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S U M M A R Y
A novel approach based on the concept of super self-adapting back propagation (SSABP)
neural network has been developed for classifying lithofacies boundaries from well log data.
The SSABP learning paradigm has been applied to constrain the lithofacies boundaries by
parameterzing three sets of well log data, that is, density, neutron porosity and gamma ray
obtained from the German Continental Deep Drilling Project (KTB). A multilayer perceptron
(MLP) neural networks model was generated in a supervised feed-forward mode for training
the published core sample data. A total of 351 pairs of input and output examples were used for
self-adaptive network learning and weight and bias values were appropriately updated during
each epoch according to the gradient-descent momentum scheme. The actual data analysis
suggests that the SSABP network is able to emulate the pattern of all three sets of KTB data
and identify lithofacies boundaries correctly. The comparisons of the maximum likelihood
geological sections with the available geological information and the existing geophysical
findings over the KTB area suggest that, in addition to the known main lithofacies boundaries
units, namely paragneisses, metabasites and heterogeneous series containing partly calc-silicate
bearing paragneisses-metabasites and alternations of former volcano-sedimentary sequences,
the SSABP neural network technique resolves more detailed finer structures embedded in
bigger units at certain depths over the KTB region which seems to be of some geological
significance. The efficacy of the method and stability of results was also tested in presence of
different levels of coloured noise. The test results suggest that the designed network topology
is considerably unwavering for up to 20 per cent correlated noise; however, adding more noise
(∼50 per cent or more) degrades the results. Our analyses demonstrate that the SSABP based
approach renders a robust means for the classification of complex lithofacies successions from
the KTB borehole log data and thus may provide useful guide/information for understanding
the crustal inhomogeneity and structural discontinuity in many other regions.

Key words: ANN, back propagation method, KTB boreholes, lithofacies, petrophysics, well
log.

I N T RO D U C T I O N

One of the main goals of geophysical studies is to apply suitable

mathematical and statistical techniques to extract information about

the subsurface properties (e.g. lithology, porosity, density, hydraulic

conductivity, resistivity, salinity and water/oil saturation) by using

either the surface or borehole measurements (Aristodemou et al.
2005). In particular, classification of lithofacies boundaries using

the geophysical well log data is quite important from the oil explo-

ration point of view as well as for understanding the crustal inhomo-

geneity. Geoscientists have been engaged in classifying lithofacies

units from the recorded well log data using the conventional method

like graphical cross-plotting and other statistical techniques (Rogers

et al. 1992). In the graphical cross-plotting technique (Pickett 1963;

Gassaway et al. 1989), two or more logs are cross-plotted to yield

lithologies. Multivariate statistical methods such as principle com-

ponent and cluster analyses (Wolff & Pelissier-Combescure 1982)

and discriminant function analysis (Busch et al. 1987; Delfiner et al.
1987) have invariably been used for the study of borehole data. These

techniques are, however, semi-automated and require a large amount

of data, which are costly and not easily available every time (Rogers

et al. 1992). Further the existing methods for well log data analysis

are also very tedious and time-consuming, particularly when deal-

ing with noisy and complex borehole data. In fact, classifying litho

log boundary from borehole data is a complex and non-linear prob-

lem. This is due to the fact that several factors, such as pore fluid,
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effective pressure, fluid saturation, pore shape, etc. affect the well

log signals and thereby limit the applicability of linear mathematical

techniques to classify lithofacies units. It is, therefore, imperative to

search for an appropriate non-linear technique, which could evade

these difficulties. The modern data modelling approach based on

the artificial neural network (ANN) techniques is inherently non-

linear and completely data-driven requiring no initial model and

hence provide an effective alternative approach to deal with such a

complex and non-linear geophysical problem (Saggaf et al. 2003).

Recently, the ANN based techniques have been widely applied in

almost all branches of geophysics (Van der Baan & Jutten 2000;

Poulton 2001). For example: (1) for seismic event classification

(Dysart & Pulli 1990; Dai & Macbeth 1995; Yin-ju 2002), (2) well

log analysis (Baldwin et al. 1990; Rogers et al. 1992; Huang et al.
1996; Helle et al. 2001; Zhan et al. 2002; Aristodemou et al. 2005),

(3) first arrival picking (Murat & Rudman 1992; McCormack et al.
1993), (4) earthquake prediction (Feng et al. 1997), (5) inversion

(Raiche 1991; Roth & Tarantola 1994; Boadu 1998; Devilee et al.
1999; Aristodemou et al. 2005), (6) parameter estimation in geo-

physics (Calderon-Macias et al. 2000) and (7) prediction of aquifer

water level (Coppola et al. 2005, etc.). The ANN techniques have

also become increasingly popular for signal detection and data com-

pression. In particular, ANN based approaches have proved to be

one of the robust and cost-effective alternative means to success-

fully resolve the lithofacies boundaries from well log data (Baldwin

et al. 1990; Rogers et al. 1992). The method has its inherent learning

ability to map some relation between input and output space, even

if, there is no explicit a priori operator linking the measured litho

log properties to the well log response.

Roth & Tarantola (1994) applied ANN based inversion scheme

to recover the velocity structure from the seismogram. They made

several experiments to demonstrate the stability and effectiveness

of ANN based inversion algorithms using the noisy geophysical

records. They inferred that the ANN based method is not stable for

analysing strongly correlated noisy geophysical signals. However,

these researchers have concluded that the ANN could be used for

solving the non-trivial inverse problem. Devilee et al. (1999) de-

veloped an efficient probabilistic ANN approach to solve inverse

problem and applied it to determine the Eurasian crustal thickness

by inverting the surface wave velocities. More recently Aristode-

mou et al. (2005) presented the result of inversion of well-logging

data using neural networks. They have noted that in litho logical

problems, the lithology/lithofacies are usually obtained from the

borehole core data. However, when the core data are not available,

the down hole geophysical logs can be used to infer the nature of

the surrounding rocks (Benaouda et al. 1999). Alternatively, the

trained networks can be used to interpret lithofacies at greater depth

of drilled borehole of same geology.

Here, we develop a super self-adapting back propagation

(SSABP) neural network program to classify lithofacies boundaries

and apply the method to well log data from German Continental

Deep Drilling Project (KTB). To demonstrate the effectiveness of

this method, we compare our findings with existing results and also

test its robustness in the presence of coloured noise in the data.

These results would provide a better understanding of the crustal

inhomogeneity and structural discontinuity over the KTB region.

K T B DATA

The German Continental Deep Drilling Project (KTB) explores a

metamorphic complex in northeastern Bavaria, southern Germany

(Fig. 1).

Figure 1. Location map of the KTB boreholes, Saxothuringian, Moldanu-

bian, and ZEV (Erbendorf-Vohenstraub zone) represent the main geological

units of the region (after Leonardi & Kümpel 1999).

Lithologically, the continental crust at the drill site consists of

three main facies units: paragneisses, metabasites and alternations

of gneiss-amphibolites, with minor occurrence of marbles, calc-

silicates, orthogeneisses, lamprophyres and diorites (Berckhemer

et al. 1997; Emmermann & Lauterjung 1997; Pechnig et al. 1997;

Leonardi & Kümpel 1998, 1999) (Fig. 2). The detailed informa-

tion about the KTB data and its geophysical significance has been

well discussed in several earlier papers (Berckhemer et al. 1997;

Emmermann & Lauterjung 1997; Pechnig et al. 1997; Leonardi &

Kümpel 1998, 1999). A brief summary of the data pertinent to this

study is, however, presented here to preserve self-sufficiency of the

paper. Total depth of the main hole and pilot hole are 9101 and

4000 m, respectively. The borehole data are sampled at 0.1524 m

(6 in.) intervals. These records are complete, continuous and unin-

terrupted series and hence could be utilized for the classification of

the lithofacies units.

We parameterized here three sets of recorded well log data (viz.,

gamma ray, density and neutron porosity) to constrain the lithofacies

boundaries. Due to the chemical composition, gamma ray activity

exhibits a general increase from the most mafic rocks (ultramafites)

to the most acidic rocks (potassium-feldspar gneisses). Hence, to-

tal gamma ray is the most important parameter for differentiating

the metamorphic succession. In general, amphibolites and metagab-

bros, which are the main rock types of the massive metabasite units,

are physically characterized by lower gamma ray activity and higher

density than the rocks of the paragneisses sections. This is related

to the mineral content, which within metabasites consists of more

mafic and dense minerals like hornblende and garnet biotite. Parag-

neisses are composed mainly of quartz, plagioclase and micas. Since

pore space in the crystalline basement is very low, neutron porosity

response is found to be dependent upon the mineralogical compo-

sition. Enhanced porosity is, in general, restricted to discrete zones

of faulting and fracturing, however, neutron porosity in undisturbed

depth sections is predominantly reacting to the water bound min-

erals like phyllosilicates or amphiboles. Hence, rock type’s poor in

these minerals, such as quartz and feldspar-rich gneisses show very

low neutron porosities. In contrast, rocks with high phyllosilicate
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Figure 2. Reference diagram of lithofacies section of KTB (A) pilot hole

(KTB-VB) (B) main hole (KTB-HB) (after Emmermann & Lauterjung

1997).

and amphibole contents produce striking increases in the neutron

porosity.

T H E M U LT I L AY E R P E RC P T RO N ( M L P )

ANN configuration and a brief mathematical background

ANNs form a class of non-linear computational systems that at-

tempt to mimic the natural behaviour of biological neurons (Rosen-

blatt 1958) (Fig. 3a). Fig. 3(c) depicts the graphical representation

of input and target vectors, for example, density (g/cc), porosity

(per cent) and gamma ray (A.P.I.), which are randomly derived from

Table 1. Apparently one can visualize that distribution patterns of the

well log data depicted in Fig. 3(c) is complex and weakly non-linear

and hence a multilayer neural network model with monotonically

increasing activation functions could be appropriately applied for

the classification of lithofacies. MLPs are special configurations of

ANN that are most powerful methods for solving the non-linear

classification and boundaries detection problems. In general, archi-

tecture of a MLP consists of one input layer, one output layer and

at least one intermediate hidden layer between input and output.

In a fully connected MLP, neurons of each layer are connected to

the neurons of the next layer through weight. As depicted in figure

(Fig. 3a), the input layer constitutes the input data for the nodes in

hidden layer and the output data of this hidden layer constitutes the

input for the output layer. There is no connection between nodes in

the same layer.

The most widely used back-propagation (BP) training phase be-

gins by sending the input values through the network and computing

Figure 3. (a) Layout of four layer neural network with bottom layer contain-

ing three nodes each taking three well log parameters, here density (g/cc),

porosity (per cent) and gamma ray (A.P.I.), two intermediate/hidden layer

which are fully connecting between bottom layer/input layer and output layer

(left), and mathematical expression of a neuron (right). ‘x’ represents input

and subscript ‘i’ represents the number of nodes in the input layer. At each

node of the hidden layer the net arguments are squashing through a non-

linear activation function of type hyperbolic tangent where w j i represents

the connection weight between the ith node in the input layer and the jth node

in the hidden layer. (b) Typical response of a non-linear activation function

of type hyperbolic tangent. When the sum of the argument of a neuron is

comparable to the threshold value � j it squashes linearly, otherwise it satu-

rates with value +1; −1 gives non-linearity for non-linear mapping between

input and output space. (c) Plot of input vector containing density (g/cc),

porosity (per cent) and gamma ray (A.P.I.) and target vector of our percep-

tron. Obviously, from the well log data, the lithofacies is not fully linearly

separable.
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Table 1. Showing the significant limits to generate forward model for neural network training indicating that gamma ray intensity value

most crucial factor to categorize lithofacies unit in metamorphic area.

Lithofacies Density (g/cc) Neutron Gamma ray Desired output

unit porosity (per cent) intensity (A.P.I) (binary code)

Paragneisses 2.65–2.85 5–15 70–130 100

Metabasites 2.75–3.1 5–20 0–50 010

Heterogeneous Series 2.60–2.9 1–15 40–90 and 120–190 001

the deviation of the calculated output vectors from the true ones.

The next step consists of propagating the deviation (error) between

computed and desired output vectors backward to adjust the weight-

ing coefficients, so that error could be minimized (Rumelhart et al.
1986) (Fig. 4a). More explicitly, let net(l)

j be a value (output) received

by the jth node in layer (l), w
(l)
j i be a connection weight between the

ith node in layer (l − 1) and jth node in layer (l) and xi be an input

variable for ith node in layer (l − 1). The net(l)
j can be formally

represented as

net (l)
j =

n∑
i=1

w
(l)
j i x (l−1)

i − �
(l)
j , (1)

where, �
(l)
j and net(l)

j represent, respectively, the bias unit and

weighted sum for the jth node in layer (l). The output depends on

the weighted sum of an input vector and a weight vector. The sum

may not fall on an optimal part of the curve so one way to ensure

that it does is to add a bias to the sum to shift it left or right along

the curve (Poulton 2001) (Fig. 3b). The output of the jth node in

layer (l) is passed through non-linear transfer function, which can

be written as (Benaouda et al. 1999)

a(l)
j = f j

(
net (l)

j

)
. (2)

We used here the commonly used non-linear hyperbolic tang sig-

moid transfer function of the form of

f j

(
net (l)

j

) = eβ(net
(l)
j ) − e−β(net

(l)
j )

eβ(net
(l)
j ) + e−β(net

(l)
j )

. (3)

Here, e denotes the basis of the natural logarithm (Fig. 3b), β is a

constant which determines the stiffness of the function near net(l)
j =

0 in layer (l) (Roth & Tarantola 1994). The value of β is adopted as

1.0 to keep the sigmoidal function in shape (Wasserman 1993).

In order to understand the procedure more explicitly in a mathe-

matical sense, let us assume that E represents the network’s global

error functions. The local error e at the jth node in the layer (l) is

computed as: (Benaouda et al. 1999)

e(l)
j = − ∂ E

∂(net (l)
j )

= f ′
j (net (l)

j )
∑

k

e(l+1)
k w

(l+1)
k j . (4)

The goal of the learning process is to minimize the network’s global

error function by modifying the connection weights by �w j i . This

is done by using the gradient descent rule as follows:

�w
(l)
j i . = −η

(l)
j i

(
∂ E

∂w
(l)
j i

)
. = η j i e

(l)
j x (l−1)

i , (5)

Figure 4. (a) Training history/progress of neural network with gradient de-

scent with momentum and self/variable adaptive learning rate back propa-

gation. Initial mean square error was 1.54688. After 648 epochs the network

reaches below the error tolerance 0.05. (b) Performance function on three

sets of data: training, validation and testing. The sets suggest that the overall

performance is consistent along the error surface. (c) Shows the relation

between epoch and learning rate.
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where η
(l)
j i is learning rate at layer (l). (Benaouda et al. 1999) The

global error function used here is of the form of

E = 1

2

∑
j

(D j − O j )
2, (6)

where Dj and Oj are, respectively, the desired and the actual output

at each node in the output layer.

Super self adaptive back propagation (SSABP)

It is well known that the global error is highly non-linear function of

the weights and biases and, therefore, may introduce many local min-

ima in the error surface. The back propagation algorithms (BPA),

which are based on the error correction rule, have been used for opti-

mization of the network’s global error by modifying the connection

weights based on the knowledge of local error at each node (Rumel-

hart et al. 1986; Wasserman 1993; Bishop 1995; Poulton 2001).

In many cases, however, the networks solution becomes trapped in

one of these local minima. The SSABP paradigm implemented here

uses momentum and adaptive learning rate, which speed up the net-

work training and smoothes the error function during the training

process and thereby avoids local minima (Hecht-Nielsen 1991). The

learning rate is made responsive to the complexity of the local error

surface and weights are updated at each epoch using current learn-

ing rate. Here an epoch equals to one presentation for every training

sample (i.e. one pass through the training set). In a mathematical

term the connections weights, with momentum m are updated as

follows

�w
(l)
j i (t + 1) = η

(l)
j i e(l)

j x (l−1)
i + m�w

(l)
j i (t), (7)

where t is a time index, since weight change on the right hand

side is old with respect to the left-hand side in eq. (7). An adap-

tive learning rate keeps the learning step size as large as possible

while maintaining the progress of learning stable (Figs 4a and b). In

SSABP (Wasserman 1993), each weight w j i has an associated step

size (learning rate) η j i . As with the momentum, if the new error ex-

ceeds the old error by more than a predefined ratio, new weight and

biases are automatically discarded. Also step size is decreased as

ηdown for that weight setting which can be mathematically presented

as

η
(l)
j i (t + 1) = η

(l)
j i (t)ηdown (8)

and if the new error is less than the old error, the step size is increased

as ηup setting,

η
(l)
j i (t + 1) = η

(l)
j i (t)ηup. (9)

Initially, many sets of weight values were chosen randomly and set

between −1 and +1. To start with the program, the learning rate η

and momentum m are chosen as η = 0.01 and m = 0.9, respectively.

In the SSABP algorithm, the changes in η are multiplicative rather

than additive and thereby it makes the growth rate stepwise expo-

nential (Fig. 4c) rather than linear. We note that the values of two

constants are problem dependent (Wasserman 1993) and hence in

order to avoid instability, it is necessary to limit the maximum value

of η. For this we have used ηup = 1.01 and ηdown = 0.70 that are

best suited to our classification problem. Computational procedure

is developed in such a way that adaptive learning rate increases or

decreases automatically only to the extent that the network could

be trained without large surface errors and resumes stable learning

(Figs 4b and c).

Probabilistic approach of boundaries identification

Several workers have used histogram types of networks for classifi-

cation problems (Dowla et al. 1990; McCormack et al. 1993). In the

present study, we used a network, which is defined and discussed

in detail in a recent work of Devilee et al. (1999). Accordingly, for

each set of inputs, (e.g. density, neutron porosity and gamma ray

intensity), the trained networks return the probable occurrence of

outputs corresponding to the three classes of lithofacies and not the

actual values of density, porosity and gamma ray. The following

solution approximately satisfies the constraint:∑
O j = 1. (10)

The output of last layer of the network can be written as,

O j = P(lith j ). (11)

Here, lithj defines lithofacies number j ( j =1, 2, 3) and P represents

posterior probability. Output value can be interpreted in terms of

posterior probability distributions (Devilee et al. 1999). Following

Benaouda et al. (1999), let us assume that (P 1 = N 1/N , . . . . . .

Pk = Nk/N ) are, respectively, a priori probabilities (where Ni is the

number of elements in the ith class and N is the total number of

elements in the data) and the probability distribution of a sample X
= (X 1, . . ., Xm) is known for each class j ( j = 1, . . ., K ), denoted as

fj(X ). The posterior probability distribution of X belonging to the

jth class is given by Bayes’ rule .

P〈 j |X〉 = Pj f j (X )
K∑

i=1

Pi fi (X )

. (12)

Thus, Bayes’ rule representing the relation between posterior and

a priori distribution is used to assign the sample X to a class that

has the largest posterior probability greater than a certain threshold

value. The trained histogram network approximates the posterior

probabilities of X belonging to one of the three lithologies as stated

in eq. (12). The probability density fj (·); j = 1, . . . . . . . K can be

calculated by non-parametric method based on the observed sam-

ples. The maximum likelihood value corresponds to the class with

maximum posterior probability, which is obtained from neural net-

work output as follows: in ideal case, if the lithofacies of a particular

class exists, the output value of the node in the last layer is 1 or very

close to 1 and if not, it is 0 or very close to 0.

M O D E L I N I T I AT I O N A N D

I M P L E M E N TAT I O N

Hidden layers, connection weights and output

Cybenko (1989) showed that MLPs are universal approximators and

could approximate asymptotically any continuous function using a

single hidden layer. However, there is no firm convention or theoret-

ical limit for optimizing the number of hidden layers or number of

neurons in each hidden layer (Benaouda et al. 1999). Some empiri-

cal rules, however, have been discussed in literature (Lippman 1987;

Pulli & Dysart 1990) that provides some criteria for choosing the

number of hidden layers and neurons as a function of the input and

output neurons. In the present model, the input layer consists of three

nodes and accepts input values from density (g/cc), neutron porosity

(per cent) and gamma ray intensity (A.P.I.) data. We used two hidden

layers each consisting of fifteen individual nodes that are best suited

to the present classification problems as depicted by the well log data
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(Fig. 3a). These are fully connected across layers by non-linear func-

tion expressed in terms of the nodal input variables and connection

weights (Fig. 3a). The output layer consists of three nodes to repre-

sent the occurrence of three possible lithofacies units, for example,

paragneisses, metabasites and heterogeneous series. Heterogeneous

series also contains alteration of gneiss-amphibolites, with minor

occurrence of marbles, calcsilicates, orthogeneisses, lamprophyres

and diorites (Berckhemer et al. 1997; Emmermann & Lauterjung

1997; Pechnig et al. 1997; Leonardi & Kümpel 1998, 1999).

Number of training samples

Table 1 shows the published results of core sample analysis from

the KTB site (Pechnig et al. 1997). We have randomly generated

702 representative input/output pairs within the bounds defined in

Table 1 for the ANN training. It may be noted that the limited number

of training sets were generated here to have a comparative status

with the published histogram. The training set is used to train the

MLP that is to update the weights and biases for each node by the

self-adaptive error back-propagation method.

Designing a network with appropriate number of internal vari-

ables (weights and biases) is vital for avoiding the overfitting prob-

lem. Several workers have suggested that this problem could be

avoided, to some extent, by taking more training samples than the

internal variables (Baum & Haussler 1989; Van der Baan & Jutten

2000). Following Van der Baan & Jutten (2000) the internal variable

(N) for the present MLP structure can be calculated as follow:

N ≈ [(Ni + 1)Nh1 + (Nh1 + 1)Nh2 + (Nh2 + 1)No (13)

Here, Ni (Input) = No (Output) = 3; Nh1 (First hidden layer) = Nh2

(Second hidden layer) = 15 (Fig. 3a). Application of this formula to

our designed network yields N ≈ [(3 + 1) × 15 + (15 + 1) × 15 +
(15 + 1) × 3)] ≈ 342 internal variables which is less than 351 input

data being used for training. This gives justification for the correct

MLP structure being used in the present analysis.

Input data scaling and model parameterization

Normalization of the raw data (input/output), before presenting it to

the network is to avoid saturation. Hence, we scaled the input/output

values between 0 and 1 [−1 and +1] by using a simple linear trans-

formation algorithm, (Poulton 2001); normalized input = 2×(input-

minimum input)/(maximum input-minimum input) – 1 (Fig. 3b).

The training history is presented in Fig. 4(a). The training phase

completed after about 4000 epochs for an arbitrarily assigned per-

formance goal of (0.05). The minimum performance gradient falls

below 10−15 (Fig. 4b). The initial error function, that is, mean square

error (MSE) was found 1.54688, which is the value of sum-squared

error (SSE) divided by the number of patterns in the training file.

Here SSE is defined as the sum of the squares of the difference

between the target output and network output over all nodes for all

patterns. Although these values may not be the unique one, the cho-

sen parameters (e.g. epochs, performance goal and gradient) enabled

the fast and efficient training for the present case.

Data division, model validation and testing

Overfitting is one of the severe drawbacks in ANN modelling. This

refers to the fact that the selected training set is memorized in such

a way that performance is only excellent on this set but not on other

data leading to the useless predictive model. Hence, one of the most

important considerations in the ANN training is to avoid overfitting

and have good generalization. For this, we used early stopping to

increase the generalization capacity of ANN. The stopping criteria

depend upon achieving the best-fitting model beyond which there

would not be any appreciable change in the error function. In this

approach, the available data is shuffled appropriately and partitioned

into three random subsets. The first 50 per cent of the total data set is

used for training. The remaining 50 per cent were used for examin-

ing the generalization capability of the trained network. Here, again

the 24.93 per cent (i.e. 175) data were kept for validation and re-

maining 25.07 per cent (i.e. 176) for testing (Fig. 4a). The validation

set is not explicitly presented during the training phase but the error

on the validation set is monitored during this process. The MLP

error on validation set is calculated at the same time and training is

stopped when it reaches a minimum. This cross-validation scheme

prevents the network from memorizing the training set and provides

the best generalization. The testing is used to quantify the MLP pre-

dictions/model performances once the weight and biases are frozen.

We rechecked the different partitions manually and performed the

testing and validation to avoid any possibility of overfitting during

the training process. In all our experiments we observed that the net-

work was getting overfit after 648 epochs with error value of 0.05

(Fig. 4a).

Generalization capacity of the network

Performance of the trained network can be evaluated by error analy-

sis on the validation and test data sets. Error deviation is difference

between the target (binary output target, 1,0,0 for pargneisses, 0,1,0

for metabasites and 0,0,1 for heteroseries) and the actual network

output of the input log data. Fig. 5(a) shows the result of error devi-

ations on validation data set (left) and test data set (right) pertaining

to paragneisses, metabasites and heterogeneous series. As can be

clearly seen the accuracy of validation data set corresponding to

paragneisses, metabasites and heterogeneous series is considerably

good. Comparatively, however, paragneisses and metabasites ex-

hibit better accuracy than heterogeneous series. Similarly, for the

test samples (right) accuracy for metabasites series is better than

paragneisses, and heterogeneous series. Overall the average accu-

racy of the network prediction/generalization corresponding to the

three lithofacies units is very good.

N E T W O R K S E N S I T I V I T Y T O

C O R R E L AT E D N O I S E

In many geological/geophysical situations, it has been observed that

some kind of deceptive correlated (red) noise dominates the field

observations and corrupts the signal. It is also true that no data can

be totally noise free, as there will always be some unknown source

of noise inherently creeping in the data. We do not have an exact idea

about the per cent of noise present in our well log data. However, as-

suming that there is some possibility of inescapable noise in our data,

we thought it appropriate to test the robustness of our analysis and

stability of the result. For this, we generated correlated noise using

the first order autoregressive model of the form of X (t) = AX (t −
1) + ε t . In this model new generated values depend on the im-

mediately preceding values with some additive random component

(Fuller 1976). Here, X (t) is a stationary time series at time t and ε t

is the Gaussian white noise with zero mean and unit variance. A is

a constant representing the maximum likelihood estimator, which

is determined from the input data. The maximum likelihood values
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Figure 5. Error deviation of validation set data (left) and test data (right) pertaining to paragneisses, metabasites and heterogeneous series (a) when the input

generalization set is noise free. (b) When the input generalization set is corrupted with 30 per cent red noise (c) When the input generalization set is corrupted

with 50 per cent red noise.

for the validation data set is estimated as 0.52 for density, 0.21 for

porosity and 0.53 for gamma ray and for the test data set 0.47 for

density, 0.23 for porosity and 0.55 for gamma ray. The model results

are presented in Table 2, which show the percentages of accuracy

for the validation data set corresponding to paragneisses, metaba-

sites and heterogeneous series for different levels (5–50 per cent) of

correlative red noise. The error deviations for 30 and 50 per cent cor-

related noise in the input log data are displayed in Figs 5(a)–(c). The

present results suggest that the predictive capability of the network is

considerably good for those data sets, which are contaminated with

red noise up to a certain limit (i.e. to 20 per cent or so), however

the predictive capability is not so robust with strongly correlated

noise. The present model experiment also agrees well with the view

of Roth & Tarantola (1994) who have applied neural network based

inversion method to the recorded seismogram mixed with various

kinds of noises in attempt to recover the velocity structure.

Regression analyses

A regression analysis verifies the accuracy of the overall perfor-

mance of the network. For such an analysis, a set of training data

is normalized and the network is trained and simulated using the

normalized data. Now the output of the network is unnormalized

using the algorithm unnormalized input = 0.5× (normalized input+
1) × (maximum input–minimum input) + minimum input (Poulton

2001). Following this procedure, we performed linear regression

analysis between the network outputs and the targets to check the

quality of the network training. We performed a regression anal-

ysis on the network that we have previously trained by applying

early stopping method. Here, we pass the network output and the

corresponding targets through the regression program, which is de-

veloped here. It returns three parameters. The first two parameters

u and v correspond to the slope and the y-intercept of the best linear

regression fit relating to the network output (A) and target (T), re-

spectively. The network outputs are plotted against the targets (T),

which are shown as open circles in Figs 6(a)–(c). A dashed line in-

dicates the best linear fit (slope 1 and y-intercept 0). The solid line

in the above figure shows the perfect fit (output equal to target). The

third variable is the correlation coefficient (R) between the network

outputs and the targets, which is a measure of how well the variation

in the output is explained by the targets. If this number is equal to 1,

there is perfect correlation between targets and outputs. The results

of the linear regression analysis for the total set of data sets cor-

responding to paragneisses, metabasites and heterogeneous series

are given in Table 3 and are displayed in Figs 6(a)–(c). The results

indicate that slope (a), correlation coefficient (R) and y-intercept

(b) are very close to 1, 1 and 0, respectively, which suggest that the

performance of the trained network is very good.

C O M PA R I S O N O F A N N M O D E L

R E S U LT W I T H T H E P U B L I S H E D

R E S U LT

The published results of lithofacies successions (Emmermann &

Lauterjung 1997) are redrawn (Fig. 2) for the sake of clarity. Maxi-

mum Likelihood Geologic Section (MLGS) derived from the ANN

modelling for both KTB boreholes is also drawn and compared with

published subsections (Figs 7 and 8). These results, both pilot and

main bore hole, are displayed in Figs 7 and 8 at 500 m data windows.

The above figures exhibit the posterior probability distribution in a

3-coloumns grey-shaded matrix with black representing 1 and white

representing 0 (Figs 7a–h and 8a–f).

Pilot bore hole (KTB-VB) (up to 4000 m depth)

The present result based on the SSABP model confirms, in general,

the presence of paragneisses, metabasites and heterogeneous series

within the first 500 m data window. However, a close examination

and comparison of the model results with the published results

exhibit a somewhat poor correlation (Fig. 7a). For instance, for

depth ranging from 30 to 100 m depths below the surface, the

model shows the presence of heterogeneous series, instead of

paragneisses. Similarly, for the depth ranging from 240 to 250 m,
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Figure 5. (Continued).

Table 2. Percentage of accuracy validation and test data set with different red noise level.

Percentage of accuracy in generalization data set

Red Validation data set Test data set

noise Average stability within

level Paragneisses Metabasites Heterogeneous Paragneisses Metabasites Heterogeneous plus or minus

series series 5 per cent error limits

5 per cent 90.86 per cent 98.29 per cent 86.29 per cent 92.61 per cent 96.59 per cent 88.09 per cent 92.12 per cent

10 per cent 90.86 per cent 96.57 per cent 84.00 per cent 92.05 per cent 94.89 per cent 86.36 per cent 90.78 per cent

20 per cent 85.71 per cent 86.29 per cent 69.14 per cent 85.80 per cent 79.55 per cent 62.50 per cent 78.16 per cent

30 per cent 80.57 per cent 82.29 per cent 60.00 per cent 75.00 per cent 76.70 per cent 51.14 per cent 70.95 per cent

40 per cent 75.43 per cent 74.29 per cent 49.86 per cent 73.33 per cent 74.43 per cent 47.23 per cent 65.76 per cent

50 per cent 74.29 per cent 76.57 per cent 46.86 per cent 76.76 per cent 69.89 per cent 46.59 per cent 65.16 per cent

the model result shows the presence of paragneisses instead of

heterogeneous series. Still below, depths ranging from 305 to 340,

400 to 430 and 430 to 490 m the modelling results show presence of

paragneisses heterogeneous series and metabasites instead of het-

erogeneous series; metabasites, instead of heterogeneous series and

paragneisses instead of heterogeneous series, respectively. Compar-

ison of the present result within the 500–1500 m depths below the

surface with published results (Figs 7b–c) shows good conformity
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Table 3. Illustrating the results of linear regression analysis of major three litho types.

Litho types Correlation coefficient (R) Slope y-intercept of the best linear regression

between target (T) & (u) relating targets to network output (v)

network output (A)

Paragneisses class 0.964 0.898 0.0243

Metabasites class 0.984 0.976 0.0134

Heterogeneous series class 0.958 0.906 0.0404

Figure 6. (a) Linear regression analysis of total set of data corresponding

to paragneisses. Correlation coefficient (R) between target (T) and network

output (A) is 0.892, slope is 0.964, and y-intercept of the best linear regression

relating targets to network is 0.02431. The network outputs are plotted versus

the targets as open circles. A dashed line indicates the best linear fit. The

perfect fit (output equal to targets) is indicated by the solid line. (b) Same

as (a) for metabasites yielding a correlation coefficient 0.984, slope 0.976,

and y-intercept 0.0134. (c) Same as (a) for heterogeneous series yielding a

correlation coefficient 0.958, slope 0.906, and y-intercept 0.0404.

with the three lithofacies successions, for example, paragneisses,

metabasites and heterogeneous series. However, within this inter-

val there is some dissimilarity too. Our result for depth intervals

520–556, 579– 582, 598–601, 707–712 and 1145–1168 m suggest,

respectively, the presence of paragneisses instead of heterogeneous

series, heterogeneous series instead of paragneisses, heterogeneous

series instead of paragneisses, heterogeneous series instead of parag-

neisses and metabasites instead of paragneisses. The present result

also show good matching within the depth interval ranging from

1500 to 2500 m (Figs 7d–e) except for the presence of heteroge-

neous series from depth 1597 to 1618 m; paragneisses from depth

1744 to 1817 and 2442 to 2467 m. Our result shows that paragneisses

layers mostly dominate within the depth interval of 2500–3000 m

mostly revealing the presence of paragneisses from depth 2562 to

2623 m and from 2852 to 2953 m interbedded with a finer thin

metabasites structures corresponding to a depth range of 2640 to

2646 m. (Fig. 7f). Fig. 7(g) exhibits the presence of paragneisses

class and heterogeneous series, which are consistent with the pub-

lished results except for the depth 3408–3421 m. In addition to this,

our results also suggest the presence of paragneisses class and het-

erogeneous series in depths intervals ranging from depths 3204 to

3248 and 3409 to 3418 m, respectively. Comparison of the present

result in the depth range of 3500–4000 m (Fig. 7h) shows a succes-

sion of paragneisses and metabasites, which is identical to the pub-

lished results. The minor deviations and some differences observed

between published and the present result is explained in Section

‘Discussion’.

Main bore hole (KTB-HB) (up to 7000 m depth)

Comparison of the SSABP result of the main KTB bore hole data

exhibits, in general, good correlation with the published results of

Emmermann & Lauterjung (1997) (Figs 8a–d). There is some dis-

similarity also. For instance, there is evidence of bimodal combina-

tion of heteroseries and metabasites sequence within depth interval

of 4400–4500 m instead of only single depositional sequence of

metabasites as reported in previous investigation. Further there is

evidence of three thinner heterogeneous series at depth intervals

ranging from 4580 to 4583, 4809 to 4812 and 4580 to 4583 m in-

stead of a single metabasites unit. Again within depth interval of

5440–5500 m there is evidence of bimodal sequence of heteroseries

and metabasites instead of metabasites only. Further, a closer look

of the above figures reveal the presence of heterogeneous series,

metabasites and paragneissess from depth 5500 to 5650 m instead

of only metabasites and presence of heterogeneous series from depth

5820 to 5840 m instead of metabasites unit. It is interesting to note

here that the SSABP modelling results also reveals successions of

additional structures at depth intervals ranging from 6017 to 6026,

6322 to 6334 and 6400 to 6418 m in heterogeneous series (Fig. 8e)

classification, in addition to the main classes at a depth interval from
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Figure 7. (a) Comparison of the Maximum Likelihood Geological Section (MLGS) from neural network approach (left) with published lithofacies subsection

of pilot hole (KTB-VB) (right; after Emmermann & Lauterjung 1997) for depth interval 0–500 m. In this interval 0–28 m data is not available. (b)–(h) Same

for depth ranges 500–1000, . . . , 3500–4000 m in KTB pilot hole(KTB-VB).

5543 to 5560 m (Fig. 8d). Fig. 8(f) shows dominance of heteroge-

neous series. However, our result shows presence of heterogeneous

series from depth 6550 to 6665 m instead of metabasites and het-

erogeneous series and presence of heterogeneous series and metab-

asites at depth interval of 6710–7000 m instead of only metabasites

unit.

D I S C U S S I O N S

Comparison of MLGS with published lithospecies section of Em-

mermann & Lauterjung (1997) (Figs 7 and 8) exhibits more or less

matching patterns that are well correlated. In addition to this, the SS-

ABP model also reveals some finer structural details, which seem to
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Figure 7. (Continued).

be geologically significant. We note, however, that in complex non-

linear geological situations, such as the one being analysed here, it

is somewhat difficult to assert an exact geological interpretation as

to whether these apparently visible finer details inferred from our

study, are truly meaningful geological structures or simply an arte-

fact of analysis. Just for the sake of our curiosity and, of course,

to examine the authenticity of these structural details, we manually

checked a few samples produced by the trained network (Table 4).

To our surprise the trained network produced more or less iden-

tical results that are consistent with the training data. It may be

mentioned, however, that the present probabilistic histogram model

of lithofacies classification cannot be uniquely constrained and/or

compared with the existing litho section (Fig. 2), since the published

results are mostly gross-average depth of the litho section. Secondly,

the observed data may be also biased by deceptive ‘red’ noise sig-

nals with non-zero mean and might contain additional error due to

limitations in the KTB data resolution. Some deviations between

the two results are, therefore, expected. It is significant to mention,
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Figure 8. (a) Comparison of the Maximum Likelihood Geological Section (MLGS) from neural network approach (left) with published lithofacies subsection

of main hole (KTB-HB) (right; after Emmermann & Lauterjung 1997) for depth interval 4000–4500 m. (b)–(f) Same for depth ranges 4500–5000 m, . . . ,

6500–7000 m in KTB main hole(KTB-HB).

however, that most of the deviations and differences between the

published results and the SSABP model results are observed in pi-

lot bore hole, that too in the upper part of the crust. Further some

of the deviations/mismatches between the present model result and

published data apparently visible in some of the cases, might also

arise due to uncertainty in terms of probability distributions, when

winner node value is not significantly higher than the non-winner

node values. We note, however, that while interpreting prediction of

the network’s output node with the maximum likelihood value, in

most of the cases as discussed above, we found excellent separation

between the wining and non-winning output node values rendering

the actual patterns that are showing considerably high correlation

coefficients ∼0.9687 (Table 3). Thus it may be emphasized that the

SSABP algorithm, as developed here, combined with its validation

test and regression analyses do provide credence to the authenticity

of these results. Hence apparently visible finer details are not an

artefact of either choosing the maximum likelihood value or due to

any other reason rather they, in fact, are the inter-bedded geologi-

cal structures that remained unrecognized in previous visual inter-

pretation. The output of the histogram type networks for choosing

maximum likelihood value, as discussed by Devilee et al. (1999),

provides better guidance.
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Figure 8. ((Continued)).

Table 4. Analysis of real data taken from both KTB pilot hole (KTB-VB) and KTB main hole (KTB-HB) from different depth.

Bore Hole Depth (m) Density Neutron Gamma Desired output Neural networks actual output

(samples of (g/cc) porosity ray intensity (binary code)

data taken) (per cent) (A.P.I.)

KTB-VB 3119.171 2.719 10.805 107.1 1 0 0 0.998 0.000 0.001

KTB-VB 1574.292 2.940 12.343 45.007 0 1 0 0.004 0.999 0.000

KTB-VB 89.0016 2.736 10.46 82.050 0 0 1 0.472 0.000 0.835

KTB-VB 305.866 2.946 14.062 32.614 0 1 0 0.002 0.999 0.000

KTB-VB 893.826 2.824 12.946 128.41 0 0 1 0.314 0.000 0.680

KTB-VB 1393.546 3.017 11.24 23.268 0 1 0 0.003 0.999 0.000

KTB-VB 2252.472 2.809 14.949 119.17 1 0 0 0.974 0.000 0.017

KTB-VB 3864.254 2.948 13.591 19.107 0 1 0 0.002 0.999 0.000

KTB-VB 3559.454 2.746 12.11 104.35 1 0 0 0.998 0.000 0.001

KTB-HB 4007.206 2.867 14.122 45.596 0 1 0 0.002 0.996 0.007

KTB-HB 4505.554 2.634 11.522 29.91 0 1 0 0.000 0.979 0.031

KTB-HB 4808.677 2.625 15.443 84.418 0 0 1 0.051 0.000 0.994

KTB-HB 6325.362 2.755 15.727 13.359 0 1 0 0.001 0.999 0.000

KTB-HB 6515.862 3.004 14.823 20.325 0 1 0 0.002 0.999 0.000

KTB-HB 6807.099 2.742 11.174 55.444 0 0 1 0.001 0.009 0.982

KTB-HB 5504.231 2.914 15.514 33.633 0 1 0 0.001 0.999 0.000

C O N C L U S I O N S

A super self-adapting back propagation (SSABP) neural network

program is developed and successfully applied to classify the litho-

facies boundaries by using the well log data from the German Con-

tinental Deep Drilling Project (KTB). Besides providing additional

finer evidence of the crustal inhomogeinity on KTB site, the result

also supports the existing results. This provides a good testimony to

use the SSABP based techniques to solve the problems of borehole

geophysics. The main conclusions of this analysis are follows:

(i) The SSABP neural network technique is an efficient and

cost-effective tool to interpret large amount of borehole log data.

The SSABP based technique is also robust to analyse modestly

correlated noisy data.

(ii) A comparative study of the present model results with the

published result suggests that the SSABP method is also able to

model the succession of some finer structures, which were hitherto

not recognized. Such findings may have implications in understand-

ing the crustal inhomogeneity.

(iii) Because of its computational efficiency, it is proposed that

the present methods can be further exploited for analysing large

number of borehole data in other areas of interest.

(iv) Finally, some deviations observed in SSABP neural net-

work analysis from the prior knowledge seem to be interesting

and should provide a basis for more detailed examination of the

geological significance of finer structures intervening bigger geo-

logical units.
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