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Fuzzy mathematical model for the analysis of geomagnetic field data
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The Indian network of magnetometers provides an opportunity to examine the pattern of geomagnetic field
variations during magnetic storms. In this study, fuzzy transitive closure analysis, which is a powerful technique
for pattern recognition, has been employed. The pattern of variation differs at the nonequatorial, equatorial
and the observatory situated nearer to the geomagnetic Sq focus. The results of the analysis are compared with
those of classical cluster analysis. The comparison confirms the validity of applying this model for the analysis
of geomagnetic storms. The superiority of fuzzy concepts over the conventional method and the analytical
techniques are presented here.
Key words: Fuzzy logic, transitive closure, geomagnetic storm, geomagnetic Sq, EEJ current.

1. Introduction
Dynamic processes on the Sun deliver plasma of charged

particles, principally protons, electrons, and the associated
fields, to the Earth’s environment, causing geomagnetic dis-
turbances at the Earth’s surface that have been named ge-
omagnetic storms. The solar effect on the magnetic per-
turbation that occurs during geomagnetic storms has been
studied by many scientists (e.g., Sugiura, 1953; Rastogi et
al., 1964; Srivastava et al., 1999). India has a unique set of
geomagnetic observatories spanning the magnetic equator
and the Sq focus in a region of the world where the ge-
omagnetic and geographic meridian planes are least sep-
arated. A number of geomagnetic storms have been an-
alyzed in terms of their (1) solar flare effects and sudden
commencement (Rastogi et al., 1997), (2) the H amplitude
of sudden commencement at Sabhawala (Jain, 1978), (3)
spectral characteristics (Chandra et al., 1995), (4) effects
on the ionosphere total electron content and evidence of
electro-jet control (Jain, 1978), (5) multi-dimensional scal-
ing (Sridharan and Ramasamy, 2002), (6) extreme behav-
ior (magnetic storm of 1–2 September 1859; Tsurutani et
al., 2002), and (6) fractal behavior (29–31 October 2003;
Sridharan and Gururajan, 2006). Although no two storms
are identical, most storms have certain features in com-
mon (Parkinson, 1983). Valdivia et al. (1996) constructed
a nonlinear predictive model for the prediction of magnetic
storms based on the Dst data alone (not utilizing the data of
the interplanetary magnetic field) by applying the time de-
lay embedding technique and phase space reconstructions
method. Although the magnetic storm onset cannot be pre-
dicted in the absence of the solar wind input, this model can
quantitatively describe the subsequent evolution of a storm
that can reach a threshold value (−50 nT). The methodol-
ogy is that 50 hours of sample predictions with iteration and
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updated every hour can form a sequence of iterated predic-
tion. Time delay and phase space reconstruction methods
have been applied to study the fractal behavior of the ge-
omagnetic storm on 29–31 October 2003 (Sridharan and
Gururajan, 2006). Valdivia et al. (1999) studied the spa-
tiotemporal activity of magnetic storms. The database con-
tains the horizontal component of the magnetic field per-
turbation at six midlatitude magnetometer stations during
the first 6 months of 1979. Time delays adjusted for a
spatiotemporal system have been applied to reveal the dy-
namical properties of the ring current, including the cou-
pling to the solar parameters, and to predict the evolution
of the longitudinal profile of magnetic storms. Vassiliadis
et al. (1999) analyzed the four stages of a magnetic storm,
namely, the initial growth, the main and recovery phases,
and the storm-substorm relationships. Non-linear, second-
order autoregressive moving average models are fit for the
data covering the interval of January 1 to June 30, 1979, at
a 5-min resolution.

In this paper, variations in geomagnetic storm time
ranges for the sensitive horizontal (H ) component of the
earth’s magnetic field recorded at the geomagnetic observa-
tories in India are analyzed by applying a fuzzy transitive
closure algorithm. The data of the recently constructed ob-
servatories at Pondicherry and Tirunelveli are considered
for this analysis.

2. Superiority of Fuzzy-Based Clustering
The purpose of clustering is to distill natural groupings of

data from a large data set, thereby producing concise repre-
sentation of a system’s behavior. The fuzzy clustering tech-
nique is complementary to earlier classical techniques. It
incorporates an iterative approach to data analysis that al-
lows the design of complex systems using a higher level of
abstraction, including subjective concepts such as “good”,
“better”, and “little bit satisfied”, among others, that can
be mapped into exact numeric ranges. Fuzzy techniques
enable a researcher to lump together those data points that
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populate some multidimensional space into a specific num-
ber of different clusters. For a given set X of data, the prob-
lem of clustering in X is to find several cluster centers that
can properly characterize relevant classes of X . In clas-
sical cluster analysis, these classes are required to form a
partition of X , such that the degree of association is strong
for data within blocks of the partition and weak for data in
different classes. This requirement is beyond the reach of
many applications when the data are chaotic (such as geo-
magnetic storm time data) in nature, and so it is necessary
to replace it with a weaker requirement of a fuzzy partition.
The distance of an input sample to the centre of the clus-
ter to which the input sample belongs is used as a criterion
to measure the cluster compactness. The compactness and
separation validity are more accurate and can produce a bet-
ter segmentation result. Unknown parameters between one
class of data and the other classes can be estimated by a
fuzzy model in a naturally consistent way.

Fuzzy logic uses three simple steps:

1. Fuzzification—conversion of numeric data in a real-
world domain to fuzzy numbers in the fuzzy domain.

2. Aggregation—computation of fuzzy numbers (all be-
tween 0.0 and 1.0) in the fuzzy domain.

3. Defuzzification—conversion of the obtained fuzzy
numbers back to the numeric data in the real-world do-
main.

Advantages of using fuzzy concepts:

1. No need to have prior knowledge about the relation-
ships of data.

2. Modeling of complex, non-linear problems.
3. Handling of any kind of information (numeric, linguis-

tic, logical, etc.).
4. Management of imprecise, partial, vague, or imperfect

information.
5. Fast computation using fuzzy number operations.
6. Natural language processing/programming capability.

If fuzzy logic is applied for the data analysis, then the
data should be converted into fuzzy numbers (between 0
and 1). To estimate subjectively the resemblance between
pairs of data points, we adopt the convention of arranging
data for numerical classification in the form of matrix. Each
entry [i j] in such a matrix is the score of the proximity re-
lation (subjective similarity) between data points i and j .
It should be noted that numerical values in the proximity
matrix are only quantitatively descriptive numbers whose
significance cannot be evaluated by conventional statistical
techniques and thus are determined subjectively. The prox-
imity relation is not necessarily transitive. We must utilize
the theory of inexact matrices in order to formulate a transi-
tive closure structure that will enable us to separate the data
set into mutually exclusive clusters which are, in essence,
equivalent in class. Many different methods are used for
clustering, and their selection depends primarily on the spe-
cific application. In all other clustering methods, proxim-
ity relations defined by arbitrary similarity measures are not
necessarily similarity relations. In our method, cluster vari-
ables are classified based on the Minkowski formula; other
methods are obvious and direct. This method requires ac-

curacy and precession. An α-cut or α-level set, αε(0, 1],
of a fuzzy relation R is defined as the crisp binary relation
Rα . As α runs through (0, 1], α-cuts of R form a nested se-
quence of crisp relations such that whenever α1 ≥ α2, Rα1

is contained in Rα2 ; that is, Rα1 ≤ Rα2 . The scalar ‘α’ is an
indication of the validity of each clustering in the interval
[0, 1].

Here, we report, for the first time, on the application of
this technique for the available data of geomagnetic storm
time ranges. The result of the analysis is compared with that
using the non-fuzzy method (Johnson and Wichern, 2006).

3. Significance of Fuzzy Transitive Closure Algo-
rithm in the Cluster Analysis

Clustering techniques have been applied to a wide vari-
ety of research problems. Hierarchical (local, graph, theo-
retic) clustering methods can be divided into agglomerative
and divisive methods. In this paper, the agglomerative algo-
rithm is applied because of its connection to fuzzy relational
methods that produce hierarchical clusters. The widely used
technique is a c-means clustering, which has certain draw-
backs. Fuzzy c-means clustering has been applied for var-
ious atmospheric and geophysical studies (e.g., Dekkers et
al., 1994; Kruiver et al., 1999). This method requires the
specification of the desired number of clusters, which is
a disadvantage whenever the clustering problem does not
specify any desired number of clusters. Even if the popula-
tion is known to consist of k groups, the sampling method
may be such that the data from the rarest group do not ap-
pear in the sample. Forcing the data into k groups would
lead to nonsensical clusters. In such problems, the number
of clusters should reflect, in a natural way, the structure of
the given data. Methods based on fuzzy transitive closure
work in this way.

4. Data
Simultaneous data of the geomagnetic storm time ranges

of the sensitive horizontal (H ) component for a net-
work of geomagnetic observatories situated at Alibag,
Hyderabad, Kodaikanal, Nagpur, Pondicherry, Sabhawala,
and Tirunelveli available for the period between 2001 and
2003 are considered for this analysis. The Tirunelveli and
Kodaikanal observatories situated nearer to the dip equator
are influenced by the daytime equatorial electrojet current
system. Sabhawala observatory is situated nearer to the fo-
cus of the Sq currents in the northern hemisphere. At middle
and low latitudes on the Earth, one storm each year is larger
than 250 gammas, and about ten storms per year are over
50 gammas and display a similar general appearance for the
H component field (Campbell, 1997). The range obtained
from the maximum and minimum values recorded in the
magnetograms of the observatories during the geomagnetic
storms are considered for this analysis. The locations of the
observatories are provided in Table 1, and its corresponding
map is provided in Fig. 1. The data used for this study in
Table 2 are taken from the data book published by the In-
dian Institute of Geomagnetism. Graphical representation
of data is presented in Fig. 2.
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Table 1. Location of observatories (geographic and dipole coordinates).

Serial number Station Geographic Dipole

1 Sabhawala (SAB) Latitude 30◦22′N 21.2◦N

Longitude 77◦48′E 151.9◦

2 Nagpur (NGP) Latitude 21◦09′N 11.96◦N

Longitude 79◦05′E 152.1◦

3 Alibag (ABG) Latitude 18◦37′N 10.02◦N

Longitude 72◦52′E 145.9◦

4 Hyderabad (HYB) Latitude 17◦25′N 8.3◦N

Longitude 78◦33′E 151.3◦

5 Pondicherry (PON) Latitude 11◦55′N 2.7◦N

Longitude 79◦55′E 152.1◦

6 Kodaikanal (KOD) Latitude 10◦14′N 1.23◦N

Longitude 77◦28′E 149.6◦

7 Tirunelveli (TIR) Latitude 8◦42′N 0.33◦S

Longitude 77◦48′E 149.76◦

Table 2. Geomagnetic storm time ranges for the horizontal H component (in nT).

Serial number Date ABG-H HYB-H KOD-H NGP-H PON-H SAB-H TIR-H

1 31.01.2001 149 146 163 158 157 128 194

2 19.03.2001 271 273 275 266 279 271 291

3 22.03.2001 146 142 211 145 170 138 267

4 27.03.2001 202 223 271 208 206 131 280

5 08.04.2001 177 177 194 173 234 228 232

6 11.04.2001 332 338 323 347 337 382 323

7 18.04.2001 118 117 189 115 147 160 240

8 28.04.2001 222 226 246 237 240 194 293

9 27.05.2001 142 145 133 154 134 128 144

10 18.06.2001 158 172 225 153 198 125 265

11 17.08.2001 215 207 219 223 213 220 230

12 25.09.2001 185 203 184 191 185 255 207

13 11.10.2001 136 138 181 145 167 153 215

14 21.10.2001 284 295 270 297 286 347 267

15 28.10.2001 219 238 292 213 272 224 315

16 29.12.2001 188 167 228 184 200 170 276

17 17.02.2002 108 113 222 110 139 51 246

18 28.02.2002 176 193 251 193 219 100 211

19 18.03.2002 119 121 133 135 123 158 187

20 23.03.2002 181 176 243 177 180 173 225

21 19.04.2002 183 193 222 200 203 164 272

22 23.04.2002 179 191 234 187 216 144 292

23 11.05.2002 157 158 241 163 165 189 178

24 23.05.2002 255 220 147 235 244 65 239

25 01.08.2002 138 152 186 200 163 155 228

26 18.08.2002 81 98 221 102 113 110 236

27 07.09.2002 162 76 275 166 169 133 252

28 30.09.2002 147 150 308 150 146 134 174

29 11.11.2002 91 90 127 93 102 65 145

30 26.11.2002 83 95 92 81 95 114 94

31 20.03.2003 161 158 158 169 169 126 223

32 29.05.2003 169 180 207 182 171 241 253

33 17.08.2003 254 261 251 258 265 258 248

34 15.11.2003 122 122 119 127 123 122 150
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Fig. 1. Location map of the observatories.
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Fig. 2. Geomagnetic storm time ranges for horizontal H component in nT.

5. Classical Clustering Method
5.1 Euclidean distance matrix (R)

The geomagnetic storm time ranges described in Table 2
are considered for the derivation of the Euclidean distance
matrix by the following formula:

Distance = [
(x11 − x12)

2 + (x21 − x22)
2+

..... + (xn1 − xn2)
2
]1/2

The stations are abbreviated as follows: ABG, Alibag;
HYB, Hyderabad; KOD, Kodaikanal; NGP, Nagpur; PON,
Pondicherry; SAB, Sabhawala; TIR, Tirunelveli. The ma-
trix R is constructed using the data given in Table 2, and
the Euclidean distance is determined between one place and
other places using the formula described above.

For example, the distance between ABG and HYB =
[(149−146)2 + (271−273)2 + (146−142)2 + ...+ (254−

261)2 + (122 − 122)2]1/2 = 109.86. The distance between
ABG and KOD = [(149 − 163)2 + (271 − 275)2 + (146 −
211)2 + ...(254 − 251)2 + (122 − 119)2]1/2 = 371.87.

All of the distances are calculated in a similar manner,
and the matrix R is formed as follows:

R =



ABG HYB KOD NGP PON SAB TIR

ABG 0 109.86 371.87 84.469 132.97 289.02 431
HYB 109.86 0 379.31 117.32 148.31 275.73 435.85
KOD 371.87 379.31 0 347.89 302.89 461.38 262.46
NGP 84.469 117.32 347.89 0 130.92 282.01 401.09
PON 132.97 148.31 302.89 130.92 0 319.18 334.08
SAB 289.02 275.73 461.38 282.01 319.18 0 536.07
TIR 431 435.85 262.46 401.09 334.08 536.07 0
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5.2 Algorithm for hierarchical clustering (non-fuzzy
method)

Agglomerative hierarchical methods start with individual
objects, and initially there are as many clusters as objects.
The following steps are performed in the agglomerative
hierarchical clustering algorithm for grouping N objects:

1. Start with N clusters, each containing a single entity
and an N×N symmetric matrix of distances R = {dik}.

2. Search the distance matrix for the nearest pair of clus-
ters. Let the distance between “most similar” clusters
U and V be dU V .

3. Merge clusters U and V . Label the newly formed clus-
ter (U V ). Update the entries in the distance matrix
by (1) deleting the rows and columns corresponding
to clusters U and V and (2) adding a row and column
giving the distances between cluster (U V ) and the re-
maining clusters.

4. Repeat Steps 2 and 3, a total of N − 1 times. (All
objects will be in a single cluster after the algorithm
terminates). Record the identity of clusters that are
merged and the levels (distances or similarities) at
which the mergers take place.

Distance Matrix R = {dik} =
ABG HYB KOD NGP PON SAB TIR

1 2 3 4 5 6 7
ABG 1 0 109 371 84 132 289 431
HYB 2 109 0 379 117 148 275 435
KOD 3 371 379 0 347 302 461 262
NGP 4 84 117 347 0 130 282 401
PON 5 132 148 302 130 0 319 334
SAB 6 289 275 461 282 319 0 536
TIR 7 431 435 262 401 334 536 0

Min (dik) = d41 = 84.
Objects 4 and 1 (NGP and ABG, respectively) are merged

to form the cluster (41). The distances between the cluster
(41) and the remaining objects 2, 3, 5, 6 and 7 are needed to
implement the next level of clustering. The nearest neigh-
bor distances are

d(41)2 = min {d41, d42} = min {84, 117} = 84

d(41)3 = min {d43, d13} = min {347, 371} = 347

d(41)5 = min {d45, d15} = min {130, 132} = 130

d(41)6 = min {d46, d16} = min {282, 289} = 282

d(41)7 = min {d47, d17} = min {401, 431} = 401

By deleting the rows and columns of D corresponding
to objects 4 and 1 and by adding a row and column for the
cluster (41), we can obtain the following distance matrix.

(41) HYB KOD PON SAB TIR
2 3 5 6 7

(41) 0 84 347 130 282 401
HYB 2 84 0 379 148 275 435
KOD 3 347 379 0 302 461 262

PON 5 130 148 302 0 319 334
SAB 6 282 275 461 319 0 536
TIR 7 401 435 262 334 536 0

The smallest distance between a pair of clusters is now
d(41)2 = 84, and object 2(HYB) can be merged with cluster
(41) (NGP and ABG) to obtain the next cluster (241) (NGP,

ABG, and HYB). The distances between the cluster (241)
and the remaining objects 3, 5, 6 and 7 are needed to im-
plement the next level of clustering. The nearest neighbor
distances are

d(241)3 = min{d(41)3, d23} = min{347, 379} = 347

d(241)5 = min{d(41)5, d25} = min{130, 148} = 130

d(241)6 = min{d(41)6, d26} = min{282, 275} = 275

d(241)7 = min{d(41)7, d27} = min{401, 435} = 401

The following matrix is obtained by deleting the rows and
column of D corresponding to (41) and 2 and adding a row
and column for the cluster (241).

(241) KOD PON SAB TIR
3 5 6 7

(241) 0 347 130 275 401

KOD 3 347 0 302 461 262

PON 5 130 302 0 319 334
SAB 6 275 461 319 0 536
TIR 7 401 262 334 536 0

The smallest distance between the pair of cluster is now
d(241)5 = 130. One can merge the object, 5(PON) with
cluster (241) to get the next cluster (5241).

d(5241)3 = min{d(241)3, d53} = min{347, 302} = 302

d(5241)6 = min{d(241)6, d56} = min{275, 319} = 275

d(5241)7 = min{d(241)7, d57} = min{401, 334} = 334

The distance matrix for the next level of clustering is

(5241) KOD SAB TIR
3 6 7

(5241) 0 302 275 334

KOD 3 302 0 461 262

SAB 6 275 461 0 536
TIR 7 334 262 536 0

The smallest distance between pair of clusters is now (37)
(KOD, TIR). This cluster does not have any link with the
previous (5241) cluster and is a separate cluster. Therefore,
two clusters, namely {5241} and {37}, are obtained.

Deleting the rows and columns of 3 and 7 and adding a
cluster (37), we get

(5241) (37) SAB
6

(5241) 0 275
(37) 0

SAB 6 275 0

One can see three clusters {5241}, {37}, and {6}, rep-
resenting {NGP, ABG, HYD, PON}, {KOD, TIR}, and
{SAB} clusters, respectively.

6. Fuzzy Transitive Closure Method
6.1 Equivalence relations

The equivalence relation (ER) is very important in pattern
recognition (Bezdek et al., 1986) because an equivalence
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relation on a set of objects defines a set of equivalence
classes. An equivalence relation is defined on a set which is
reflexive, symmetric and transitive.

Let the set of objects be O = {o1, o2, ..., on}. A crisp
(either 0 or 1) binary relation R in O is a crisp sub-set R ⊂
O × O . The R can be described by a membership function
ρ : O × O → {0, 1}. The n2 numbers {ρ(oi , o j )}, which
characterize the membership of (oi , o j ) in the relation R, is
defined as ρ(oi , o j ) = 1 ⇔ oi Ro j (if oi is related to o j , the
membership value is ‘1’; if membership value is ‘1’, then oi

is related to o j ). The n × n relational matrix is R(ρ : O) =
[ri j = ρ(oi , o j )]n×n . The terms reflexive, symmetric, and
transitive relationships are explained as follows:

(1) Reflexive relationship: Any square binary relation R is
reflexive if rii = ρ(oi , o j ) = 1 ∀ oi ∈ O . Reflexivity
means that every element is fully related to itself.

(2) Symmetric relationship: Any square binary relation R
is symmetric if r jk = rk j ∀ j �= k, that is if R = RT

(transpose of the matrix R). This means that whenever
o j is related to ok at any level, ok is related to o j at the
same level.

(3) Transitive relationship: A crisp relation R = [r jk]n×n

is transitive if r jk = 1 whenever r ji = 1 and rik = 1
for some i .

6.2 Fuzzy equivalence relations
A fuzzy equivalence relation (Klir and Yuvan, 1997)

is defined on a set which is reflexive, symmetric, and
maximum-minimum transitive. Similar to an ordinary
equivalence relation, a fuzzy equivalence relation induces
a partition in each of its α-cuts (Zadeh, 1965). As such,
a meaningful fuzzy equivalence relation is defined on
the transitive closure of the fuzzy compatibility relation
(Anderberg, 1973). A fuzzy compatibility relation R on
a set S consisting of n data items can be defined by an ap-
propriate distance function (Klir and Folger, 2000) of the
Minkowski class by the following formula: R(xi , xk) =
1 − δ

[∑
(xi j − xk j )

q
]1/q

for all pairs (xi , xk) ∈ S where
q is a positive real number and δ is a constant that ensures
that R(xi , xk) ∈ [0, 1]. The quantity δ is the inverse value
of the largest distance in S.
6.3 Fuzzy transitive closure algorithm

Let R1 be the square matrix of order k obtained from the
given data matrix derived by the Minkowski class. The rela-
tional matrix R(2) = R1oR1 where an element of R1oR1 is
the maximum-minimum (xr j , x js) with j varying from 1 to
k (k is the number of observatories which is ‘7’ in this anal-
ysis), and xrs is an element in the r th row and s th column of
the matrix R(2).

Similarly,

R(4) = R(2)oR(2)

..........

.........

R(2k) = R(2k−1)

This is continued until no new relationship is produced.
Thus, the maximum-minimum transitive closure R is the

relation R(n−k) which is denoted by Rτ . This relation Rτ

induces a partition called α-cuts (Zadeh, 1965) in different
intervals. S is the distance matrix R defined in 5.1. The op-
erator ‘o’ is applied to define the maximum of the minimum
values obtained from the corresponding rows and columns
of a particular element in the matrix R1, R2, R4, etc.
6.4 αααααααα-cut

An α-cut of a fuzzy set I is a crisp set Iα that contains all
of the elements of the universal set X that have a member-
ship grade in I that is greater than or equal to the specified
value of α.

i.e., Iα = {x ∈ X/µI (x) ≥ α}

A fuzzy relation into crisp partitions with different values
of α corresponds to α-cuts of Iα . The scalars (α) are often
regarded as an indication of the validity of each hard clus-
tering in the interval [0, 1] (Friedman and Kandel, 1999).
‘I ’ is just the edge weight of the strongest adjacency link
between each pair of nodes.
6.5 Data analysis

The distance matrix R described in the classical cluster-
ing method is applied to derive the relational matrix R1.
The inverse value of the largest distance between SAB and
TIR = 1/536.07 is taken as the value ‘δ’. The value
of q = 2 for the Minkowski class. The element of the
relational matrix R1 is obtained by multiplying each ele-
ment of the matrix R by δ and subtracting them from ‘1’;
thereby, the data are converted into the fuzzy domain. The
matrix obtained from the given data matrix derived by the
Minkowski class is the relational matrix R1.

Relational matrix R1 =



ABG HYB KOD NGP PON SAB TIR

ABG 1 0.795 0.3063 0.8424 0.7519 0.4609 0.196
HYB 0.795 1 0.2925 0.7812 0.7234 0.4857 0.1869
KOD 0.3063 0.2925 1 0.3511 0.435 0.1393 0.5104
NGP 0.8424 0.7812 0.3511 1 0.7556 0.474 0.252
PON 0.7519 0.7234 0.435 0.7556 1 0.4046 0.3768
SAB 0.4609 0.4857 0.1393 0.474 0.4046 1 0
TIR 0.196 0.1869 0.5104 0.252 0.3768 0 1




The relational matrix R2 = R1oR1 is obtained as fol-
lows:

Take the elements in the first row and first column in R1:

First row: 1 0.795 0.3063 0.8424 0.7519 0.4609 0.196

First column: 1 0.795 0.3063 0.8424 0.7519 0.4609 0.196

Minimum: 1 0.795 0.3063 0.8424 0.7519 0.4609 0.196

Maximum of minimum: 1
The value ‘1’ is defined as x11 in the matrix R2.

Take the elements of first row and second column in R1

First row: 1 0.795 0.3063 0.8424 0.7519 0.4609 0.196

Second column: 0.795 1 0.2925 0.7812 0.7234 0.4857 0.1869

Minimum: 0.795 0.795 0.2925 0.7812 0.7234 0.4609 0.1869

Maximum of minimum: 0.795
The value ‘0.795’ is defined as x12 in the matrix R2.

Similarly, all elements xi j are found for the matrix R2.
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The relational matrix R2 is given below:

R2 = R1oR1 =



ABG HYB KOD NGP PON SAB TIR

ABG 1 0.795 0.435 0.8424 0.7519 0.4857 0.3768
HYB 0.795 1 0.435 0.795 0.7556 0.4857 0.3768
KOD 0.435 0.435 1 0.435 0.435 0.4046 0.5104
NGP 0.8424 0.795 0.435 1 0.7556 0.4857 0.3768
PON 0.7519 0.7556 0.435 0.7556 1 0.4857 0.435
SAB 0.4857 0.4857 0.4046 0.4857 0.4857 1 0.3768
TIR 0.3768 0.3768 0.5104 0.3768 0.435 0.3768 1




By successively applying the same procedures, corre-
sponding elements are found for the matrix R4 from R2.
The relational matrix R4 is given below:

R4 = R2oR2 =



ABG HYB KOD NGP PON SAB TIR

ABG 1 0.795 0.435 0.8424 0.7556 0.4857 0.435
HYB 0.795 1 0.435 0.795 0.7556 0.4857 0.435
KOD 0.435 0.435 1 0.435 0.435 0.4046 0.5104
NGP 0.8424 0.795 0.435 1 0.7556 0.4857 0.435
PON 0.7556 0.7556 0.435 0.7556 1 0.4857 0.435
SAB 0.4857 0.4857 0.4046 0.4857 0.4857 1 0.435
TIR 0.435 0.435 0.5104 0.435 0.435 0.435 1




Again, by the transitive closure algorithm R8 = R4oR4.
The relational matrix R8 is given below:

R8 = R4oR4 =



ABG HYB KOD NGP PON SAB TIR

ABG 1 0.795 0.435 0.8424 0.7556 0.4857 0.435
HYB 0.795 1 0.435 0.795 0.7556 0.4857 0.435
KOD 0.435 0.435 1 0.435 0.435 0.4046 0.5104
NGP 0.8424 0.795 0.435 1 0.7556 0.4857 0.435
PON 0.7556 0.7556 0.435 0.7556 1 0.4857 0.435
SAB 0.4857 0.4857 0.4046 0.4857 0.4857 1 0.435
TIR 0.435 0.435 0.5104 0.435 0.435 0.435 1




When two successive matrices are identical, the stopping
condition for the algorithm is achieved, leading to α-cuts in
the interval [0, 1].

It is seen that R8 = R4oR4 = R4. This means that
the stopping condition for the transitive closure algorithm
is achieved (Friedman and Kandel, 1999). The final matrix
is defined as Rτ . As such, the transitive closure algorithm
leads to cuts in the interval [0, 1] at 0.842, 0.795, 0.755,
0.510, 0.485, and 0.435 as shown below:

α-cuts:
0- -... 0- - -... - - -0- - - - 0- - -... 0- - - - .....0- - - - - ...0- - -....
0 0.842 0.795 0.755 0.510 0.485 0.435 1

Thus, the following α-cuts are formed by Rτ

The brackets (, ) define the open interval. The brackets
[, ] define the closed interval. The brackets {, } define the
set.

α ∈ (0.842, 1] : {(ABG), (HYB), (KOD), (NGP), (PON),

(SAB), (TIR)}
α ∈ (0.795, 0.842] : {(NGP − ABG), HYB, KOD, PON,

SAB, TIR}]
α ∈ (0.755, 0.795] : {(HYB − ABG), (NGP − HYB),

(KOD, PON, SAB, TIR)}
: {(NGP − ABG − HYB), (KOD,

PON, SAB, TIR)]

α ∈ (0.510, 0.755] : {(ABG − PON), (HYB − PON),

(NGP − PON), (KOD, SAB, TIR)]

: {(NGP − ABG − HYB − PON),

(KOD, SAB, TIR)]

α ∈ (0.485, 0.510] : {(KOD − TIR), (NGP − ABG

−HYB − PON), (SAB)]

α ∈ (0.435, 0.485] : {(ABG − KOD), (ABG − TIR),

(HYB − KOD), (HYB − TIR),

(KOD − NGP), (KOD − PON),

(NGP − TIR), (PON − TIR),

(SAB − KOD), (SAB − TIR)]

: [(NGP − ABG − HYB − PON),

(KOD − TIR), SAB]

7. Dendogram
A dendogram is a graphical representation of the results

of a hierarchical cluster analysis. The term “dendogram” is
used in numerical taxonomy for any graphical drawing or
diagram giving a tree-like description of a taxonomic sys-
tem. The representation of a taxonomic system by a den-
dogram is particularly suitable in connection with a clus-
ter analysis to investigate the structure of the corresponding
operational taxonomic units; that is, entities or individuals
considered to be the lowest ranking taxa within the system.
This is a tree-like plot where each step of hierarchical clus-
tering is represented as a fusion of two branches of tree into
a single one. The branches represent clusters obtained on
each step of the clustering.

8. Results
The α-cuts and the corresponding dendograms for the

geomagnetic storm time ranges of the seven observatories
are obtained using the fuzzy transitive closure algorithm.
An examination of the dendograms with respect to α-cuts
shows the following.

There are three clusters in the dendogram for the hori-
zontal H component. The first cluster is formed by NGP,
ABG, HYB, and PON; the second cluster is formed by
KOD and TIR; SAB is isolated from the above two clus-
ters. Rastogi and Patil (1992) explained the significant dif-
ferences in the daily variation of the horizontal magnetic
field H at an equatorial station during low and high sunspot
years. The data taken for this analysis are between 2001
and 2003, which are relatively higher solar activity peri-
ods. During intense solar flare effects and storm sudden
commencement events, the amplitude of H decreases pro-
gressively with increasing latitudes at the Indian chain of
observatories (Rastogi et al., 1997). The studies on multidi-
mensional scaling (Sridharan and Ramasamy, 2002) show
that the increase in latitudinal separation corresponds to an
increase in Euclidean distances with respect to the geomag-
netic storm time ranges at the Indian observatories.

From Table 1 and Figs. 1 and 3, one can observe
that the decrease in geomagnetic latitude from Nagpur to
Pondicherry corresponds to the formation of the first clus-
ter. This first cluster (NAG, ABG, HYB, and PON) clearly
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Fig. 3. Dendogram for geomagnetic storm time ranges.
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Fig. 4. Storm time ranges at non-equatorial regions.
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Fig. 5. Storm time ranges at equatorial region.
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Fig. 6. Storm time ranges nearer to Sq focus.
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shows the latitudinal dependence of geomagnetic varia-
tions on variations in geomagnetic storm time. Alex and
Rao (1995) showed that the pattern of geomagnetic varia-
tions at equatorial latitudes differs significantly from that
at higher latitudes. The abnormal variations and mainte-
nance of larger spanning distances at the equatorial obser-
vatories have been explained by multidimensional scaling
analysis (Sridharan and Ramasamy, 2002). The equatorial
geomagnetic observatories forming a group in the dendo-
gram are found in the second cluster formed by KOD and
TIR. Jain and Sastri (1978) explained that neither iono-
spheric nor magnetospheric currents are directly respon-
sible for the abnormal higher amplitude of variations at
Sabhawala but, rather, this abnormal amplitude in varia-
tions is due to the sub surface electrical conductivity at
the Himalayan foothills. Subsurface electrical conductiv-
ity may be the likely source, and this may be possibly fol-
lowing the trend of the Himalayas. This is seen in the den-
dogram (Fig. 3), where SAB is isolated from the other six
places. Geomagnetic storm time variations at Sabhawala
do not follow the pattern of latitudinal variations. Thus, the
cluster validity at the equatorial and nonequatorial stations
at the southern hemisphere and the isolated Sabhawala at
the northern hemisphere is clearly seen in the dendogram
described in Fig. 3. The graphs related to the dendogram
are provided in Figs. 4, 5, and 6.

9. Conclusion
The fuzzy transitive closure algorithm is introduced in

this paper as a means to identify the pattern of geomagnetic
storm time ranges of certain observatories in the Indian re-
gion. Data obtained from the recently constructed obser-
vatories at Pondicherry and Tirunelveli are considered in
this analysis. Pondicherry is a non-equatorial station and as
such, its data follow the pattern of latitudinal dependence;
Tirunelveli is nearer to the dip equator and hence affected
by the daytime equatorial electrojet current system. Fuzzy
logics are complementary technology in designing an intel-
ligent data analysis approach. The utility of fuzzy concepts
in pattern recognition is an emerging technique in various
geophysical studies, and the fuzzy model presented here is
a novel approach for the analysis of geomagnetic storms.
The validity of the technique is confirmed by comparing
the results with those obtained with classical cluster analy-
sis. This analysis was performed using simultaneous data
available only for a limited period of time. In general, for
vast volumes of data in a complicated analysis, this tech-
nique yields accurate results. For researchers working in
the field of geomagnetism, this fuzzy model will be impor-
tant for furthering progress on the subject. The results re-
ported here are expected to contribute to the application of
this technique in future analyses exploring the hidden pat-
tern(s) of various parameters in different fields of geomag-
netism.
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