point. 

If we integrate (8) by using the conditiqn that v- 0 
for 0-0 or 7r, we get 

L v - 1 + cos 0 (15) 

where the plus sign is for the southern henrisphere and 
the minus sign is for the northern hemisphere. 

Equation (15) leads to 

sin •2-2"• 0 - (2L)"v • ! - 
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where r = 6- m 

Thus asymptotically, •)(v) can be written as 
•(v) = •(v)/v r . We therefore see that (I)(v) in general 
can be written as v"[•(v)/vr], where a. ll the singularities 
are imparted to v" and W(v) = <I)(v)/v r is continuous 
and well behaved throughout and also a.t the turning 
points. 

Equation (14) can be written as 

[ d 2. •r d:•a(v) ] •+•+a s , Z=O (16) dv 2 

by using transformations X = a(v)Z, a(v) -7 k O, 
• = ((v), a(.v) = (d(/dv) -x/2, and (r(d•'/dv)e = 

In (16) the last term on the left-hand side could be 
neglected (justification of this has been given in section 
2.4) to get the familiar Bessel equation 

deu i du •,'" 

dr/2 + •-• + (1 - ,•)u- 0 (17) 
where, r/ = (21e)((r+2)/2/(r + 2), Z = x/•'u, 
and and • -- 1/(r + 2). 
Equation (17) is solved separately in the two hemi- 
spheres for a. gypical value of L = 6.6 no•ing t, ha.• 

• - (wLR•/V,4•) fo • sin7-'• 0 dO for the northern hemi- 
sphere, and r/ = (wLt•/V,4eq)f• sin 7-m O dO for the 
southern hemisphere. It should be borne in mind that 
r• is symmetric about the equator. 

The solution of (17) is a linear combination of Bessel 
functions of the order of • and -•, a. nd hence the solu- 
tion of (14) could be written as 

X - 2-•'-•y Vw LRr sina-'"/2 0 [J"(") + K 
(18) 

where Jr(?) and J_v(?) are the Bessel functions in the 
variable ? of orders u and -u respectively; and K is an 
arbitrary constant to be determined from the bound- 
ary condition at the conjugate point where the eigen 
function h• to vanish. The symmetry of the solution 
ensures that K is the same for both the solutions, that 
is, northern and southern hemispheres. The term con- 
taining J_v will not appear if we take the boundaries 
at 0 = 0 and 0 = •. The arbitrary constant K is given 
• K = -Jv(?s=s•)/J_v(?s=s•). It can be e•ily seen 
that in the vicinity of turning points (0 • 0, 0 • •) the 
solutions are finite and continuous. 

The derivative of X with respect to 0 can be written 

dO = d ] + • log e [Ju(r/) + K 

(3 - m/2)] - tan 0 X (19) 

The continuity of the solution and its derivative at the 
equator demands that 

which is obtained by matching the logarithmic deriva- 
tive of the solutions in both the hemispheres at the 
equator. 

Plugging the above condition back in (19) shows that 
the derivative at. the equator must be vanishing if the 
solution does not do so. This is the natural condition 
for odd harmonics. The condition for even harmonics 

is that the solution itself is vanishing at the equator. 
Thus the fi'equency is determined in a natural and self- 
consistent way by using the above conditions on the 
solution and its derivative. 

The methodology discussed in this section provides 
a. kind of solution which is Continuous and finite at the 

turning points and o!3 physical ground is a natural so- 
lution of the probleln of field line resonance. One of 
the principal aims of the present methodology was to 
get the correct analytic description for the wave field 
as one moves along the field line from the equatorial 
plane to the foot of the field line in the ionosphere. The 
model can be used to study the effect of density varia- 
tion of various species on the wave by just making the 
requisite change in the model. The model can also be 
used to study the wave structures for different field ge- 
olnetry. The correct analytic structure is also necessary 
to interpret the pitch angle dependence of the particle 
fluxes associated with field line resonances in the mag- 
netosphere. This is very important from the physics 
point of view as particle fluxes are a directly observable 
physical quantity [McEntire et al., 1985]. 

2.4. Validity for Neglecting the Last Term in 
(16) 

It was seen that neglecting the term aa[d2a(v)/dv•]Z 
in (16) is tantamount to adding a term 
-(e2/a)(daa/dv2)X in (14). Thus, solving (16) neglect- 

Table 1. Percent Departure of WKB and DAM Fre- 
quency From Exact Numerical Frequency 

m HN WKB, % DAM, % 

5 1 14 3 

5 2 6 0.5 
4 1 26 6 

4 2 11 1 
3 1 36 9 

3 2 14 1.5 
2 1 46 12 

2 2 !7 2 
I I 54 14 
I 2 2O 2.5 
0 I 61 17 
0 2 22 3 

The value. of m is the density index; HN is the harmonic 
number. 
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ing the last term is same as solving the equation 

2 duX e u d sa 
•.--•,2 + •('•,)X •X - 0 a dv 2 

This equation was exactly solved by using second-order 
Runge-Kutta method, and the restlit was compared 
with the exact solution of (14). It was seen that even 
for the worst case, solutions differ by a maximum of 3%. 
The plot of comparison has been shown in Figure 5. 

3. Results and Discussions 

A comparison between the numerical exact solution, 
formal WKB solution, and the direct analytic solution 
shows that while the formal WKB solution gives a very 
poor estimate of frequency co for the fundamental mode, 
the estimate given by direct analytic method is in fa.irly 
good agreement with the numerica.lly ibund exact fre- 
quency. For m = 6 the frequency calculated by all three 
methods and hence the solutions coincide exactly. This 
is understandable in the sense that ibr this value of m 

the singularity disappears and the turning point effect 
becomes unimportant. This result for m- 6 is not, at 
all surprising; because for this value of m the problem 
reduces to that of a wave on a uni[brm string. However, 
it was needed to verify the authenticity of the model. 
As we take lower values of m, the formal WKB esti- 

mate of frequency becomes worse and worse compared 
to the exact numerical estimate of frequency as shown 
in Table 1. 
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Figure 2a. The fundamental toroidal electric field at 
any point along the field line for m = 0. The value can 
be obtained from the ordinate by multiplying the indi- 
cated factor in which T is the time period of the wave 
and Bsurface is the surface magnetic field fluctuation. 
Solutions obtained by direct analytic method coincide 
exactly with the numerical exact solution which is indi- 
cated by index 1, whereas index 2 describes the solution 
obtained by formal WKB method. 
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Figure 2b. The fundamental toroidal magnetic field at 
any point along the field line for m = 0. The value can 
be obtained from the ordinate by multiplying with the 
factor B•,./•,. Solutions obtained by direct analytic 
method coincide exactly with the numerical exact solu- 
tion which is indicated by index 1, whereas index 2 de- 
scribes the solution obtained by formal WKB inethod. 

A singularity at 0 = 0 or 0 = •r results in unreal- 
istically large values of the solutions at the conjugate 
points which is usually the foot of the field line in the 
ionosphere (if it is assumed to be perfectly conducting). 
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Figure 2c. 
harmonic at any point along the field line for m - 0. 
Indices I and 2 have the same meaning as in Figure 2a. 
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The toroidal electric field for the second 
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Figure 2d. The toroida1 magnetic tield for •he second 
harmonic at any point, along the fi½ld line for m- 0. 
Indices 1 and 2 ha,re the same meaning a,s in Figure 2a,. 

If these singularities were not handled properly, the er- 
ror caused in calculating the displacement of plasma 
will be carried all through the latitude thereby making 
the solution physically unrealistic. The present analytic 
method, where the effect due to the singularities at the 
turning points have been taken into account, shows a, 
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Figure 3b. The fundamental toroidal magnetic field 
at any point along the field line for m - 4. The value 
can be obtained in the sanhe way as described in Figure 
2b. Indices 1 and :2 have the same meaning as in Figure 
2a. 

remarkable improvement in the frequency estimate as 
evident from Table-1. Even for the worst case (i.e., 
m = 0, fundamental mode) though the frequency is off 
by 17%, the eigen function differs by a fourth decimal 
place from the exact values. The discrepancies are much 
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Figure 3a. The fundamental toroidal electric field at 
any point along the field line for m - 4. The value can 
be obtained in the same way as described in Figure 2a. 
Indices i and 2 have the same meaning as in Figure 2a. 
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Figure 3c. The toroidal electric field for the second 
harmonic at any point along the field line ibr m - 4. 
The value can be obtained in the same way as described 
in Figure 2a. Indices i and 2 have the same meaning as 
in Figure 2a. 
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Figure 3d. The toroidal magnetic field for the second 
harmonic at; any point, along the field line for m - 4. 
Indices 1 and 2 have the same meaning as in Figure 
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Figure 4b. The fi•nda, mental toroidal magnetic field a.t 
any point along the field line ibr m = 6. Here all three 
solutions, that is, exact solution, formal WKB solution, 
and direct analytic solution exactly coincide. 

less compared to the formal WKB method. For higher 
harmonics the frequency estima, tes are still better. The 
funda. mental and second harmonic spa. tial structures of 
the electric a, nd ma.gnetic field fiuctua.tions have been 
shown in Figures 2a-2d, 3a-3d, a, nd 4a-4d typically for 
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Figure 4a. The fundamental toroidal electric field at 
•ny point Mong the field line for m - 6. Here all three 
solutions, that is, exact solution, formM WKB solution, 
•nd direct analytic solution exactly coincide. 

three values of m (i.e., '•..- 0, m - 4, and m - 6). The 
comparison shows that where the formal WKB solution, 
direct analytic solution, and numerical exa. ct solution 
coincide exatly for m = 6, the formal WKB solution 
worsens for lower values of m but the direct. analytic 
solution coincides with the numerically exact solution 
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Figure 4c. The toroidal electric field for the second 
harmonic at any point along the field line for m - 6. 
Here all three solutions coincide. 
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Figure 4d. The toroidal magne6c field fYr the second 
harmonic a[ any poin• along the field line for m - 6. 
Here all [hree solu6ons coincide. 
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Figure 5. The plots of X for m - 0 as a function of 
colatitude 0. Index 1 represents the solution of equation 
(21), and index 2 represents the solution of equation 
(14) 

for all values of m. This restlit has been very well de- 
picted in the Figures 2a-'2d, 3a-3d, and 4a-4d. Whereas 
the discrepancies in ]5rKB solutions are very large for 
m = 0, it improves considerably for m = 4, a.nd coin- 
cides exactly with the exact solution for ,, = 6. This is 
understandable because the dominance of turning point 
effect decreases with increasing value of m. The coinci- 
dence of the present analytic solution with the numeri- 
cally found exact solution in spite of the small discrep- 
ancies in the frequency shows that the eigen function 
is not very sensitive to the frequency. It was seen for 
the worst case, m = 0, that maximum discrepancy of 
30/0 in the eigen function (Figure 5) is equivalent to 22% 
discrepancy in the frequency. 

4. Conclusions 

The advantages of the discussed methodology are 
manifold as it provides solutions in a more natural way 
regarding the physics of the problem. Also, the cor- 
rect analytic solution will prove to be import. an[ in un- 
derstanding the phenomena of field line resonances in 
a more general way as the theory can be extended to 
more realistic nondipolar ambient field geometry and 
can incorporate more general density distribution other 
than the conventional power law. The small current 
leaking through the ionosphere along a field line can 
be computed by extending the boundary in the iono- 
sphere. Moreover, the problems such as precipitations, 
diffusion, etc., where the field line structures play an 
important role, can be tackled with great ease without 
undergoing tedious computational work. The method- 
ology can also be applied to other planets where the 

models for ambient magnetic field and the density dis- 
tribution are known. 

We strongly believe that the small discrepancies in 
the frequency can be rectified by taking higher-order 
correction into account. The work along this line is 
already in progress. 
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