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SUMMARY
A region of enhanced conductivity at the base of the mantle is modelled by an
infinitesimally thin sheet of uniform effective conductance adjacent to the core–mantle
boundary. Currents induced in this sheet by the temporally varying magnetic field
produced by the geodynamo give rise to a discontinuity in the horizontal components
of the poloidal magnetic field on crossing the sheet, while the radial component is
continuous across the sheet. Treating the rest of the mantle as an insulator, the
horizontal components of the poloidal magnetic field and their secular variation at the
top of the core are determined from geomagnetic field, secular variation and secular
acceleration models. It is seen that for an assumed effective conductance of the sheet
of 108 S, which may be not unrealistic, the changes produced in the horizontal
components of the poloidal field at the top of the core are usually ≤10 per cent, but
corrections to the secular variation in these components at the top of the core are typically
40 per cent, which is greater than the differences that exist between different secular
variation models for the same epoch. Given the assumption that all the conductivity
of the mantle is concentrated into a thin shell, the present method is not restricted to
a weakly conducting mantle. Results obtained are compared with perturbation solutions.

Key words: core–mantle boundary, mantle conductivity, poloidal field, secular variation.

field and its secular variation at the CMB are typically 2 and
INTRODUCTION

10 per cent respectively. Given the accuracy of the magnetic
In a number of studies of the fluid flow and flow shear field models before MAGSAT, it was felt that corrections of

near the top of the core (Barraclough, Gubbins & Kerridge this magnitude were not meaningful.

1989; Lloyd & Gubbins 1990; Jackson & Bloxham 1991), the In the last decade it has emerged that the lowermost reaches

poloidal magnetic field at the core–mantle boundary (CMB) of the mantle may have enhanced conductivity. Knittle &

has been determined by downward continuation of the mag- Jeanloz (1989, 1991) have suggested that infiltration of core

netic field at the surface of the Earth to the CMB using a material into this region may be responsible for the high

spherical harmonic representation for the scalar potential conductivity. Another mechanism, favoured by other workers,

everywhere in the mantle, which is assumed to be an insulator. is the presence of crypto-continental areas at the base of the

One of the main reasons cited for not correcting the poloidal mantle (Stacey 1992). This region near the CMB may corre-

field at the CMB for a non-zero mantle conductivity is the spond in part to the seismologically identified D◊ layer, which

lack of adequate knowledge of the conductivity of the lower has a thickness of 200–300 km. Poirier & Le Mouël (1992)

mantle below depths of 2000 km. Electromagnetic induction have looked into the question of what effect the infiltrated

studies yield reliable mantle conductivity profiles only down core material in the lower mantle might have on the observed

to depths of around 1000 km (Parkinson & Hutton 1989), geomagnetic field. In order to estimate the upper limit for such

where the conductivity is not appreciable in any case. The an effect, they considered an extreme situation where all the

other reason for not including a non-zero mantle conductivity infiltrated iron is segregated into a single spherical mass, which,

in the above studies is based on the results obtained by Benton according to their estimate, would have a radius of about

& Whaler (1983), who developed a perturbation technique to 250 km. Electric currents induced in this spherical inclusion,

deduce the poloidal field at the CMB by solving the poloidal located close to the CMB, due to the temporally varying

diffusion equation in a weakly conducting mantle. These magnetic field produced by the geodynamo operating in the

authors found that for a range of conductivity profiles for the outer core, would contribute to the secular variation at the

surface of the Earth. Poirier & Le Mouël (1992) estimate thismantle, the corrections to the radial component of the magnetic
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contribution to be smaller than the secular variation in the shell at the base of the mantle, it is possible to study the effect

of this shell on secular variations in large-scale (&100 km)source-free mantle case by a factor (ri/R)3~7×10−4, where ri
is the radius of the inclusion and R is the distance of the point poloidal magnetic fields produced by the geodynamo in the

fluid outer core, by replacing this shell by an infinitesimallyof observation from the centre of the inclusion. From their

arguments it would appear that if, instead of the single spherical thin spherical sheet adjacent to the CMB.
A sheet current density Is is now defined by integrating theinclusion near the CMB, a thin spherical shell of highly

conducting material of radius equal to that of the outer core horizontal component Js of J over the thickness d of the shell

at any point:surrounded the core, currents induced in this shell could have
an observable effect on the secular variation at the surface of
the Earth. It may be not implausible to assume that such a Is=P c+d

c
Js dr , (5)

thin layer of high electrical conductivity exists at the CMB. As
such, this layer would be expected to have a great deal of where c is the radius of the outer core. The conductance, G,
lateral variation in conductivity due to the presence of highly of the sheet is defined by
conducting patches, which may be identified with crypto-
continents (Stacey 1992). In the present paper, a simplified

G=P c+d
c

s dr . (6)
picture is considered wherein a spherical shell of uniform

effective conductance and negligible thickness is located adjacent
The tangential component Es of E, which remains continuous

to the CMB while the rest of the mantle is assumed to be an
on crossing the sheet, can be written asinsulator. This approximation is used in the next section to

relate the horizontal components of the poloidal field at the Es=Is/G . (7)
top of the core, just beneath this layer, to those immediately

Following the theory of electromagnetic induction in a thin
above the layer, where the mantle is an insulator and the

conducting sheet (Lahiri & Price 1939; Rikitake 1966), eq. (2)
horizontal components are known. The horizontal components

is integrated over an infinitesimal area enclosed by a rectangle
thus derived and their secular variation are discussed in the

with two sides of length dl parallel to the sheet and on opposite
third section. In the section following that, it is demonstrated

sides of it, to obtain, using Stokes’ theorem,
that a perturbation approach for solving the diffusion equation
for the poloidal field in a thin, highly conducting layer adjacent r̂×(Hm−Hc )=Is , (8)
to the CMB yields results which, to the lowest order in the

where r̂ is a unit vector normal to the spherical sheet and Hmthickness of the layer, are in agreement with the results of this
and Hc are respectively the magnetic fields on the mantle and

paper. The paper concludes with a discussion of the effect of
core sides of the sheet. Here Hc includes a toroidal component

such calculations on estimates of the flow shear near the top
as well, due to non-vanishing radial currents at the top of the

of the core, and the limitations of the present calculations.
core, and Is also includes contributions from poloidal currents
which flow in the core and close their loops in part through

THIN CONDUCTING SHEET AT THE CMB the conducting sheet adjacent to the CMB. Integration of the
solenoidal condition VΩJ=0 over a volume enclosed by aExperiments at high pressures and temperatures (Knittle &
cylindrical box of negligible height spanning the conducting

Jeanloz 1989, 1991) have indicated that it is possible that
sheet, with its ends parallel to the sheet, yields for the radialsome of the highly conducting core material infiltrates into the
component of the current at the top of the corelower mantle to form a thin layer of conductivity s as high as

103 S m−1. If the average thickness of this layer is around Jcr=VsΩIs , (9)
100 km, the effective conductance could be 108 S (Stewart

with Vs denoting the horizontal gradient because the contri-
et al. 1995). In the stationary conducting layer, neglecting the

bution to the equivalent surface integral from the sides of the
displacement current, Maxwell’s equations require

cylinder does not vanish. Hence, eq. (8) does not require that
VΩB=0 , (1) the toroidal field is negligible. Continuity of the radial (normal )

component of B is seen by integrating the solenoidal conditionV×H=J , (2)
eq. (1). Integration of eq. (3) over an infinitesimal area in the

surface of the sheet itself yieldsV×E=−
∂B

∂t
. (3)

(V×Es )Ω r̂=−
∂B

r
∂t

. (10)
The current density J and electric field E are related through
Ohm’s law:

Substitution of eqs (7) and (8) in eq. (10) leads to the following
J=sE . (4) condition on the jump in H due to the sheet current:

In certain geophysical problems such as electromagnetic 1

G
VsΩ(Hm−Hc)+VsA 1

GB Ω (Hm−Hc )=−
∂B

r
∂t

. (11)induction of currents in oceans and the ionosphere, the highly
conducting region has often been modelled as an infinitesimally

thin sheet (Chapman & Whitehead 1923; Lahiri & Price 1939) This equation gives the general relation between the varying
total magnetic fields on the two sides of an infinitesimally thinto make the theory more tractable. It is possible to make this

approximation when the thickness of the conducting layer is sheet with a distribution of conductivity, irrespective of how

these fields are produced. If the spherical sheet is assumed tomuch smaller than the typical wavelength of a varying magnetic
field (Rikitake 1966). With the assumption that all the con- have uniform conductance then the second term on the left-

hand side of eq. (11) drops out. The mantle outside the sheetductivity of the mantle is concentrated into a thin spherical
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is considered to be an insulator so that Bm=m0Hm can be The solenoidal condition VΩBc=0 implies that

derived from the scalar potential V :

VsΩHc=−
1

m
0
r2

∂
∂r

(r2Bcr ) , (22)Bm=−VV , (12)

where it has to be kept in mind that although Bcr=Bmr at the
V =a ∑

2

n=1
∑
n

m=0
[gm

n
(t) cos mw+hm

n
(t) sin mw]Aa

rBn+1Pm
n
(cos h) ,

CMB, the radial gradient of B
r
need not be continuous across

the conducting sheet. Hence eqs (16) and (19) must be used
(13) to calculate the right-hand side of eq. (22):

where a is the mean radius of the Earth’s surface.
−

1

m
0
r2

∂
∂r

(r2Bcr )=−
1

m
0
∑
2

n=1
n(n+1)

r2
∑
n

m=0 A∂Smcn∂r cos mwHere it must be pointed out that strong currents induced in
the conducting sheet would change the magnetic field in the
core as well, and hence the fluid flow. The field Bc considered

+
∂Sms

n
∂r

sin mwBPm
n
(cos h) , (23)here is the resultant field generated at the top of the core by

the dynamo operating in the fluid outer core, overlain by a
whereas VsΩHm can be obtained from eqs (12) and (13):mantle which has a conducting layer at its base adjacent to

the CMB. In other words, Bc could be obtained by solving the
VsΩHm=

1

m
0
∑
2

n=1
n(n+1)

r
∑
n

m=0
(gm
n

cos mw+hm
n

sin mw)dynamo equations with the appropriate boundary condition.

Since Bc is solenoidal, it can be split into toroidal and poloidal
parts BT and BP : ×Aa

rBn+2Pm
n
(cos h) . (24)

Bc=V×(T r̂)+V×V×(Pr̂) , (14)

Thus the condition (11) on the jump in H at r=c, in the
BT=A0,

1

r sin h

∂T
∂w

, −
1

r

∂T
∂h B , (15) uniform conductance case, yields

∂Smc
n

∂r K
r=c

=−cCgmn +Gm
0
c

n
ġm
n DAa

cBn+2 , (25)BP=AL2P

r2
,
1

r

∂2P
∂r∂h

,
1

r sin h

∂2P
∂r∂wB , (16)

where the operator L2 is defined by
∂Sms

n
∂r K

r=c
=−cChmn +Gm

0
c

n
ḣm
n DAa

cBn+2 , (26)

L2=−C 1

sin h

∂
∂h Asin h

∂
∂hB+ 1

sin2 h

∂2
∂w2D . (17) where ġm

n
and ḣm

n
are the spherical harmonic expansion

coefficients of the secular variation. These equations now
The corresponding current density Jc is given by contain the information required to deduce the horizontal

components of the poloidal field and their temporal variation
m
0
Jc=V×V×(T r̂)+V×[(−V2P) r̂] . (18)

at the CMB from geomagentic field models and secular
As mentioned earlier, T is non-vanishing at the top of the core variation models derived from observations at or above the
because Jcr need not vanish at the top of the core in the surface of the Earth.
presence of a conducting sheet at the base of the mantle.
However, since VsΩBT=0, the toroidal part of the core field

TEMPORAL EVOLUTION OF B
P h

AND B
P wdoes not contribute to eq. (11) when the sheet is assumed

AT THE CMB
to have uniform conductance. Thus, in the presence of an
infinitesimally thin, uniformly conducting sheet at the base of It is seen that the presence of an infinitesimally thin spherical
the mantle, it is possible to determine only the poloidal scalar sheet of non-zero conductance at the base of the mantle gives
P and its radial gradient ∂P/∂r at the top of the core using rise to a jump in the horizontal components of the poloidal
condition (11) and the continuity of B

r
. magnetic field across the sheet on account of surface currents

The average P� of P over the surface of a sphere r=constant induced in the sheet due to changes in the magnetic flux
can be assumed to vanish, without any loss of generality, since threading the sheet, produced by core dynamo processes. Since
the addition of an arbitrary function of r alone to P has no the poloidal magnetic field components at or above the surface
effect on BP . Thus P can be expanded in terms of surface of the Earth are known, the problem is usually inverted in
spherical harmonics as follows: that one seeks to deduce the poloidal field components at the

CMB and their temporal variation by downward continuation
P= ∑

2

n=1
∑
n

m=0
[Smc

n
(r, t) cos mw+Sms

n
(r, t) sin mw]Pm

n
(cos h) . of the surface fields. This information in turn is used to

estimate the fluid flow near the surface of the Earth’s outer
(19) core, assuming the outer core to be a perfect conductor

(Bloxham & Jackson 1991, and references therein). In most of
According to eqs (12), (13), (16) and (19), continuity of B

r these calculations only the secular variation of the radial
across the conducting sheet at the base of the mantle (r=c)

component has been used, with the assumption that the mantle
implies that

is an electrical insulator. However, in order to determine the
radial gradient of the flow or the flow shear near the top of

Smc
n

(c, t)=
a2

n Aa

cBn gmn , (20)
the core, it becomes necessary to use the secular variation of

the horizontal poloidal components BPh and BPw (Jackson &
Bloxham 1991). Knowledge of BPw at the CMB is also requiredSms

n
(c, t)=

a2

n Aa

cBn hmn . (21)
in order to compute the poloidal part, CP , of the electromagnetic
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couple which acts on the conducting mantle owing to currents Gm
n

and Hm
n

and their secular variation Ġm
n

and Ḣm
n

from eqs

(30), (31), (32) and (33).flowing in it (Stix & Roberts 1984; Love & Bloxham 1994):
The coefficients Gm

n
and Hm

n
, determined using the gm

n
, hm

n
,

ġm
n

and ḣm
n

coefficients of the GSFC(9/80) model up to n=8,CP=−
c

m
0
Q
CMB

BPwBr sin h dS . (27)
are utilized to calculate BPh and BPw as given by eqs (28) and
(29). Figs 1(a) and 2(a) show respectively the contour plots ofIn the present paper, the relatively high conductivity of the
BPh and BPw at the top of the core when the mantle is assumedlowermost region of the mantle is taken into consideration by
to be an insulator, while the corrections to BPh and BPw due tomodelling it as an infinitesimally thin conducting spherical
the presence of the conducting sheet at the base of the mantlesheet at the CMB. Continuity of the radial component across
are contoured in Figs 1(b) and 2(b). These corrections arethe sheet still ensures that results derived from the secular
seen to by typically ≤10 per cent and hence may not bevariation of the radial component remain unchanged. However,
significant. On the other hand, the coefficients Ġm

n
and Ḣm

n
up tothe horizontal components of the poloidal field BPh and BPw at

n=4 given in Table 1 differ considerably from ġm
n

and ḣm
n
, sothe top of the core are now obtained by using eqs (25) and

that the corrections to the secular variations in the horizontal(26) together with eqs (16) and (19):
components of the poloidal field are typically 40 per cent for
an assumed sheet conductance of 108 S, as depicted in Figs 3BPh=− ∑

2

n=1
∑
n

m=0
[Gm

n
cos mw+Hm

n
sin mw]Aa

cBn+2 dPm
n

dh
(cos h) ,

and 4. It should be noted that the corrections are directly
proportional to the conductance G. Terms up to n=6 have

(28)
been used in the computation of the corrections shown in

Figs 3 and 4 because secular acceleration coefficients are only
BPw=

1
sin h

∑
2

n=1
∑
n

m=0
m[Gm

n
sin mw−Hm

n
cos mw]

available up to n=6 in the GSFC(9/80) model. Langel
et al. (1982) have also listed, in their Tables 4(a) and (b), the

standard errors in the estimates of various coefficients for the×Aa

cBn+2Pm
n
(cos h) , (29)

GSFC(9/80) model, including the first derivatives (secular

variation) and second derivatives (secular acceleration). It iswhere the coefficients Gm
n

and Hm
n

differ from gm
n

and hm
n
:

seen from these tables that for a majority of the second
derivatives of the Gauss coefficients up to n=6, the ratio of

Gm
n
=−

1

c

∂Smc
n

∂r K
r=cAc

aBn+2=gm
n
+

Gm
0
c

n
ġm
n

, (30)
the coefficient magnitude to the standard error of the coefficient
falls in the range 10–25. Considering the upper limit of the
standard errors in the secular acceleration coefficients, theHm

n
=−

1

c

∂Sms
n

∂r K
r=cAc

aBn+2=hm
n
+

Gm
0
c

n
ḣm
n

. (31)
corrections to the secular variation in the horizontal com-
ponents of the poloidal field at the CMB computed in theAs a consequence of the above, secular variation of the
present paper would still be typically ≥30 per cent, for anhorizontal poloidal components at the top of the core is
assumed sheet conductance of 108 S.determined by the time derivatives Ġm

n
and Ḣm

n
instead of the

Changes in the radial flux threading the sheet occur due tousual secular variation coefficients ġm
n

and ḣm
n
:

a combination of induction resulting from fluid flow near

the top of the core and magnetic diffusion. The latter processĠm
n
= ġm

n
+

Gm
0
c

n
g̈m
n

, (32)

Ḣm
n
=ḣm

n
+

Gm
0
c

n
ḧm
n
, (33)

Table 1. Secular variation coefficients for ḂPh and ḂPw at the top of

the core, compared to the secular variation coefficients for Ḃ
mh

and
where g̈m

n
and ḧm

n
are the secular acceleration model coefficients. Ḃ

mw
at r=c obtained from the GSFC(9/80) magnetic field model for

As can be seen from eqs (30) and (31), the parameter epoch 1980. The coefficients Ġm
n

and Ḣm
n

are specified only for the core
t
m
=Gm0c may be defined as an electromagnetic time constant field at r=c, whereas the coefficients ġm

n
and ḣm

n
are specified for the

insulating part of the mantle as well as for r≥a.associated wih the mantle. Magnetic field variations on time-

scales &t
m

are unaffected by the conductivity of the mantle.
n m Ġm

n
ġm
n

Ḣm
n

ḣm
nThe correction terms in eqs (30)–(33) are simply 1/n-weighted

(nT yr−1) (nT yr−1) (nT yr−1) (nT yr−1)versions of the secular variation/acceleration. The results given

in eqs (30) and (31) can be obtained from the results derived
1 0 9.18 20.51

by earlier workers (Chapman & Whitehead 1923; Lahiri &
1 1 2.84 9.08 7.06 −9.04

Price 1939) if the total internal fields in their formulae are
2 0 −15.44 −19.53

identified wih BP (r=c). 2 1 8.23 4.78 −38.76 −18.74
For the purpose of estimating the effect of a thin layer of 2 2 14.68 9.86 −35.26 −26.82

high conductivity at the base of the mantle, the effective 3 0 10.55 4.51

3 1 2.64 −3.55 −15.85 −5.57conductance of the sheet is considered to be 108 S (Stewart et al.
3 2 −0.56 −2.19 0.92 1.641995). The choice of this value is discussed later in this section.
3 3 9.18 3.87 −8.89 −6.62With the permeability of free space m0=4p×10−7 H m−1 and
4 0 −3.06 −2.20the core radius c=3485 km, it is seen that t

m
≈13.9 yr. The

4 1 −2.53 −2.24 2.83 3.66GSFC(9/80) field model of Langel, Estes & Mead (1982),
4 2 −12.89 −10.09 1.31 1.08

which provides the main field and secular variation coefficients
4 3 −4.74 −3.82 10.62 6.77

up to n=13 as well as secular acceleration coefficients up to
4 4 −7.10 −5.54 −3.40 −2.73

n=6 for the 1980 epoch, is used to determine the coefficients
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Figure 1. (a) Contour plot of BPh at the CMB for epoch 1980, from the GSFC(9/80) model with maximum n=8, assuming a source-free mantle.

Contour interval is 105 nT. (b) Contour plot of corrections to BPh at the CMB for epoch 1980, from the GSFC(9/80) model with maximum n=8,

due to the presence of a conducting sheet of conductance 108 S at the base of the mantle. Contour levels are marked in units of 104 nT and the

contour interval is 0.2×104 nT.

is important for small-scale features in the magnetic field emerging ‘core spots’ in plots such as Figs 3(b) and 4(b),
produced by currents induced in the sheet which tend to flowwhich would have a diffusion time comparable to the timescale

of secular variation. The occurrence of n in the denominators in circles around regions where there is increasing or decreasing
radial magnetic flux, will hence be diffuse in nature.of the correction terms in eqs (32) and (33) leads to the

suppression of small-scale features in the corrections to the A conductance of 108 S for the lowermost reaches of the

mantle may not be entirely implausible. Fig. 5 of Stewart et al.secular variation of the horizontal components of the poloidal
field at the top of the core due to currents induced in the (1995) shows the conductance for various radius intervals,

starting at the CMB, obtained from 10 published profiles ofuniformly conducting sheet at the CMB. The signatures of

© 1998 RAS, GJI 132, 181–190
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Figure 2. (a) Contour plot of BPw at the CMB for epoch 1980, from the GSFC(9/80) model with maximum n=8, assuming a source-free mantle.

Contour interval is 0.5×105 nT. (b) Contour plot of corrections to BPw at the CMB for epoch 1980, from the GSFC(9/80) model with maximum

n=8, due to the presence of a conducting sheet of conductance 108 S at the base of the mantle. Contour interval is 0.2×104 nT.

lower-mantle electrical conductivity. In three of these models, the torque acting on the mantle which was inferred from
astronomically determined changes in the Earth’s rotationthose of Backus (1983), Courtillot & Le Mouël (1984) and

Stix & Roberts (1984) respectively, the highly conducting period. Their calculation of the electromagnetic torque assumed

the mantle to be an electrical insulator except for a thin layerregion of the mantle is essentially confined to a thin layer just
above the CMB, and the conductance of this layer is ≥108 S. of finite conductance adjacent to the CMB, and their regression

analysis yielded a conductance of (6.7±0.9)×108 S for thisIn their own study of the electromagnetic torque acting on an

electrically conducting mantle, Stewart et al. (1995) found a layer. This also supports the present assumption regarding
the effective conductance of the lowermost mantle and theclear correlation, over an 80 year period, between a computed

time-varying electromagnetic torque acting on the mantle and thin-sheet approximation used here.
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Figure 3. (a) Contour plot of ḂPh at the CMB for epoch 1980, from the GSFC(9/80) model with maximum n=6, assuming a source-free mantle.

Contour interval is 103 nT/yr. (b) Contour plot of corrections to ḂPh at the CMB for epoch 1980 from the GSFC(9/80) model with maximum

n=6, due to the presence of a conducting sheet of conductance 108 S at the base of the mantle. Contour levels are marked in units of 103 nT yr−1
and the contour interval is 0.2×103 nT yr−1.

withCOMPARISON WITH PERTURBATION
SOLUTION

S=a ∑
2

n=1
∑
n

m=0
[am
n
(r, t) cos mw+bm

n
(r, t) sin mw]Pm

n
(cos h) .

A perturbation procedure was developed by Benton & Whaler
(1983) to obtain a solution to the inverse poloidal diffusion (35)
problem in a weakly conducting mantle, with a radially

The am
n
, bm

n
were obtained as series solutions of the formsymmetric distribution of conductivity. In their work, the

poloidal magnetic field in the conducting mantle was given in
nam

n
(r, t)= f m

0n
(r)gm

n
(t)+ f m

1n
(r)ġm

n
(t)+ f m

2n
(r)g̈m

n
(t)+…, (36)terms of the poloidal function S:

BP=V×V×(rSr̂) , (34) where, omitting the sub- and superscripts n and m as in the
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Figure 4. (a) Contour plot of ḂPw at the CMB for epoch 1980, from the GSFC(9/80) model with maximum n=6, assuming a source-free mantle.

Contour interval is 103 nT yr−1. (b) Contour plot of corrections to ḂPw at the CMB for epoch 1980, from the GSFC(9/80) model with maximum

n=6, due to the presence of a conducting sheet of conductance 108 S at the base of the mantle. Contour interval is 0.2×103 nT yr−1.

work of Benton & Whaler (1983), the functions f
i
(r) were Continuity of B

r
at the CMB implies that at r=c, the Sm

n
(r, t)

defined in eq. (19) is given bygiven by

Smc
n

(c, t)=acam
n
(c, t) . (39)

f
0
(r)=Aa

rBn+1 , (37)

For a mantle of finite conductivity and thickness, continuity
of j

r
, B

h
and B

w
at the CMB implies that

f
i
(r)=

am
0

2n+1 Aa

rBn+1P a
r
C1−A r

jB2n+1DAj

aBn+2 ∂Smc
n

∂r K
r=c

=aam
n
(c, t)+ac

∂am
n

∂r K
r=c

. (40)
×s(j) f

i−1(j) dj , i=1, 2, 3,… . (38)
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For a mantle conductivity distribution where s(r) is non-zero which is precisely the result that would be obtained by

substituting eq. (29) for BPw (r=c) in eq. (27). In Fig. 5, CP isonly in a thin shell of thickness d%c adjacent to the CMB,
even if s is very large and the conductance G is defined by plotted for the period 1840–1990 using the time-dependent

field model of Bloxham & Jackson (1992) and for two valueseq. (6), an expansion in terms of d/c yields the following

zeroth-order results: of the conductance, G=5×107 S and G=108 S. As in Fig. 1
of Stix & Roberts (1984), the time variation of CP is more

f
1
(c)=0 , (41)

pronounced for the higher conductance. For the three cases

considered by those authors, the conductance of the mantle∂ f
1

∂r K
r=c

=−m
0
GAa

cBn+1 , (42) was 1.3×108 S, 2.4×108 S and 3.5×108 S respectively, while
the thickness of the conducting layer was 2000 km in each

f
i
(c)=0 for i>1 , (43) case. The results obtained in this section show that perturbation

solutions derived for a layer of finite thickness converge to the∂ f
i

∂r K
r=c

=0 for i>1 . (44) exact results derived here in the limit of an infinitesimally thin

layer of finite conductance.

Thus for a conducting layer of finite thickness d%c at the
base of the mantle, eqs (39) and (40) lead to zeroth-order CONCLUSIONS
expressions in tems of d/c which are identical to eqs (20) and

There is a general awareness among geophysicists working in(25). For Sms
n

(c, t) and the radial derivative of Sms
n

(r, t) at r=c,
this area of the effect that an electrically conducting layer atzeroth-order expressions are likewise obtained which are
the base of the mantle might have on the downward con-identical to eqs (21) and (26).
tinuation of the poloidal geomagnetic field to the CMB.In their evaluation of the time-dependent poloidal couple,
Quantitative estimates of this effect have been based on anparallel to the Earth’s rotation axis, which acts on the mantle
iterative solution of the induction equation in the mantleowing to its electromagnetic coupling with the core, Stix &
involving a low-conductivity expansion (Roberts 1972; BackusRoberts (1984) solved the induction equation in the mantle by
1982; Benton & Whaler 1983). The exercise undertaken in theiteration (Benton & Whaler 1983) for the case where the
present paper is not restricted to a weakly conducting mantlemantle conductivity was confined to a layer of thickness (b−c),
and thus offers a general method for the determination of theadjacent to the CMB:
horizontal components of the poloidal field and their temporal

s(r)=sc(r/c)−a , c<r<b . (45) evolution at the top of the core in the presence of a highly
conducting sheet adjacent to the CMB. In fact, it also demon-With b=c+d, it is seen that in the limit sc�2 and d� 0
strates that the perturbation results need not be restrictedsuch that scd is finite, the conductance G=scd. In this limit,
to low conductivity when the conductivity in the mantle iseq. (41) for the poloidal couple, derived by Stix & Roberts
confined to a very thin shell at the base of the mantle.(1984), reduces to

Both the radial and the horizontal components of the
induction equation, which governs the temporal evolution ofCP=4pc4G ∑

2

n=1
∑
n

m=0
m(n+1)

n(2n+1) Aa

cB2n+4 (gmn ḣm
n
−hm

n
ġm
n
) , (46)

the magnetic field produced by the geodynamo, were used, for

Figure 5. The poloidal torque, CP , as a function of time for two effective conductances of the conducting sheet at the base of the mantle. The solid

line is for G=108 S and the dashed line is for G=5×107 S.
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