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ABSTRACT
A nonlinear evolution equation for waves, propagating in streaming plasmas with nonuniformAlfve� n

densities and inhomogeneous magnetic Ðelds, is obtained by using the reductive perturbation technique.
The governing equation is a modiÐed derivative nonlinear (MDNLS) equation. The numeri-Schro� dinger
cal solution of this equation shows that inhomogeneities exhibit their presence as an e†ective dissipation.
The spatiotemporal evolution of long-wavelength Ñuctuations shows that the wave steepens as itAlfve� nic
propagates. High-frequency radiation is also observed in our simulations. Unlike coherent wavesAlfve� n
in homogeneous plasmas, which can become noncoherent/chaotic only in the presence of a driver,
MDNLS evolves into noncoherent/turbulent state without any driver simply because of inhomogeneities.
This clearly indicates that the integrability property of the derivative nonlinear equation,Schro� dinger
which allows coherent solitary solutions, is destroyed by inhomogeneities.
Subject headings : MHD È plasmas È solar-terrestrial relations È solar wind È waves

1. INTRODUCTION

Large-amplitude waves have been observed in aAlfve� n
variety of plasmas, such as the solar wind, planetary bow
shocks, interplanetary shocks, the solar corona, the
environment of comets, etc. (Belcher & Davis 1971 ; Scarf et
al. 1986). turbulence has been observed in the solarAlfve� nic
wind (Burlaga 1983 ; Bavassano et al. 1982), as well as in the
vicinity of comets (Tsurutani & Smith 1986). Recently,
Marsch & Liu (1993) and Tu & Marsch (1995) have report-
ed some observations of intermittent turbulence inAlfve� nic
the solar wind.

Implications of the existence of large-amplitude Alfve� n
waves in many cosmic plasmas have been investigated.
Some of these examples include turbulent heating of the
solar corona, coherent radio emissions, interstellar scintil-
lations of radio sources, generation of stellar winds and
extragalactic jets, etc. Pettini, Nocera, & Vulpiani (1985)
carried out numerical simulations to look into the turbulent
heating of the solar corona by these waves. Spangler (1991)
investigated turbulence in connection with inter-Alfve� nic
stellar scintillation of radio sources. waves wereAlfve� n
shown to be the potential source for the generation of stellar
winds and extragalactic jets by Jatenco-Pereira (1995).

A number of MHD models have been suggested for the
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solar-wind turbulence (see the recent review by Tu &
Marsch 1995 and references therein). Most of these models
do not include dispersive e†ects and are restricted to homo-
geneous plasmas. A few of these models, which include
inhomogeneities, are based on WKB theory. The latter,
however, is incompatible with the studies of turbulence that
involve a variety of di†erent scales. Grappin & Velli (1996),
in their expanding box model of the solar wind, however,
included non-WKB processes due to expansion. They
showed the important role played by compressible e†ects in
the evolution of solar wind turbulence.

To account for the dispersive nature of plasmas, one has
to use Hall-MHD equations. For Ðnite but not very large
amplitude waves, the latter can be reduced to aAlfve� n
single evolution equation, namely the derivative nonlinear

(DNLS) equation (Kennel et al. 1988 ; ButiSchro� dinger
1992, 1997). Hada, Kennel, & Buti (1989) carried out an
in-depth study of the DNLS equation and showed that the
it o†ers a variety of exact localized stationary solutions, e.g.,
periodic envelope modulations, monochromatic waves,
hyperbolic solitons, and algebraic solitons. However hyper-
bolic soliton solutions are found to be the most stable ones
(Nocera & Buti 1998). Ovenden, Shah, & Schwartz (1983)
and Dawson & (1990) proposed soliton gasFonta� n Alfve� n
models for MHD turbulence in the solar wind. Dynamical
evolution of nonlinear waves, using the DNLS equa-Alfve� n
tion, has been studied by many investigators (Ghosh &
Papadopoulos 1987 ; Kennel et al. 1988 ; Buti 1992, 1997 ;
Verheest & Buti 1992). Ghosh & Papadopoulos (1987) and
Hada et al. (1990) included dissipative e†ects, whereas
kinetic e†ects were incorporated into the DNLS equation
by Rogister (1971), Mjolhus & Wyller (1986, 1988), and
Spangler (1989, 1990). Ghosh & Papadopoulos (1987)
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studied the problem of generation of turbulence byAlfve� nic
numerically solving the driven dissipative DNLS equation
by means of a spectral method. Hada et al. (1990), however,
addressed the problem of chaos by studying theAlfve� nic
temporal evolution of the driven dissipative DNLS equa-
tion. They also included the discussion of slow, fast, and
intermediate shocks based on this equation. Following
Hada et al. (1990), Chian, Borotto, & Gonzalez (1998) have
recently suggested that intermittent turbulence,Alfve� nic
observed in the solar wind, could be generated by temporal
chaos of driven DNLS solitons. Medvedev et al.Alfve� n
(1997) showed that inclusion of heat Ñux, modeled as ion-
Landau damping, in the kinetic nonlinear Schro� dinger
equation (Medvedev & Diamond 1996), leads to rotational
discontinuities. All these investigations, however, are
restricted to homogeneous systems, whereas most of the
plasmas, where nonlinear waves have been observedAlfve� n
(Belcher & Davis 1971 ; Scarf et al. 1986), have inhomoge-
neous densities as well as magnetic Ðelds.

By using the reductive perturbation method, Buti (1991)
rederived the governing evolution equation for these waves
in inhomogeneous plasmas. It was shown that the inhomo-
geneities lead to acceleration (deceleration) of solitary

waves depending on the direction of propagationAlfve� n
density gradients. In this analysis, even though novis-à-vis

explicit assumption about homogeneity of the magnetic
Ðeld was made but because of the slab geometry used,
implicitly the Ðeld considered was homogeneous.

In the present paper, we have removed this implicit
restriction by incorporating spherical geometry. The evolu-
tion equation is rederived for inhomogeneous plasmas with
arbitrary inhomogeneities. The evolution equation, in this
case, turns out to be a modiÐed DNLS (MDNLS) equation
(see ° 2). Like the DNLS equation, the MDNLS equation is
also not valid in regions with plasma b D 1 and magnetic
Ðeld Ñuctuations For a solar wind closer to thedBD B0.Sun, where outward-propagating waves are gener-Alfve� n
ated, b \ 1 and magnetic Ðeld Ñuctuations are not of the
order of the ambient magnetic Ðeld. So, closer to the Sun,
the MDNLS equation very well describes the evolution of
Ðnite-amplitude waves. The numerical solution ofAlfve� n
the MDNLS equation, with solar wind parameters, exhibits
features like wave steepening, emission of high-frequency
radiation, turbulent power spectra, etc. The predicted
power spectra are found to have spectral indices that
increase with the heliocentric distances, as observed in the
solar wind turbulence (Belcher & Davis 1971 ; Bavassano et
al. 1982). We also see a break point in the frequency spectra.
The break point moves toward lower frequency with
increasing heliocentric distance. In homogeneous plasmas,
one can expect such an evolutionary behavior of Alfve� n
waves only when they are driven (Hada et al. 1990 ; Buti
1992 ; Nocera & Buti 1997 ; Buti & Nocera 1999) or when
they get coupled with the density Ñuctuations (Hada 1993 ;
Buti et al. 1998). In the latter case, nonlinear wavesAlfve� n
are instead governed by a set of two nonlinear partial-
di†erential equations (Hada 1993). Roychoudhury, Buti, &
Dasgupta (1997) studied the stability of this set of equations
by means of analysis and showed that this coupledPainle� ve
system is not an integrable system and thus no soliton solu-
tions are possible. Buti et al. (1998) adapted an alternative
approach and studied evolution of the waveAlfve� nic
packets by means of Hall-MHD simulations. They found
that the DNLS soliton is disrupted and evolves into a wave

train. The disruption time is found to scale as whereB
s
~4,

is the amplitude of the soliton (Velli et al. 1999).B
sThe obvious conclusion one can draw from the analysis

presented here is that inhomogeneities in density and mag-
netic Ðeld destroy the integrability properties of the DNLS
equation that are solely responsible for coherent soliton
solutions. Consequently, coherent structures like solitons,
which are exact solutions of the DNLS equation, evolve
into noncoherent/turbulent structures characterized by
power-law spectra.

2. EVOLUTION OF NONLINEAR WAVESALFVEŠ N

The nonlinear equations governing waves propa-Alfve� n
gating in the radial direction are the two-Ñuid equations
and the generalized OhmÏs law (Kennel et al. 1988 ; Buti
1990, 1991) :
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A0/)i0 ; r0We would like to point out here that the set of equations
(1) would not be valid for systems with b (ratio of kinetic
energy to magnetic energy) of order of unity because in that
case kinetic e†ects become important. Moreover for b D 1,
the coupling between waves and ion acoustic wavesAlfve� n
becomes signiÐcant (Hada 1993). On using equations (1) in
spherical coordinates and assuming no variations along h
and / directions, i.e., L/Lh \ L/L/\ 0, equation (1) reduces
to
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where r is the radial distance, B
M

\ (Bh, BÕ), ¿
M

\ (vh, vÕ),and For pressure, we use the adiabaticB
M
2 \ (Bh2] BÕ2).equation of state, i.e., po~c \ const. To satisfy equation (2a)

and the induction equation, i.e., div the equilibriumB0\ 0,
density and the magnetic Ðeld must satisfy theo0(r) B0(r)conditions

B0(r)r2\ const. (3)

and

o0(r)U(r)r2\ const . (4)
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For weakly nonlinear systems, we can use the reductive
perturbation scheme to derive the evolution equation from
equation (2). Following the procedure outlined in Buti
(1991), we use the following stretchings :

g \ v2r ; m \ v
CP dr

V (r)
[ t
D

. (5)

In equation (5), v is the stretching parameter and V (r) is
the phase velocity of the wave, which is given byAlfve� n

V (r)\ U(r)] B0(r)
o01@2(r)

. (6)

In equation (6), U is the equilibrium streaming plasma
velocity.

On using the expansions for density, velocity, pressure,
and magnetic Ðeld appropriate to waves (see ButiAlfve� n
1991) for a spherically symmetric system, we obtain the
following evolution (MDNLS) equation :
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where b(g) is the plasma b, i.e., the ratio ofB\ (Bh ] i BÕ),kinetic pressure to magnetic pressure, and is theB0(g)
ambient magnetic Ðeld. In deriving equation (7), we have
taken wave propagation as well as the ambient magnetic
Ðeld along the radial direction and have neglected Ðfth-
order nonlinear terms. This equation, however, is valid for
arbitrary inhomogeneities. We may note that for non-
streaming uniform plasmas, i.e., for U \ 0 and o0(r) \ 1,
V ] 1, and equation (7) reduces to the well-known DNLS
equation (Kennel et al. 1988), which gives an exact soliton
solution. It is interesting to observe that this modiÐed
DNLS (eq. [7]), besides having an additional two linear
terms in B, has variable coefficients for nonlinear and dis-
persive terms. Because of these complicated variable coeffi-
cients, it is not possible to Ðnd an analytical solution to
equation (7), and one has to look for its numerical solution.
We have done this on the assumption that solving a single
nonlinear partial-di†erential equation (PDE) is much
simpler than handling a set of PDEs, e.g., Hall-MHD equa-
tions, that requires a simulation code with expanding box.
We are now pursuing the latter course and hope to report
these results in the near future.

3. NUMERICAL COMPUTATIONS

For numerical solution of equation (7), we use the spec-
tral collocation method. We rewrite this equation as

LB
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] f (g)B] a1(g)
L
Lm

( oB o2B)] ia2(g)
L2B
Lm2 \ 0 . (8)

Because equation (8) has temporal and spatial variables
interchanged, we write the approximate solution for B as a
Fourier expansion in time instead of space, namely

B(m, g)\ ;
k/~N

N~1
b
k
(g)e~ijkm . (9)

Note that B is assumed to be periodic in time, with period T
and frequency j

k
\ 2nk/T .

The spectral collocation (or pseudospectral) method
requires introduction of collocation points (grid points) m

i
.

For evaluation of the cubic nonlinear term of equation (8),
we use the padding method (alternatively known as 3/2
rule) for dealiasing (Canuto et al. 1988). According to this
scheme, the Fourier transform for the nonlinear term can be
represented by

oB(m
i
, g) o2B(m

i
, g) \ ;
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g
k
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In order to be sure that aliasing errors are not introduced
by this form of approximate solution, the summation index
M must be greater than 3N/2 ; N is the summation index
used in equation (9). This simply means that the nonlinear
term is calculated by using a larger number of grid points
compared with the number used in the original expansion
for B in equation (9). Thus, in equation (9), forb

k
\ 0

N \ o k o\ M, i.e., high-frequency harmonics of (forb
k

o k o[ N only) are neglected. This e†ectively means the
introduction of some artiÐcial dissipation in the system.

The standard Galerkin version of the weighted residual
method is used for discretization, with exponential weigh-
ting functions In other words, a semi-W

k
(m) \ exp ([ij

k
m).

discrete system of equations is obtained by using the
relation

P
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where R(m, g) is the residual of the DNLS equation, namely
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Taking this weighted residual integration, we obtain the
system of ordinary di†erential equations for the coefficients

which can be solved using either the second-orderb
k
(g),

Adams-Bashforth predictorÈAdams-Moulton corrector
pair or the adaptive step-size iterative scheme with accuracy
check. The accuracy check in the second method assures
that small-scale structures appearing in the solution have a
physical origin rather than being numerical artifacts.

We do not need to introduce any artiÐcial dissipation for
the numerical solution of the MDNLS equation. In our
case, inhomogeneous terms formally play the role of e†ec-
tive dissipation. Moreover, the iterative scheme of dealia-
sing, which we have used for calculation of nonlinearity,
keeps the soliton solution of the conservative homogeneous
DNLS unchanged for much longer distances than reported
here. This could alternatively be achieved even without dea-
liasing but with a Ðne enough grid.

As mentioned earlier, the problem of wave propagation is
solved as an evolutionary problem in space. For this
purpose, we assume that there is an inÑux of waves at one
end of the interval (e.g., closer to the Sun in the case of solar
wind plasma) and that the waves are propagating outward
from the Sun. The inÑux is assumed to be periodic in time.

For a numerical solution, we have considered two cases :
(1) evolution of an initial soliton, which is an exactAlfve� n
solution of the DNLS equation and (2) evolution of an
amplitude-modulated circularly polarized wave. The reason
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for picking up the DNLS soliton solution as the initial con-
dition is the following : locally, in the regions closer to the
Sun, where waves are generated, the DNLS equationAlfve� n
is a good representation of waves. Moreover, one ofAlfve� n
the basic properties of any evolution equation, e.g., the
DNLS equation, which can be solved exactly by means of
the inverse scattering transform method (Kaup & Newell
1978), is to transform any localized initial condition to a
soliton solution. Dawson & (1988) numericallyFonta� n
solved the DNLS equation with an initial modulated
Gaussian packet and conÐrmed its decay into a soliton
solution. For the soliton case we take

B(m, r0)\
Bmax eih(m)
cosh1@2 t

, (13)

with

t\ (m [ L /2)Bmax2 /(2d) , (14)

h(m)\ 32 tan~1 (sinh t) , (15)

d \ 2
V

(1[ b)(V [ U) . (16)

in equation (13) is the amplitude of the initial solitonBmaxnormalized to and L is the domain length. We wouldB0(r0),like to point out that the solution given in equation (13) is
di†erent than the one we had used earlier (Verheest & Buti
1992 ; Nocera & Buti 1996 ; Buti et al. 1998). In the soliton
solution (Mjolhus 1978), there are two arbitrary constants,

and Earlier we had taken and now for equa-i0 l0. l0\ 0,
tion (13), has been taken to be zero.i0For Figure 1 we have taken the reference point, r04R

sbeing the solar radius). The other simulation param-(R
seters chosen are and atb(R

s
)\ 0.01 r0)

i0/VA0\ 106 r0\
Figure 1 shows the variation of with helio-R

s
. Bmax(r)/B0(r)centric distance for di†erent initial conditions. In all the

three cases, we see that magnetic Ðeld Ñuctuations increase
with increasing r. This is in agreement with the observations
(Klinglesmith 1997). It is interesting to note that despite

decreasing with increasing heliocentric distance (seeBmaxFig. 2), the ratio goes up. So an obvious con-Bmax(r)/B0(r)clusion one can draw is that decreases much fasterB0(r)compared with Bmax(r).

FIG. 1.ÈVariation of with heliocentric distance forBmax(r)/B0(r) r/R
sthree cases with and For case 1,b(r0)\ 0.01 r0)

i0/VA0\ 106. Bmax \
and for case 2, and0.026B0(r0) Tmax \ 64,000n)

i0~1 ; Bmax \ 0.039B0(r0)and for case 3, andTmax \ 64,000n)
i0~1 ; Bmax \ 0.014B0(r0) Tmax \

192,000n)
i0~1.

FIG. 2.ÈEvolution of with t forB/B0(r0) Bmax(R0)\ 0.036, R0\ 0.1
AU, and Curves labeled 1, 2, 3, 4, and 5 corre-U0\ 1.5V

A0, b(R0)\ 0.05.
spond to r \ 0.1, 0.35, 0.5, 0.7, and 0.9 AU.

Figure 2 (corresponding to reference point r0\ R0\ 0.1
AU) shows the time evolution of the Ðeld, starting with
soliton amplitude andBmax \ 0.036B0(R0), U0\ 1.5V

A0,We Ðnd that the amplitude of the soliton goesb(R0) \ 0.05.
down as the wave propagates away from the sun. This
shows that inhomogeneities in density and magnetic Ðeld
are providing the source for physical dissipation. Similar
dissipative e†ects of inhomogeneities, in connection with
modulated ion-acoustic waves, were reported by Mohan &
Buti (1979). We also see the steepening of the wave and the
high-frequency radiation on the leading edges. The high-
frequency radiation has frequencies larger than the Alfve� n
frequency but much smaller than whistler frequencies.
Steepening is found to increase with increasing heliospheric
distances. The corresponding spectra for the Ðeld Ñuctua-
tions are shown in Figure 3. Note the break in the power
spectra ; the break point moves toward lower frequencies,
with an increase in the heliocentric distance. This trend is
similar to the one shown by Helios observations (Bavassano
et al. 1982). Moreover, we Ðnd that the spectral index (a)
increases from 1.6 to 2.6 with an increase in the radial dis-
tance from 0.5 to 0.9 AU. The observed values of a, accord-
ing to Mariner 5 (Belcher & Davis 1971) and Helios 1 and 2
(Bavassano et al. 1982) data, range between 1.2 and 2.2.

FIG. 3.ÈPower spectra for heliospheric distances 0.3, 0.5, 0.7, and 0.9
AU. The parameters used are same as for Fig. 2.



No. 2, 1999 EVOLUTION OF NONLINEAR ALFVEŠ N WAVES 853

FIG. 4.ÈEvolution of with t for initially circularly polarizedB/B0(R0)wave for heliospheric distances 0.1, 0.7, 0.9, and 1.05 AU. The parameters
used are same as for Fig. 2.

Ideally, one would like to see the evolution of Alfve� n
waves starting from the photosphere all the way to 1 AU,
but to achieve this, one faces some practical difficulties. If
one uses a single scale for the numerical solution of the
MDNLS equation in the range AU, the com-1R

s
\ r \ 1

puter time is formidably large. For this reason, we solved
the MDNLS equation by using two di†erent scalings, one
closer to the sun and the other one for regions closer to 1
AU, by taking appropriate solar-wind parameters for the
two regions. The qualitative behavior in the two regions
was found to be similar. Observations are available only for
r [ 0.3 AU, so we are not reporting the numerical results
obtained for the region near the photosphere. The di†erence
in the observed values of a and the ones shown in Figure 3
could be because we have taken the ambient magnetic Ðeld

as a function of r only, i.e., Closer to 1 AU,B0 B0\ B0(r).this is not a very good approximation. In the future we
would consider a more general case of byB0\ B0(r, h)
incorporating cylindrical symmetry. To determine the cause
of this di†erence, we would also incorporate kinetic e†ects
in our model.

For the second case, we consider an amplitude-
modulated circularly polarized wave. The reason for
picking up an amplitude-modulated wave rather than a
purely circularly polarized wave is simply because the latter
is an exact solution of the DNLS equation, and it does not
undergo any nonlinear evolution. The modulated initial
wave proÐle, in this case, can be represented by two initially
excited harmonics in the expansion for B in equation (9).
For a left-hand circularly polarized (LHP) wave, we take
these two harmonics as k \ [1 and [2 (Medvedev et al.
1997). Thus, in accordance with equation (9), for an LHP
wave, we take

B(R0, t)\ 0.01
C
exp

2int
Tmax

] exp
4int
Tmax

D
, (17)

with The evolution of waves inTmax\ 19,200n)
i0~1. Alfve� n

this case is shown in Figure 4. The evolution in this case is
much slower compared with the soliton case. High-
frequency radiation is seen only for r [ 0.9 AU. The spectra
(not shown) also do not evolve into power spectra during
the periods considered here.

4. CONCLUSIONS

Large-amplitude waves propagating radially inAlfve� n
plasmas, with inhomogeneous densities and magnetic Ðelds,
are governed by the MDNLS equation. The numerical
solution of this equation, for the case of solar wind, shows
that the soliton evolves with space and time andAlfve� n
shows features, e.g., evolution of magnetic Ðeld Ñuctuations,
power spectra, wave steepening, and emission of high-
frequency radiations. We observe a cuto† in the power
spectra ; the cuto† is found to move toward lower fre-
quencies with increasing heliocentric distance. Moreover,
the spectral index a goes up with the heliocentric distance.
The spectral indices of the predicted power spectra from our
model range between 1.6 and 2.6, whereas for the same
frequency range the observed spectral indices from Mariner
5 (Belcher & Davis 1971) and Helios 1 and 2 (Bavassano et
al. 1982) data range between 1.2 and 2.2. In order to look for
better quantitative agreement of a with the observed spec-
tral indices, we plan to use cylindrical geometry, which is a
better approximation closer to 1 AU. To overcome the
shortcomings of the DNLS/MDNLS model used in the
present investigation, we would also include kinetic e†ects,
as well as coupling of magnetic Ðeld and density Ñuctua-
tions. For our numerical solutions herein, we have used the
solar wind parameters, but the model is very general and
can be applied to other cosmic plasmas as well. We also
plan to extend this model to driven dissipative Alfve� nic
systems, to investigate the problem of intermittent turbu-
lence. These results will be reported in a forthcoming paper.

We emphasize that even though we initially start with a
coherent structure like the DNLS soliton, because of inho-
mogeneities embedded in our MDNLS equation, it evolves
into a noncoherent/turbulent (not fully developed) state.
This could be a good reason for the nonexistence of Alfve� n
solitons in the solar wind. The complete integrability pro-
perty of the DNLS equation is clearly destroyed by these
inhomogeneities. Following the mathematical analysis of
Roychoudhury et al. (1997), we plan to do the Painle� ve
analysis of the MDNLS equation to determine its stability
properties.
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