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[1] A new probabilistic approach based on the concept of Bayesian neural network (BNN)
learning theory is proposed for decoding litho‐facies boundaries from well‐log data.
We show that how a multi‐layer‐perceptron neural network model can be employed
in Bayesian framework to classify changes in litho‐log successions. The method is
then applied to the German Continental Deep Drilling Program (KTB) well‐log data
for classification and uncertainty estimation in the litho‐facies boundaries. In this
framework, a posteriori distribution of network parameter is estimated via the principle
of Bayesian probabilistic theory, and an objective function is minimized following the
scaled conjugate gradient optimization scheme. For the model development, we inflict
a suitable criterion, which provides probabilistic information by emulating different
combinations of synthetic data. Uncertainty in the relationship between the data and the
model space is appropriately taken care by assuming a Gaussian a priori distribution
of networks parameters (e.g., synaptic weights and biases). Prior to applying the new
method to the real KTB data, we tested the proposed method on synthetic examples to
examine the sensitivity of neural network hyperparameters in prediction. Within this
framework, we examine stability and efficiency of this new probabilistic approach using
different kinds of synthetic data assorted with different level of correlated noise. Our
data analysis suggests that the designed network topology based on the Bayesian paradigm
is steady up to nearly 40% correlated noise; however, adding more noise (∼50% or more)
degrades the results. We perform uncertainty analyses on training, validation, and test
data sets with and devoid of intrinsic noise by making the Gaussian approximation of the a
posteriori distribution about the peak model. We present a standard deviation error‐map at
the network output corresponding to the three types of the litho‐facies present over the
entire litho‐section of the KTB. The comparisons of maximum a posteriori geological
sections constructed here, based on the maximum a posteriori probability distribution,
with the available geological information and the existing geophysical findings suggest
that the BNN results reveal some additional finer details in the KTB borehole data at
certain depths, which appears to be of some geological significance. We also demonstrate
that the proposed BNN approach is superior to the conventional artificial neural network
in terms of both avoiding “over‐fitting” and aiding uncertainty estimation, which are
vital for meaningful interpretation of geophysical records. Our analyses demonstrate
that the BNN‐based approach renders a robust means for the classification of complex
changes in the litho‐facies successions and thus could provide a useful guide for
understanding the crustal inhomogeneity and the structural discontinuity in many
other tectonically complex regions.

Citation: Maiti, S., and R. K. Tiwari (2010), Neural network modeling and an uncertainty analysis in Bayesian framework:
A case study from the KTB borehole site, J. Geophys. Res., 115, B10208, doi:10.1029/2010JB000864.

1. Introduction

[2] Litho‐facies classification based on experimental data
is one of the important problems in geophysical well‐log
studies. Since permeability and fluid saturation for a given
porosity varies considerably among the litho‐facies at a
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certain depths, classification of litho‐facies and their ade-
quate representation in a 3‐D cellular geophysical/geological
model is vital for understanding the crustal inhomogeneity,
the permeability, and the fluid saturation for exploration of
oil and gas. The best sources of litho‐facies information
are core samples of reservoir rocks collected from wells.
However, cores are not commonly taken due to high costs.
The availability of core samples is also limited in comparison
to the number of drilled wells in the geological/geophysical
field. Hence, in a situation where core information is not
available, the down‐hole geophysical logs can be used as an
alternative to infer the nature of surrounding rocks/lithology
[Benaouda et al., 1999].
[3] During the past decades, several researchers have

attempted to solve the problems of litho‐facies classification
using conventional methods like, graphical cross‐plotting
and multivariate statistical analyses [Rogers et al., 1992]. In
the graphical cross‐plotting technique [Pickett 1963; Gassaway
et al., 1989], two or more well‐logs data are cross‐plotted to
yield lithologies. Multivariate statistical methods such as
“principle component” and “cluster analysis” [Busch et al.,
1987; Wolff and Pelissier‐Combescure, 1982] and “dis-
criminant function analysis” [Delfiner et al., 1987] have also
invariably been used for the interpretation of borehole data.
These techniques are, however, semi‐automatic and require a
large amount of data, which is costly and not easily available.
Further the existing methods are also very tedious and time‐
consuming, particularly when it deals with the large number
of noisy and complex borehole data.
[4] Appropriate mathematical modeling and statistical

techniques can be applied to extract the meaningful infor-
mation about the subsurface properties of the real earth (e.g.,
lithology, porosity, density, hydraulic conductivity, resis-
tivity, salinity, water/oil saturation, etc.) using surface and/
or borehole measurements [Aristodemou et al., 2005]. In
order to convalesce the model parameters correctly, an error
function, which is a measure of discrepancy between the
observables and the predictions from a forward‐modeling
calculation, is minimized [Mosegaard and Tarantola, 1995;
Tarantola, 1987, 2006; Devilee et al., 1999; Bosch, 1999;
Bosch et al., 2001; Aristodemou et al., 2005; Meier et al.,
2007]. However, well‐log signals, which are a proxy of
lithology/litho‐facies, are essentially the result of complex
nonlinear geophysical processes arising primarily due to the
variability and interactions of several factors, such as pore
fluid, effective pressure, fluid saturation, pore shape, and
grain size. Further, the well‐log records are often found to
be contaminated with inescapable correlated red noise pri-
marily due to the deplorable borehole conditions. Therefore,
estimation of lithology/litho‐facies from well‐log signals
essentially constitutes a nonlinear geophysical inverse
problem.
[5] In the recent past, artificial neural network (ANN)‐based

techniques have been extensively applied to solve nonlinear
problems in almost all branches of geophysics [Van der Baan
and Jutten, 2000; Poulton, 2001]. Examples include (1) seis-
mic event classification [Dystart and Pulli, 1990; Dai and
MacBeth, 1995], (2) well‐log analysis [Baldwin et al., 1990;
Rogers et al., 1992; Helle et al., 2001; Aristodemou et al.,
2005; Maiti et al., 2007; Maiti and Tiwari, 2009], (3) first
arrival picking [Murat and Rudman, 1992;McCormack et al.,
1993], (4) earthquake time series modeling [Feng et al.,

1997], (5) inversion [Raiche, 1991; Roth and Tarantola,
1994; Devilee et al., 1999; Meier et al., 2007], (6) param-
eter estimation in geophysics [Calderon‐Macias et al.,
2000], (7) prediction of aquifer water level [Coppola
et al., 2005], (8) magneto‐telluric data inversion [Spichak
and Popova, 2000], (9) magnetic interpretations [Bescoby
et al., 2006], and (10) signal discrimination [Maiti and
Tiwari, 2010]. This type of network, however, does yield
mean solutions to the inverse problem whose solution is
essentially probabilistic in nature [Devilee et al., 1999]. In
addition to this, there are several other drawbacks in
conventional neural network approaches [Bishop, 1995;
Coulibaly et al., 2001; Aires, 2004; Maiti and Tiwari, 2009,
2010]. One of the major limitations in the conventional
ANN approach is frequent appearance of local and global
minima in the modeled results. To surmount this problem,
the network is trained by maximizing a likelihood function
of the parameters or equivalently minimizing an error
function to obtain the best set of parameters starting with an
initial random set of parameters. Sometimes a regularization
term with an error function is also included in the process of
analysis for preventing over‐fitting. However, in the con-
ventional ANN approach, a complex model can fit training
data well, but it does not necessarily guarantee smaller errors
in the unseen data [Bishop 1995; Coulibaly et al., 2001].
This is because the conventional ANN does not take account
of uncertainty in the estimation of parameters [Bishop 1995;
Nabney, 2004].
[6] Roth and Tarantola [1994] have assessed the stability

and the effectiveness of an ANN inversion scheme in the
presence of noise while inverting seismogram records to
recover the crustal velocity structure. After several experi-
ments, they have concluded that the ANN‐based methods
are not stable for analyzing strongly correlated noisy geo-
physical signals; however, the methods could be used for
solving the nontrivial inverse problem. More recently,
Devilee et al. [1999] proposed an efficient probabilistic
ANN‐based approach to determine the Eurasian crustal
thickness from surface wave velocities data. Following
Devilee et al. [1999], some researchers [Meier et al., 2007]
have provided a similar ANN‐based approach by a mixture
density network (MDN), which actually combines the con-
cept of both histogram and median type network, to estimate
the global crustal thickness from the surface wave data.
Solving the inverse problems requires precise estimation of
uncertainties to know what it means to fit the data. MacKay
[1992] introduced first a fully Bayesian approach where the
scalar hyperparameters of a network are estimated via the
so‐called evidence program. While inverting the remote‐
sensing data, Aires [2004] has given a theoretical treatment
for ANN uncertainty estimation using the Bayesian statis-
tics. This made use of the fully Bayesian concept via the
evidence program. However, this approach is not tested on
the data contaminated with different levels of correlated/
colored noise.
[7] In the present work, we employ a newly developed

BNN probabilistic approach [Bishop, 1995; Nabney, 2004],
for classification of changes in litho‐facies units from the
German Continental Deep Drilling Project (KTB) well‐log
data. We use multiple output node histogram networks,
which return probabilistic information equidistantly on
geophysical inverse problems by emulating the solution
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from samples. The stability and effectiveness of the
Bayesian neural network (BNN) approach on noisy as well
as on noise‐free data are also examined. The algorithm
essentially allows us to estimate uncertainty in the data
mixed with or devoid of correlated/colored noises. We
compared our results of KTB well‐log data with the existing
results from other methods. Our results suggest that the
BNN technique is superior to the other conventional ANN
techniques in a sense that it takes care of the problems of
uncertainty analysis, over‐fitting and under‐fitting in a
natural way even if the data are contaminated with some
percentage of noise. The comparison of regression results
between the BNN and the super self adaptive back‐propa-
gation (SSABP) [Maiti et al., 2007] and the result of
uncertainty analysis along the entire length of the litho‐
section are quite encouraging. Thus, besides introducing a
new ANN approach based on the Bayesian paradigm for
modeling the international quality of well‐log data, the
present analysis has also brought out some new results thus,
exploring the generality of the method from the point of
view of the actual application in other domains.

2. About the KTB

[8] The German Continental Deep Drilling Project (KTB)
explores a metamorphic complex in northeastern Bavaria,
southern Germany [Maiti et al., 2007, Figure 1]. Litholog-
ically, the continental crust at the drill site consists of three
main facies units: paragneisses, metabasites, and heteroge-
neous series having alternations of gneiss‐amphibolites, with
minor occurrence of marbles, calcsilicates, orthogeneisses,
lamprophyres, and diorites [Franke, 1989; Berckhemer et al.,
1997; Emmermann and Lauterjung, 1997; Pechnig et al.,
1997; Leonardi and Kumpel, 1998, 1999]. The detailed
information concerning the KTB data and its geophysical
significance can be found in several earlier papers [Franke,
1989; Berckhemer et al., 1997; Pechnig et al., 1997;
Emmermann and Lauterjung, 1997; Leonardi and Kumpel,
1998, 1999]. We used here three types of well‐log data,
density, neutron porosity, and gamma ray intensity for con-
straining the litho‐facies boundaries for the KTB modeling
study. Total depths of the main hole and pilot hole are 9101
m and 4000 m, respectively. The borehole data are sampled
at 0.15 m (6 inch) intervals [Maiti et al., 2007].
[9] The rocks were metamorphosed at a pressure of 6–

8 kbar and a temperature of 650°C–700°C. This medium
grade metamorphism took place in the Lower to middle
Devonian (410–380 Ma ago) [Leonardi and Kumpel, 1998].
The crustal heterogeneities at the KTB borehole site are well
documented [Leonardi and Kumpel, 1998]. These records
are a complete, continuous, and uninterrupted series and
hence could be appropriately utilized for the classification of
the litho‐facies units in a new perspective of Bayesian

framework. A brief summary of the data and its geophysical/
geological significance pertinent to this study is, however,
presented here to preserve self‐sufficiency of the paper.

2.1. Data

[10] Density data were measured using gamma rays
emanating from a 137Cs source that enters the wall rocks and
are backscattered to a gamma detector (Litho Density Tool,
LDT). Its vertical resolution is 1 m (Table 1). Neutron
porosity values too are determined by using devices with
radioactive sources. For the porosity logging, neutrons are
emanated from an Am‐Be radioactive source, and the rocks
response, in the form of either gamma rays or fast neutrons
or slow neutrons, is determined by an appropriate sensor
(Neutron Compensated Log, NCL). For a constant borehole
geometry. the response is a measure of the concentration of
hydrogen atoms, which in the case of fluids‐saturated rocks
is related to the porosity of the geological formations. The
NCL has a vertical resolution of 1 m (Table 1).
[11] The gamma ray radiation was measured using a

Neutral Gamma Ray Spectrometer (NGS). This tool quan-
tifies the natural gamma ray spectra of the isotopes 40K,
232Th, and 238U. The bulk gamma ray intensity, deduced
from the NGS data, is directly proportional to the concen-
tration of the corresponding isotopes in a geological for-
mation. The variations within a recorded log thus indicate
changes in the lithology. High concentrations of K, Th, and
U in crystalline successions reveal the presence of acidic
rocks such as paragneisses, whereas the basic compositions
are reflected by a scarcity of radio nuclides [Leonardi and
Kumpel, 1999]. The gamma intensity is measured in the
conventional American Petroleum Institute (API) unit. The
vertical resolution is estimated to be 0.5 m (Table 1)
[Leonardi and Kumpel, 1998].

2.2. Relationship Between the Log Response
and Regional Geology

[12] Gamma ray activity exhibits a general increase from
the most mafic rocks (ultramafites) to the most acidic rocks
(potassium‐feldspar gneisses) because of the chemical
composition. In the KTB crystalline metamorphic basement,
the total gamma ray is the most crucial physical parameter
for differentiating the succession. In general, amphibolites
and metagabbros, which are the main rock types of the
massive metabasite units, are physically characterized by
lower gamma ray activity and higher density than the rocks
of the paragneisses sections. This is related to the mineral
content, which within metabasites consists of more mafic
and dense minerals like hornblende and garnet biotite.
Paragneisses sections are composed mainly of quartz, pla-
gioclase, and micas [Berckhemer et al., 1997; Emmermann
and Lauterjung, 1997; Pechnig et al., 1997]. Since pore
space in the crystalline basement is very low, neutron

Table 1. Showing Physical Properties, Recording Tool, and Vertical Resolution of Well Log Data Used in the Study

Physical Properties Tool
Vertical

Resolution Unit Principle

Bulk density Litho density tool (LDT) 1 m Grams per cubic centimeter Absorption/scattering of gamma rays
Neutron porosity Compensated neutron porosity (CNT) 1 m % (limestone porosity unit) Absorption of neutrons
Gamma ray intensity Natural gamma ray spectrometer (NGS) 0.5 m American Petroleum Institute (API) Natural gamma ray emissions
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porosity response is found to be dependent upon the min-
eralogical composition. Enhanced porosity is, in general,
restricted to discrete zones of faulting and fracturing; how-
ever, neutron porosity in undisturbed depth sections is pre-
dominantly reacting to the water bound minerals like
phyllosilicates or amphiboles [Pechnig et al., 1997]. Hence,
rock types poor in these minerals, such as quartz and feldspar‐
rich gneisses show very low neutron porosities. In contrast,
rocks with high phyllosilicate and amphibole contents pro-
duce high values in the neutron porosity. We note that
general log response knowledge is used for constructing
network samples.
[13] The 3‐D cross plot of density (g/cc), neutron porosity

(%) and gamma ray (API) of the KTB main hole and pilot
hole shows the strong overlapping/superposing well‐log
signal characteristics in 3‐D parameter space (Figure 1).
This overlapping signals could be characterized partly due
to the physics (amalgamated rock structure limited by
resolving power of data characteristics) and partly due to the
noise (that may be of any kind, white Gaussian, red, pink,

blue, etc.) in the well‐log data. The complex nonlinear
overlapping pattern of observed well‐log data apparently
evident in Figures 1a and 1b suggests that it may not be
appropriate to apply linear inversion method to classify
litho‐facies units. It is therefore prudent to employ a non-
linear inversion scheme to obtain a general probability
density function (pdf) in Bayesian framework to explore
precisely the successions of litho‐facies units.

3. Probabilistic Solution of Inverse Problem

[14] The solution to a general inverse problem can be
given in the form of a pdf, P(x, d) [Tarantola, 1987; Sen and
Stoffa, 1996; Bosch, 1999; Sambridge and Mosegaard,
2002], where d represents a set of distinct measurements
and x is a set of model parameters. In the Bayesian frame-
work, the solution can be given by

P x j dð Þ ¼ P d j xð ÞP xð Þ
P dð Þ ð1Þ

Figure 1. (a) Cross plot of density (g/cc), porosity (%), and gamma ray intensity (API) of KTB pilot hole
showing strong nonlinearity and difficulty to establish parametric boundaries (b) same for KTB main
hole.
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Where, P() stands for probability, d represents a set of dis-
tinct measurements, and x is a set of model parameters.
Thus, P(d∣x) represents a pdf of observed data given the
model, (likelihood); P(d) is the pdf of the data d (scale factor
in version represents limitations on the data space imposed
by the physics and prior constraints on the model space),
and P(x) is the pdf of the model parameter x, independent of
the data (prior information on model). The solution of the
inverse problem for a specific experiment may be approxi-
mated by the sampling based method according to P(x, d).
But forming the solution requires too many forward calcu-
lations [Devilee et al., 1999]. Instead, a neural network
properly trained on a finite data set {d, x} can emulate the
conditional pdf P(x∣d).

4. Artificial Neural Networks

[15] An artificial neural network is an abstract model of
the brain, consisting of simple processing units—similar to
“neurons” in the human brain—connected layer by layer to
form a network [Rosenblatt, 1958; Meier et al., 2007]. A
multi‐layer perceptron (MLP) is a special configuration of
an ANN [Bishop, 1995] that ranges among the most pow-
erful methods for solving the nonlinear classification and
boundaries detection problems. The MLP model consists of
one input layer, one output layer, and at least one interme-
diate hidden layer between the input and output layer. In a
fully connected MLP, a neuron (node) of each layer is
connected to a neuron of the next layer through a synaptic
weight. Output of the input layer is then fed to the input of
the hidden layer and the output of the hidden layer is then
fed to the input of the output layer (Figure 2a). The infor-
mation propagates in one direction from the input layer to
the output layer.
[16] The ANN works by adapting weights and biases in

order to minimize error functions between the “network
output” and the “target values” via a suitable algorithm. The
popularly known back‐propagation (BP) algorithm uses the
scaled conjugate gradients (SCG) and quasi‐Newton meth-
ods for optimization of synaptic weights and biases
[Rumelhart et al., 1986] (Figure 2a). In our work we use a
nonlinear hyperbolic tan sigmoid transfer function of the
form

fj net lð Þ
j

� �
¼ e� net lð Þ

jð Þ � e�� net lð Þ
jð Þ

e� net lð Þ
jð Þ þ e�� net lð Þ

jð Þ : ð2Þ

Here, e denotes the basis of the natural logarithm (Figure 2a),
and b is a constant that determines the stiffness of the
function near

net lð Þ
j ¼

Xn
i¼1

w lð Þ
ji d

l�1ð Þ
i �Q lð Þ

j ¼ 0 ð3Þ

in layer (l) [Roth and Tarantola, 1994]. netj
(l) is a value

received by the jth node in layer (l ), wji
(l) is a connection

weight between the ith node in layer (l − 1) and the jth node
in layer (l ), and di be an input is a variable for the ith node in
layer (l − 1). Qj

(l) is a bias unit for the jth node in layer (l ).
The value of b is adopted as 1.0 to keep the transfer function
in sigmoidal shape [Roth and Tarantola, 1994]. Henceforth,
it might be more convenient to put the first and second layer

synaptic weight and bias term into a single network
parameter w.
[17] The principle goal of the neural network approach is

to learn the relationship between an input and an output in
space/domain from a finite data set s = {dk, xk; k = 1, ..., N}
by adjusting network parameters w (weight and biases). This
is done by maximizing the likelihood of the data set S (or
equivalently by minimizing its negative logarithm), which
forms a conventional least squares error measure in the form

E ¼ 1

2

XN
k

xk � ok dk ;wkð Þ2
n o

; ð4Þ

where xk and ok are, respectively, the target/desired and the
actual output at each node in the output layer. We note that
input d consists of three types of well‐log data (viz. density,
neutron porosity, and gamma ray intensity) and output x
consists of three types of litho‐facies present over the KTB
super deep borehole. We construct the histogram network
introduced by Devilee et al. [1999] which emulates the
conditional pdf P(x∣d) directly to the new input d. We will
return to that in section 4.1.

4.1. Histogram Network

[18] Devilee et al. [1999] introduced a histogram‐type
network which provides a finite discritization of P(x, d). The
k‐output of a histogram network emulates equidistantly
sampled approximation of the solution, i.e., pdf P(x∣d).
Suppose, we consider the case of a scalar x and apply the
following operator to discritize its value using k‐segments
with length Dx:

xk xð Þ ¼
1 kDx < x < ðk þ 1ÞDx

0 otherwise

8<
: : ð5Þ

The k‐output ok (d) of the optimally trained network gives

ok dð Þ ¼
Zxoþ kþ1ð ÞDx

x0þkDx

P x j dð Þdx � Pk dð Þ: ð6Þ

For each set of inputs d, the trained network has k‐outputs
ok (d) which return the probabilities that x takes a value in the
kth window of width Dx. With k = 3, we obtain our appli-
cation of classification of input into one of the three states.
We note that the solution approximately satisfiesX

Pk ¼ 1: ð7Þ

4.2. Bayesian Neural Networks

[19] In a conventional neural network approach, often a
regularization term is incorporated to solve equation (4) and
optimize the objective function:

E wð Þ ¼ �ES þ �ER: ð8Þ

Here l and m, which control other parameters (synaptic
weight and biases), are known as hyperparameters. For

ER = 1
2

PR
i¼1

wi
2, R is the total number of weights and biases in
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Figure 2. (a) Layout of the MLP with a three layer neural networks with d representing input and sub-
script i representing the number of “nodes” in the input layer. At each node of the hidden layer, the net
arguments are squashing through a nonlinear activation function of type hyperbolic tangent where wji

represents the connection weight between the ith node in the input layer and the jth node in the hidden
layer. wjk, represents the connection weight between the jth node in the hidden layer and the kth node in
the output layer; Qj and Qk are bias vectors for the hidden and the output layer. Now aj = fj(netj) is the
output of the weighted sum through the activation function following equation (2). When the sum of the
argument of a neuron is comparable to the threshold value Qj, the sigmoid function squashes linearly;
otherwise, it saturates with value +1; –1 gives nonlinearity for nonlinear mapping between an input and an
output space. (b) A simple example of the application of BNN to a “regression” problem. Here 50 data
points have been generated by sampling the function defined by equation (25); the network consists of a
MLP with five hidden units having tanh activation functions and one linear output unit/node. The
“network” shows the BNN results with the weight vector set to wMLP corresponding to the maximum of
the posterior distribution, and the “error bar” representing ±1d from equation (45). Notice how the error
bars are larger in regions of low data density. (c) Same when the standard deviation of noise distribution is
0.5. (d) Example when no regularization is used and the standard deviation of noise distribution is 0.1.
(e) Example when the data are sampled at point 0.25 and 0.90 and the standard deviation of noise dis-
tribution is 0.1.
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Figure 2. (continued)
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the network. This corresponds to the use of simple weight‐
decay regularizer, which gives a prior distribution of the
form [Bishop, 1995] of

P wð Þ ¼ 1

QR �ð Þ exp ��

2
k w k2

� �
: ð9Þ

Thus, when kwk is large, ER is large, and P(w) is small, and
so this choice of prior distribution says that we expect the
weight values to be small rather than large. Thus, the reg-
ularization term favors small values for network weight and
biases and decreases the tendency of a model to “over‐fit”
noise in the training data. In the traditional approach, the
training of a network begins by initializing a set of weights
and biases and ends up with the single best set of weights
and biases given the objective function is optimized.
[20] In the Bayesian approach, a suitable prior distribu-

tion, say P(w) of weights is considered before observing the
data instead of a single set of weights. Using Bayes’ rule,
one can write a posteriori probability distribution for the
weights, as [Bishop , 1995; Aires , 2004; Khan and
Coulibaly, 2006]

P w j sð Þ ¼ P s j wð ÞP wð Þ
P sð Þ ; ð10Þ

where P(s ∣ w) is a data set likelihood function and the
denominator P(s) is a normalization factor. Integrating out
over the weight space, we obtain [Bishop, 1995; Aires 2004;
Nabney, 2004; Khan and Coulibaly, 2006]

P sð Þ ¼
Z

P s j wð ÞP wð Þdw: ð11Þ

Equation (11) ensures that the left‐hand side of equation (10)
gives unity when integrated over all the weight space. Once
the posterior has been calculated, all types of inference are
obtained by integrating out over that distribution. Therefore,
implementing the Bayesian method, expressions for the prior
distributions P(w) and likelihood function P(s∣w) are needed.
The prior distribution P(w) can be expressed in terms of a
weight decay regularizer, ER of the conventional learning
method. For example, if a Gaussian prior is considered,
we can write the distribution as an exponential of the form
[Bishop, 1995; Nabney, 2004]

P wð Þ ¼ 1

QR �ð Þ exp ��ERð Þ; ð12Þ

where QR (l) is a normalization factor and can be given by
[Bishop, 1995; Nabney, 2004]

QR �ð Þ ¼
Z

exp ��ERð Þdw: ð13Þ

Equation (12) ensures that
R
p(w)dw = 1. The hyperpara-

meter l can be fixed or could be optimized as part of the
training process [Nabney, 2004]. Note that in practice it is
difficult to know the prior state of information about the
network weight in advance. It is the Bayesian machinery
employed to provide a neat, tractable, and sound mathe-
matical framework to update the network parameter distri-

bution. Here a Gaussian prior is chosen because it simplifies
the calculation of the normalization coefficient QR (l) using
equation (13) giving [Bishop, 1995; Nabney, 2004]

QR �ð Þ ¼ 2�

�

� �R=2

: ð14Þ

[21] Alternative choices for the prior P(w) have been
discussed in great length by Buntine and Weigend [1991],
Neal [1993], and Williams [1995]. The data‐dependent
likelihood function in Bayes’ theorem can be formed in
terms of the error function, ES of the conventional method.
For instance, if the noise (error) model is Gaussian, an
equation we write for likelihood function is [Bishop, 1995;
Aires, 2004; Nabney, 2004; Khan and Coulibaly, 2006]

P s jwð Þ ¼ 1

QS �ð Þ exp ��ESð Þ: ð15Þ

The function QS (m) is a normalization factor given by

QS �ð Þ ¼
Z

exp ��ESð Þds; ð16Þ

where
R
ds =

R
dx1…dxN represent integration out over the

target variables. If it is assumed that the target data are
generated from a smooth function with additive zero mean
Gaussian noise, the probability of observing the data value x
for a given input vector d would be

P x j d;wð Þ / exp ��

2
x� o d;wð Þf g2

� �
; ð17Þ

where o(d; w) represents a network function governing the
mean of the distributions, w denotes the corresponding
weight vector, and the parameter m controls the variance of
the noise. Provided the data points are drawn independently
from this distribution, we have the expression for the like-
lihood as [Bishop, 1995; Aires, 2004; Khan and Coulibaly,
2006]

P s j wð Þ ¼
YN
k¼1

P xk j dk ;wð Þ ¼ 1

QS �ð Þ exp ��

2

XN
k¼1

xk � ok dk ;wð Þf g2
 !

:

ð18Þ

The expression in equation (16) for the normalization factor
QS (m) is then the product of N independent Gaussian
integrals, which have been evaluated by Bishop [1995].
Accordingly, we can write

QS �ð Þ ¼ 2�

�

� �N=2

: ð19Þ

After deriving the expressions for prior and likelihood
functions and the posterior distribution of weights and using
those expressions in equation (10), we obtain [Bishop, 1995;
Aires, 2004; Khan and Coulibaly, 2006]

P w j sð Þ ¼ 1

QE
exp ��ES � �ERð Þ ¼ 1

QE
exp �E wð Þð Þ; ð20Þ
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where

E wð Þ ¼ �ES þ �ER ¼ �

2

XN
k¼1

xk � ok dk ;wð Þf g2þ�

2

XR
i¼1

w2
i ð21Þ

and

QE �; �ð Þ ¼
Z

exp ��ES � �ERð Þdw: ð22Þ

In equation (20), the objective function in the Bayesian
method corresponds to the inference from the posterior
distributions of the network parameters w. After defining the
posterior distributions, the network is trained with a suit-
able optimization algorithm to minimize the error function
E(w) or equivalently to maximize the posterior distribution
P(w∣s). Using the rules of conditional probability, the dis-
tribution of outputs for a given input vector, d, we can write
in the form of [Bishop, 1995; Aires, 2004; Khan and
Coulibaly, 2006]

P x j d; sð Þ ¼
Z

P x j d;wð ÞP w j sð Þdw: ð23Þ

We note that P(x ∣ d, w) is simply the model for distribution
of noise on the target data for a fixed value of weight vector
wMLP and can be expressed by equation (17), and P(w ∣ s) is
the posterior probability distribution of weight. If the data set
is large, the posterior distribution P(w ∣ s) may be approxi-
mated to Gaussian distribution [Walker, 1969]. After some
simplification, we can write the integral of equation (23) as
[Bishop, 1995]

P x j d; sð Þ ¼ 1

2��2ið Þ1=2
exp � x� o d;wMLPð Þðf g2

2�2i

 !
; ð24Þ

whose mean is o(d; wMLP), and variance is given by [Bishop,
1995]

�2i ¼
1

�
þ gTH�1g: ð25Þ

Here, m is a hyperparameter and is actually the inverse vari-
ance of the noise model, and g denotes the gradient of o(d; w)
with respect to the weights w evaluated at wMLP and H is the
Hessian matrix of the total(regularized) error function with
elements, which we can write [Bishop, 1995; Aires, 2004;
Khan and Coulibaly, 2006]

H ¼ rrE wMLPð Þ ¼ �rrES wMLPð Þ þ �I ; ð26Þ

where I is an identity matrix. The standard deviation di of the
predictive distribution for the target model x can be inter-
preted as error bar on the mean value o(d; wMLP).

4.3. Evidence Approximation

[22] The evidence approximation is the main important
concept when the Gaussian approximation of Bayesian
neural network is used. It is an iterative algorithm for
determining optimal weights and hyperparameters. The
evidence method has been discussed in detail by MacKay

[1992] and is similar to the type II maximum likelihood
method (MLM).
[23] In this approach, the posterior distribution of network

weights can be written as [MacKay, 1992; Bishop, 1995;
Nabney, 2004]

P w j sð Þ ¼
Z Z

P w; �; � j sð Þd�d� ¼

¼
Z Z

P w j �; �; j sð ÞP �; � j sð Þd�d�: ð27Þ

The evidence procedure approximates the posterior density
of the hyperparameters P(l, m∣s) which is sharply peaked
around lMLP and mMLP, the most probable values of the
hyperparameters. This is known as Laplace approximation
[Nabney, 2004]. Then we can write [Bishop, 1995]

P w j sð Þ � P w j �MLP; �MLP; sð Þ
Z Z

P �; � j sð Þd�d�
� P w j �MLP; �MLP; sð Þ: ð28Þ

This suggests that we need to evaluate the values of hyper-
parameters which maximize the posterior probability of
weight and then perform the remaining calculations with the
hyperparameter values set to these evaluated values [Bishop,
1995]. For the case of a nonlinear model like MLP, it is
more complex to perform an integral of equation (28). This
approximation should be viewed as a purely local one
around a particular mode wMLP based on a second‐order
Taylor series expansion of E(w) [Mackay, 1992; Nabney,
2004]:

E wð Þ � E wMLPð Þ þ 1

2
w� wMLPð ÞTH w� wMLPð Þ: ð29Þ

Since the error function is a negative log probability of the
weight posterior probability, it is clear that the weight pos-
terior probability would be Gaussian. Thus, we can write
[MacKay, 1992; Bishop, 1995; Nabney, 2004]

P wj�; �; sð Þ ¼ 1

Q*S
exp �E wMLPð Þ � 1

2
DwTHDw

� �
; ð30Þ

where Dw = w − wMLP and Qs* are the normalization con-
stants for approximating Gaussian and can be therefore
written as [MacKay, 1992; Bishop, 1995; Nabney, 2004]

Q*s �; �ð Þ ¼ exp �E wMLPð Þ 2�ð ÞR=2 detHð Þ�1=2
�

: ð31Þ

In order to evaluate lMLP and mMLP, we can consider the
modes of their posterior distribution: [MacKay, 1992;
Bishop, 1995; Nabney, 2004],

P �; � j sð Þ ¼ P s j �; �ð ÞP �; �ð Þ
P sð Þ ð32Þ

The term P(l, m) denotes a prior over the hyperparameters, it
is called a hyperprior. The denominator in equation (32) is
independent of l and m; hence, the maximum posterior
values for these hyperparameters could be obtained by
maximizing the likelihood term P(s∣l, m). This term is called

MAITI AND TIWARI: BNN MODELING OF KTB WELL LOG DATA B10208B10208

9 of 28



the evidence for l and m [Bishop, 1995]. We evaluate this
term by integrating the data likelihood over all possible
weights w [MacKay, 1992; Bishop, 1995; Nabney, 2004]:

P s j �; �ð Þ ¼
Z

P s j w; �; �ð ÞP w j �; �ð Þdw ð33Þ

¼
Z

P s j w; �ð ÞP w j �ð Þdw: ð34Þ

Here, we have used the fact that the prior is independent of
m and the likelihood function is independent of l. Using
equations (12) and (15), we obtain [MacKay, 1992; Nabney,
2004; Bishop, 1995]

P s j �; �ð Þ ¼ 1

QS �ð Þ
1

QR �ð Þ
Z

expð�E wð Þdw ¼ QE �; �ð Þ
QS �ð ÞQR �ð Þ :

ð35Þ

We can write the log of evidence as [MacKay, 1992; Bishop,
1995; Nabney, 2004]

ln P s j �; �ð Þ ¼ ��EMLP
R � �EMLP

S � 1

2
ln jH j þ R

2
ln�

þ N

2
ln�� N

2
ln 2�ð Þ: ð36Þ

Here we must consider the problem of finding the maximum
with respect to l. In order to differentiate ln∣H∣ with respect
to l, we write H = HUR + lI, where HUR = rrES is the
Hessian of the unregularized error function. Let y1,…, yR

be the eigenvalues of the data Hessian H. Then H has ei-
genvalues y i + l, and we have [MacKay, 1992; Bishop,
1995; Nabney, 2004]

d

d�
ln jH j ¼ d

d�
ln
YR
i

y i þ �ð Þ
 !

¼ d

d�

XR
i

ln y i þ �ð Þ

¼
XR
i¼1

1

y i þ �
¼ tr H�1

� � ð37Þ

Note that in this derivation we have implicitly assumed that
the eigenvalues y i do not themselves depend on l [Bishop,
1995]. For nonlinear network models, the Hessian H is a
function of w. Since the Hessian is evaluated at wMLP,
and since wMLP depends on l, we can find the result of
equation (37) which actually neglects the term involving
dy i

d�
[MacKay, 1992].

[24] With this approximation, the maximization of
equation (36) with respect to l is then straightforward with
the result that, at maximum, we can now write [MacKay,
1992; Bishop, 1995; Nabney, 2004]

2�EMLP
R ¼ R�

XR
i¼1

�

y i þ �
¼ �; ð38Þ

where the quantity g is defined by [MacKay, 1992; Bishop,
1995; Nabney, 2004]

� ¼
XR
i¼1

y i

y i þ �
: ð39Þ

Since y i is the eigenvalue of HUR = mrrES, it follows that
y i is directly proportional to m and hence that [MacKay,
1992; Bishop, 1995; Nabney, 2004],

dy i

d�
¼ y i

�
: ð40Þ

Thus, we have [MacKay, 1992; Bishop, 1995; Nabney,
2004]

d

d�
ln jH j ¼ d

d�

XR
i

ln y i þ �ð Þ ¼ 1

�

XR
i

y i

y i þ �
: ð41Þ

This leads to the following condition satisfied at the maxi-
mum of equation (36) with respect to m [MacKay, 1992;
Bishop, 1995; Nabney, 2004]:

2�EMLP
S ¼ N �

XR
i¼1

y i

y iþ �
¼ N � �: ð42Þ

In a practical implementation of this approach, one should
begin by finding the optimum value of wMLP using a stan-
dard iterative optimization algorithm, while periodically the
values of l and m are restricted as [MacKay, 1992; Bishop,
1995; Nabney, 2004]

�new ¼ �

2ER
; ð43Þ

�new ¼ N � �

2ES
: ð44Þ

4.4. Synthetic Example

[25] We use the recently developed scaled conjugate
gradient algorithm [Moller, 1993] for the optimization pro-
cess, which avoids the expensive line‐search procedure of
conventional conjugate gradients. Experiments have shown
this is an extremely efficient algorithm outperforming both
the conjugate gradients and quasi‐Newton algorithms when
the cost function and gradient evaluation is relatively small
[Nabney, 2004].
[26] We conduct a practical numerical experiment fol-

lowing Nabney [2004]. For example, to illustrate the
application of the Bayesian techniques to a “regression”
problem, we consider a one‐input one–output example
involving data generated from the smooth function

f xð Þ ¼ 0:25þ 0:07 sin 2�xð Þ; ð45Þ

with additive Gaussian noise having a standard deviation of
d = 0.1. The values for x were generated by sampling an
isotropic Gaussian mixture distribution. Figures 2b–2e show
the trained BNN approximation corresponding to the mean
of the predictive distributions. The error bar represents one
standard deviation (±1d) of the predictive distribution. This
predictive distribution allows us to provide error bars for the
network output instead of just a single answer. It may be
noted that the size of the error bar varies approximately with
the inverse data density [Williams, 1995]. A prior of the
form of P(w) (equation (9)) and weight‐decay regularization
were used, and the values of m and l were chosen by an on‐
line evidence re‐estimation schedule. In this first set of
experiments we have used that (1) the number of nodes used

MAITI AND TIWARI: BNN MODELING OF KTB WELL LOG DATA B10208B10208

10 of 28



in a single hidden layer is 5, (2) the number of training
samples used in the experiments is 50, (3) the initial prior
hyperparameters values are l = 0.01 and m = 50.0, (4) the
tolerance for the weight optimization is set to a very low
value (10−7). This is because the Gaussian approximation
to the weight posterior depends on being at a minimum of
the error function [Nabney, 2004]. The converged values
for the hyperparameters are m = 80.512 and l = 0.176. In
this case, the true value of m is 100, so that the procedure
is slightly overestimating the noise variance. Notice that the
true function still lies within the error bar limit in the
region where no training sampled data is available (>0.5)
(Figures 2b–2d). We see that the error bar in this region is
entirely due to regularization, whereas no regularization is
used to smooth the function in practice because we obtain
the identical results without the use of real prior information
(l ≈ 0.0) on the smoothness of the function (Figure 2d).
After several experiments with varying initial sets of hy-
perparameters, it is concluded that with a sufficient number
of training samples N > 5, the true function lies within

the error bound while we keep the ratio
�

�
< 0.015. When l

and m are kept fixed, as N increases, the first term of
equation (21) becomes more and more dominant, until the
second term becomes insignificant. The maximum likeli-
hood solution is then a very good approximation to the most
probable solution wMLP. But, for very small data sets, the
prior term plays an important role in determining the loca-
tion of the most probable solution. An effective value of the
regularization parameter (the coefficient of the regularizing

term) depends only on the ratio
�

�
, since an overall multi-

plicative factor is found to be unimportant [Bishop, 1995].
The second experiments demonstrate that if the underlying
function is sampled more densely over the entire range
(>0.5), the chances of the true function to lie beyond the
error bound is less (Figure 2e). Note that for all experiments
of the second phase we set the initial hyperparameters as l =
0.01, m = 50.0, and the standard deviation of additive
Gaussian noise as 0.1 (d = 0.1). Our experiment clearly
shows that the BNN estimates the true function well where
the data samples are more condensed and less noisy and the
uncertainty is more where the true function is poorly sam-
pled. Given that there are no training samples, the error bars
in that interval are entirely due to the posterior distribution
of network weights. In the next section we will discuss the
modeling strategy and initialization of all model parameters.

5. Model Initiation and Implementation

5.1. Hidden Layers, Connection Weights, and Output

[27] The network has three nodes in the input layer. Each
node takes the well‐log data of density (g/cc), neutron

porosity (%), and gamma ray intensity (API). In Bayesian
neural network modeling, we do not necessarily need to
estimate the optimal number of the weights (hidden layer) to
have a good generalization [Bishop, 1995]. However, in the
present classification problem, we find by trial and error that
a single hidden layer with twenty individual nodes is
appropriate. The output layer of network consists of three
nodes which return a posterior pdf corresponding to the
three types of litho‐facies units viz. paragneisses, meta-
basites, and heterogeneous series.

5.2. Number of Training Samples

[28] The published results of core sample analysis from
the KTB site [Pechnig et al., 1997] are shown in Table 2.
We consider a total of 702 representative input/output pairs
within the bounds defined in Table 2 for the BNN training.
The purpose for considering a limited number of training set
was to maintain comparative status with the published his-
togram model. In order to get desired accuracy of (1 − ") of
a MLP network on unseen data, at least (N/") examples must
be provided [Van der Bann and Jutten, 2000], where " is an
error and N represents the network internal variables
(weights and biases) which can be found as

N � Ni þ 1ð ÞNh þ Nh þ 1ð Þ½ �No: ð46Þ

Here, Ni (Input) = No (Output) = 3; Nh (hidden layer) = 20
(Figure 2a). According to this relation, the present network
has N ≈ [(3 + 1) × 20 + (20 + 1) × 3)] ≈ 143 internal
variables which is less than the number of training samples
(351) available. This ensures that the present network would
provide at least 70% accuracy in prediction [Van der Bann
and Jutten, 2000].

5.3. Input Data Scaling and Model Parameterization

[29] We scaled all the input/output pair values between 0
and 1 (−1 and +1) by using a simple linear transformation
algorithm, [Poulton, 2001]; normalized input = 2 × (input‐
minimum input)/(maximum input‐minimum input) − 1. We
initialize the model by computing the probability distribu-
tion functions of the model parameters. In view of compu-
tational simplicity [Bishop, 1995] and to avoid large
curvature [Nabney, 2004], the initial values of model para-
meters (synaptic weight and biases) are formed by following
a Gaussian prior distribution function of a zero mean and an
inverse variance, l (also known as regularization coefficient
or prior hyperparameter). The implementation of zero mean
Gaussian prior can be done in two ways: one way is to
consider a single hyperparameter l for all the weights and
alternatively to consider a separate hyperparameter for dif-
ferent groups of weights [Nabney, 2004]. We used a single
hyperparameter l for all the weights in a network following
the equation (9). This is useful because a broad prior weight
distribution is usually appropriate for this case as we use a

Table 2. A Priori Information on Model Parameter to Generate Forward Model for Neural Network Training Indicating that Gamma Ray
Intensity Value is the Most Crucial Factor to Categorize Litho‐Facies Unit in Metamorphic Area

Litho‐Facies Unit Density (g/cc) Neutron Porosity (%) Gamma Ray Intensity (API) Desired Output/Binary Code

Paragneisses 2.65–2.85 5–15 70–130 100
Metabasites 2.75–3.1 5–20 0–50 010
Heterogeneous series 2.60–2.9 1–15 40–90 & 120–190 001
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local nonlinear optimization algorithm for online re‐estimating
hyperparameter values. In order to define an objective
function in the Bayesian framework, an error model for the
data likelihood is required. Having assumed that the target
data is formed from a smooth function with additive zero
mean Gaussian noise, we estimated the hyperparameters m is
for both hidden and output layer weights.
[30] After defining the prior and the likelihood functions,

the objective function has been estimated by the posterior
distribution of weights. The maximum a posteriori (MAP)
model is derived from an iterative optimization process that
maximizes a posteriori probability distribution or equiva-
lently minimizes the objective/cost functions. In Bayesian
neural networks, the objective function/cost function is
optimized by the SCG with evidence re‐estimation of hy-
perparameters scheme. The evidence approximations could
be performed in two steps: (1) computing the wMLP in
maximizing penalized likelihood and (2) periodically re‐
estimating the hyperparameterslMLP. In our experiments,
the first step has been attained by optimizing the penalized
likelihood with the SCG algorithm for 250 iterations. The
re‐estimation of the hyperparameters lMLP was carried out
four times, and the Hessian matrix was calculated with the
re‐estimated hyperparameters (Table 3).

5.4. Data Division for Model Validation and Testing

[31] Over‐fitting is one of the serious drawbacks of ANN
modeling. In that, the selected training set is memorized in
such a way that performance of the network is excellent only
on this set but not on other data. In order to circumvent this
problem, several researchers have recommended cross vali-
dations and early stopping skills [Van der Bann and Jutten,
2000; Maiti et al., 2007]. Attaining good “generalization” of
a model is, however, somewhat difficult where the data are
complex, nonlinear and beset with deceptive noise. The
Bayesian learning approach control “effective complexity”
by considering many adjustable parameters and the param-
eter uncertainty is considered in form of probability distri-
bution [Bishop, 1995; Nabney, 2004]. For the BNN
learning, we keep the validation and the test sets separately:
one is for noise analysis and another is for improving the
training set in case the training set is not appropriately

representative of all types of “model” information. But the
validation error is not explicitly monitored during training
[Bishop, 1995]. For noise analysis, the total database is
shuffled appropriately and partitioned into three random
subsets [Maiti et al., 2007]: the training, the validation and
the test set. The first 50% of the total data set is used for
training. The remaining 50% is used for examining the
“generalization” capability of the trained network. Here,
again 24.93% (i.e., 175) of the data is kept for validation and
the remaining 25.07% (i.e. 176) is for testing (Figures 3a–3h).

5.5. Generalization Capacity of the Network

[32] Generalization capacity of the trained network can be
evaluated by error analysis on the validation and the test
data sets. Error deviation is simply calculated by taking the
difference between the target (binary output target, 100 for
paragneisses, 010 for metabasites, and 001 for hetero‐series)
and the predicted network values at the output layer. We can
denote error deviation as

ei ¼ di � oi; ð47Þ

where di is the target and oi is the network output. Figures
3a–3h show error‐deviation plots of the validation and the
test data sets for the paragneisses, metabasites and hetero-
geneous series. Table 4 shows the overall accuracy of the
network prediction corresponding to the three types of litho‐
facies units. Evidently the accuracy of network prediction on
the validation data set is comparatively better than the test
data sets (Figure 3). Particularly the error prediction for the
metabasites units is comparatively less than the para-
gneisses and the heterogeneous units (Figure 3). This could
be explained by the fact that the heterogeneous series unit
is composed of some components as a result of the alter-
ation between the paragneisses and the metabasites unit.

6. Network Sensitivity to Correlated Noise

[33] In many geological/geophysical situations, we inva-
riably observe some kind of deceptive/correlated noise
which dominates the field observations and corrupts the
signal. In the present case, we do not have any precise idea
about the “percentage” of noise present in the actual well‐

Table 3. Showing Estimated Network Training Hyperparameters m and l Via “Evidence Program” to Enable Efficient Learning of the
Present Problema

MLP Structure with Different Hidden Node Epoch (0–250) Epoch (250–500) Epoch (500–750) Epoch (750–1000)

3‐5‐3 m = 10.20 m = 10.58 m = 10.69 m = 10.80
l = 0.06 l = 0.04 l = 0.03 l = 0.03

3‐10‐3 m = 10.05 m = 10.45 m = 10.65 m = 10.71
l = 0.11 l = 0.10 l = 0.09 l = 0.09

3‐20‐3 m = 8.98 m = 9.57 m = 9.84 m = 10.14
l = 0.25 l = 0.22 l = 0.21 l = 0.20

3‐30‐3 m = 8.99 m = 9.66 m = 9.86 m = 9.9
l = 0.33 l = 0.29 l = 0.26 l = 0.26

3‐40‐3 m = 8.49 m = 8.99 m = 9.24 m = 9.40
l = 0.45 l = 0.45 l = 0.40 l = 0.36

aThe parameters m and l which control other parameters (weight and biases) of MLP network are known as hyperparameters. The re‐estimation of the
hyperparameters is carried out four times.

Figure 3. Error deviation and error bar map of validation and test data pertaining to paragneisses, metabasites, and het-
erogeneous series. (a)–(d) When the input generalization set is corrupted with 30% red noise. (e)–(h) When the input gen-
eralization set is corrupted with 50% red noise. Error bar defines 90% confidence limit.
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Figure 3
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Figure 3. (continued)
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log data. Assuming that there is some possibility of ines-
capable noise in the data, it would be prudent to test the
robustness and the stability of the results. For this, we
generated correlated noise using the first‐order auto-
regressive model [Fuller, 1976],

d nð Þ ¼ Ad n� 1ð Þ þ "n: ð48Þ

Here, d(n) is a stationary space series at space n and "n is a
Gaussian white noise with zero mean and unit variance. The
constant A represents the maximum likelihood estimator
(MLE) and can be computed from the data as [Fuller, 1976]

A nð Þ ¼
P

dn�1 � dmð Þ dn � dmð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
dn�1 � dmð Þ2P dn � dmð Þ2

h ir ; ð49Þ

where d(n) is a data value at the point n, and dm is the mean
value. Using equation (49), the MLE constant A(n) is esti-
mated as 0.52 for the density data series, 0.21 for the
porosity data series, and 0.53 for the gamma ray data series
from the validation data sets and 0.47 for the density series,
0.23 for the porosity series, and 0.55 for the gamma ray
series from the test data sets. We generated the Gaussian
noise "n using a MATLAB library function. The correlated
noisy time series (equation (48)) for each well‐log data set
is, then, normalized between [−1 and +1] using

"norc nð Þ ¼ 2� "c nð Þ � "cminf Þg
"cmax � "cminð Þ � 1; ð50Þ

where "c
nor (n) is the normalized correlated noise and "c (n) is

the unnormalized correlated noise; "cmax and "cmin are re-
presented as the maximum and the minimum value of "c (n),
respectively. The normalized correlated noise for a data
series is, then, taken to the level of the well‐log data using

d"c nð Þ ¼ d nð Þ � "norc ; ð51Þ

where d(n) is the synthetic data series (we assume synthetic
training data is noise free). Now, the correlated noise d"c (n)
from equation (51) is added to the d(n) according to the
equation

du nð Þ ¼ d nð Þ þ u

100

� �
� d"c nð Þ: ð52Þ

Here du (n) is the data corrupted with a certain “percentage”
of correlated noise in the above equation and u = 1, 2, 3,…,
100. We prepared the individual data sets corrupted with
different level of correlated red noise. The results of stability

in presence of correlated noise are presented in Table 4. The
accuracy of network prediction is examined using the vali-
dation and the test data sets when both the data sets are
contaminated with different levels (10%–50%) of deceptive
red noise. The error‐deviation plot for well‐log data cor-
rupted by 30% and 50% correlated noise is presented in
Figures 3a–3h. Our analyses suggest that the predictive
efficiency of the BNN is considerably robust, even if the
input well‐log data is contaminated with “red” noise up to
40% or so; however, the predictive capability is degenerated
beyond 50% noise contamination.

7. Uncertainty Analysis

[34] The uncertainty at the network output, (covariance
matrix Covo = Covm + gTH−1g) is due to the intrinsic noise
in the data embodied in m and the theoretical error described
by the posterior distribution of the weight vector w embod-
ied in gTH−1g [Aires, 2004]. For the forward linear operator,
the posterior pdf will be Gaussian, and in that case, one can
assume that all uncertainties are also Gaussian. However, for
the nonlinear neural network, even if the pdf of the neural
network weight is Gaussian, the pdf of the output can be
non‐Gaussian [Aires, 2004]. The derivative of forward
function is evaluated at wMLP. Here, the mean standard
deviation (STD) ( =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag Covoð Þp

) is estimated by taking
the square root of the diagonal terms in Covo. The elements
along the main diagonal of output covariance matrix shows
the “variances” of the fluctuations about the mean of the
Gaussian probability densities that characterizes the uncer-
tainties, and the off‐diagonal elements show the extent to
which these fluctuations are correlated [Tarantola, 1987].
Figure 3 shows error bars plotted on error deviation curve
for the input data which are corrupted with different level of
correlated deceptive noise. All error bars are ± unit standard‐
deviations estimated from the a posteriori covariance matrix.
Figures 4 and 5 present the mean standard deviation or three
outputs: paragneisses, metabasites, and heterogeneous
series. The ± unit standard deviations/error bar shows the
90% confidence interval (CI) [Nabney, 2004]. The mini-
mum, maximum, and average values of the standard devi-
ation of output error over the entire length of litho‐section
are documented in sections 8–10.

8. Examples

[35] We used three sets of borehole data viz. density,
neutron porosity, and gamma ray obtained from the German

Table 4. Showing Percentage of Accuracy While Validation and Test Data Sets are Corrupted with Different Level of Red Noise

Red Noise Level

Percentage of Accuracy in Generalization Data Set

Validation Data Set Test Data Set

Average Stability ± 5%
Error LimitsParagneisses Metabasites

Heterogeneous
Series Paragneisses Metabasites

Heterogeneous
Series

0% 89.14% 85.14% 74.29% 89.20% 82.95% 72.16% 82.14%
10% 86.16% 86.29% 73.14% 87.50% 82.95% 70.45% 81.08%
20% 84.00% 85.71% 68.57% 84.66% 82.92% 67.31% 78.86%
30% 81.14% 85.71% 66.29% 82.39% 81.82% 64.77% 77.02%
40% 80.57% 85.71% 65.71% 80.68% 80.11% 61.36% 75.69%
50% 78.86% 84.57% 62.86% 78.98% 79.55% 59.09% 73.98%
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Continental Deep Drilling Program site. These data are
applied to the trained BNN network to classify the litho‐
facies succession, and the BNN‐based results are compared
with the results of the published geological section
[Emmermann and Lauterjung, 1997], and our earlier results
based on super self adaptive back‐propagation neural net-
works [Maiti et al., 2007]. Maiti et al. [2007] have devel-
oped a classification scheme based on the very fast SSABP
neural network theory where the learning rate is variable and
adaptive to the complexity of the error surface. In that
approach the solution obtained is based on maximum like-
lihood method, where a single “best” set of weight values is
evaluated by minimization of a suitable error function. The
BNN approach considers a probability distribution function
over weight space instead of a single “best” set of weights.
Thus, it is quite sensible to compare the BNN results with the
results based on SSABP. The comparative results obtained
by both neural network techniques for the pilot and the main
borehole data are displayed in Figures 4 and 5, respectively.
The outputs of the network represent the posterior proba-
bility distribution. Further, the standard deviation error
maps, corresponding to the three types of litho‐facies are
presented to quantify the prediction uncertainties of the
network output over the entire KTB litho‐section. All the
comparative results shown in Figures 4 and 5 are presented
in a three‐column gray‐shaded matrix with black repre-
senting 1 and white representing 0. The interpretation of the
maximum a posteriori geological section (MAPGS) is as
follows: if the litho‐facies of a particular class exists, the
output value of the node in the last layer is 1 or very close to
1, and if not, it is 0 or very close to 0.

8.1. Comparisons of the BNN Results
With the Published Results

[36] The published results of litho‐facies successions by
Emmermann and Lauterjung [1997] were re‐drawn for the
sake of clarity [Maiti et al., 2007, Figure 2]. The MAPGS
derived from the BNN modeling via the SCG optimization
for both the KTB boreholes are displayed at 500 m data
windows for critical and thorough examination and com-
pared with published subsections (“Subsection of KTB‐VB/
HB” in Figures 4 and 5). A careful visual inspection of these
figures suggests that the BNN results correlate fairly well
with the published results over the entire litho‐section.

8.2. Pilot Borehole (KTB‐VB) (up to 4000 m Depth)

[37] The results based on the BNN modeling confirm, in
general, the presence of paragneisses, metabasites, and
heterogeneous series within the first 500 m depths. How-
ever, a close examination and comparison of the BNN
results with the published results reveal some dissimilarity
too (Figure 4a). For instance, in the depth range of 30–100 m,
the BNN model indicates the presence of heterogeneous

series, whilst the published subsection shows the para-
gneisses unit. Likewise at the depth range of 240–250 m, the
BNN results indicate the presence of paragneisses, while the
published subsection shows the heterogeneous series. If we
go further down, at the depth range of 305–340 m, the BNN
results show the presence of paragneisses, heterogeneous
series and metabasites instead of the heterogeneous series
alone. There is also some mismatch at 400–430 m depth
range where the BNN shows the metabasites, instead of the
heterogeneous series, and at the 430–490 m depth range, the
BNN indicates the paragneisses instead of the heterogeneous
series.
[38] There is a positive correlation between the BNN

model results and the published results (Figures 4b and 4c)
at the 500–1500 m depth range which shows good confor-
mity with the three litho‐facies successions (e.g., para-
gneisses, metabasites and heterogeneous series). However
there are some divergences too. The BNN results suggest
the presence of the paragneisses instead of the heteroge-
neous series at the depth intervals 520–556 m, the hetero-
geneous series instead of the paragneisses at the depth
interval of 579–582 m, the heterogeneous series instead of
the paragneisses at the depth interval of 598–601 m, the
heterogeneous series instead of the paragneisses at the depth
interval of 707–712 m, and the metabasites instead of the
paragneisses at the depth interval of 1145–1168 m. The
present results also show good match within the depth range
of 1500–2500 m (Figures 4d and 4e) with a few exceptions,
for example, the presence of heterogeneous series at the
depth range of 1597–1618 m and the paragneisses at the
depth range of 1744–1817 m and 2442–2467 m. The BNN
results show the dominance of the paragneisses at the depth
intervals of 2500–3000 m, 2562–2623 m, and 2852–2953 m
in addition to an inter‐bedded thin metabasites structures at
the depth range of 2640–2646 m (Figure 4f). Figure 4g
exhibits the presence of the paragneisses and the heteroge-
neous series that are consistent with the published results
except for the depth range of 3408–3421 m. In addition to
this, the BNN results also suggest the presence of the
paragneisses and the heterogeneous series at the depths in-
tervals of 3204–3248 m and 3409–3418 m, respectively.
Comparison of the present results at the depth range of
3500–4000 m shows a depositional sequence of the para-
gneisses and the metabasites that exactly match with the
published results (Figure 4h). The minor deviations and
some differences observed between the published and the
present result is explained in the discussion section. The
average standard deviation estimated at the network output
corresponding to the paragneisses, metabasites and hetero-
geneous series is ±0.30 for the entire KTB pilot hole (down
to 4000 m), except for depths 58.52 m, 381.60 m, 1186.75 m,
1238.09 m, and 1286.86 m, where the STD is ±0.58, ±0.78,
±0.99 ±0.54 and ±0.79, respectively.

Figure 4. (a) Comparison of the maximum a posteriori geological section (MAPGS) obtained by BNN with the SCG
approach with a maximum likelihood geological section (MLGS) obtained by the SSABP neural network, and the published
litho‐facies subsection of pilot hole (KTB‐VB) (published litho‐subsection is redrawn after Emmermann and Lauterjung
[1997]) and the standard deviation (std) error map estimated at the network output by BNN approach at the depth inter-
val of 0–500 m. In this interval 0–28 m, data are not available. (b)–(h) Same for the depth range of 500–1000 m, …, 3500–
4000 m in KTB pilot hole(KTB‐VB).
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Figure 4. (continued)
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Figure 4. (continued)
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8.3. Main Borehole (KTB‐HB) (up to 7000 m Depth)

[39] Comparison of the BNN modeling result of the main
KTB borehole data also exhibits, in general, good correlation
with the published results of Emmermann and Lauterjung
[1997] (Figures 5a–5d). However, there are some varia-
tions too. For instance, there is an evidence of bimodal
combination of the hetero‐series and the metabasites
sequence at the depth interval of 4400–4500 m instead of a
single depositional sequence of the metabasites as reported
in previous investigation. Further there is also evidence for
the thinner heterogeneous series at the depths range of
4580–4583 m, 4809–4812 m, and 4580–4583 m instead of a
single metabasites unit. Again at the depth interval of 5440–
5500 m, there is evidence of a bimodal sequence of the
hetero‐series and the metabasites instead of the metabasites
only. Further, a closer look at Figures 5a–5d reveal the
presence of heterogeneous series, metabasites, and para-
gneissess at the depth range of 5500–5650 m instead of only
metabasites and results also suggest the presence of het-
erogeneous series at the depth range of 5820–5840 m
instead of the metabasites unit. It is interesting to note here
that the BNN modeling results also reveal successions of an
additional structure at the depth ranges of 6017–6026 m,
6322–6334 m, and 6400–6418 m in the heterogeneous
series (Figure 5e), in addition to the main classes at the
depth interval of 5543–5560 m (Figure 5d). Figure 5f shows
the dominance of heterogeneous series. But the BNN results
show the presence of heterogeneous series at the depth range
of 6550–6665 m instead of the metabasites and the hetero-
geneous series and results also indicate the presence of
heterogeneous series and the metabasites at the depth
interval of 6710–7000 m instead of a single metabasites unit.
The average standard deviation estimated at the network
output corresponding to the paragneisses, metabasites, and
heterogeneous series is ±0.30 for the entire KTB main hole
(here, 4000–7000 m), except for depths 4624.73 m,
5647.33–5650.38 m, and 5682.38 m, where the standard
deviation is ±0.44, ±0.68, and ±0.87, respectively.

9. Computation Time

[40] Table 5 compares performances in terms of the exe-
cution(CPU) time, error bars, number of iterations, number
of parameters, and processor/memory used between the
current SCG‐based BNN method and the hybrid Monte
Carlo (HMC)/Markov Chain Monte Carlo (MCMC)‐based
BNN method [Maiti and Tiwari, 2009, 2010]. We selected a
fixed number (100) of iterations instead of an arbitrary
stopping criterion. For the comparison, the simulations were
done with MLP network with 20 hidden nodes. The initial
prior hyperparameters and the number of training examples
(351) were also kept unchanged for both the simulation.
Table 5 shows that the SCG‐based BNN requires less exe-
cution time at the cost of error bars compared to the HMC/

MCMC‐based BNN. Experimental results show that using
large amounts of training data the SCG‐based BNN and
HMC/MCMC‐based BNN performance are similar, but the
MCMC method seems superior on smaller‐sized training
sets. We note that the disadvantage of the present SCG‐
based BNN method for small data sets, namely that a large
part of the computational effort is taken up with the inver-
sion of the Hessian. Thus, the Bayesian approach is unde-
niably expensive in computational load, but in complex
real‐world problems there are few cheap alternatives.

10. Discussions

[41] Comparison of the MAPGS with the published litho‐
species section of Emmermann and Lauterjung [1997]
exhibits more or less matching patterns (Figures 4 and 5).
In addition to this, the BNN model reveals some finer
structural details, which might be geologically significant.
We note, however, that in such complex geological situa-
tions, it is somewhat intricate to assert an exact geological
interpretation for these thin successions as to whether these
apparently visible finer details inferred from our study are
truly meaningful geological structures or simply an artifact
of our analysis. To examine the authenticity of these struc-
tural details, we manually checked a few samples produced
by the trained network with the limited core knowledge
defined in Table 2 (comparison is given in Table 6). It is
interesting to see that the trained network produces more or
less identical results that are consistent with the training
data. We note, however, that the present probabilistic his-
togram model of litho‐facies classification cannot be
uniquely constrained and/or compared with the existing
litho‐section [Maiti et al., 2007, Figure 2]. The reason being
that the published results are mostly gross‐average depth
sections estimated from the litho‐sections. The second rea-
son could be that the observed data may be biased with
some deceptive “red noise” signals with nonzero mean.
Hence, it is likely that there could be some possibility of
error due to lack of resolution in the KTB data. It is note-
worthy, however, that most of the deviations and differences
between the published and the BNN model were observed in
the pilot borehole and moreover in the upper part of the
crust.
[42] Further we note that there are some mismatches

between the present model and the published model. The
standard deviation error map, which shows uncertainty in
the classification of the litho‐facies boundaries, is prepared
based on the clear distinction between the winner and the
non‐winner node values. A standard deviations with a larger
than average value shows more uncertainty in prediction and
vice versa. In some cases, however, we found that the
standard deviation values are more even when the maximum
a posteriori probability is comparable to the litho‐facies
units. This seems to have occurred in the estimation of
uncertainty in terms of probability distribution functions of

Figure 5. (a) Comparison of a maximum a posteriori geological section (MAPGS) obtained by BNN with the SCG
approach with the maximum likelihood geological section (MLGS) obtained by the SSABP neural network approach with
the published litho‐facies subsection of main hole (KTB‐HB) (published litho‐subsection is redrawn after Emmermann and
Lauterjung [1997]) and the standard deviation (std) error map estimated at the network output by the BNN approach at the
depth interval of 4000–4500 m. (b)–(f) Same for the depth range of 4500–5000 m, …, 6500–7000 m in KTB main hole
(KTB‐HB).

MAITI AND TIWARI: BNN MODELING OF KTB WELL LOG DATA B10208B10208

21 of 28



Figure 5

MAITI AND TIWARI: BNN MODELING OF KTB WELL LOG DATA B10208B10208

22 of 28



Figure 5. (continued)
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Figure 5. (continued)
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noisy data as mentioned above. We mention, however, that
while interpreting prediction of the network’s output node
with the maximum a posteriori value, in most of the cases,
we found an excellent separation between the winning and
non‐winning output node values rendering overall the actual

patterns with high correlation (correlation coefficients
∼0.943).
[43] We mention that prior to applying the method to the

real KTB data analysis, we thoroughly examined the sen-
sitivity of neural network hyperparameters with adequate

Table 6. Analysis of Real Data Taken From Both KTB Pilot Hole (KTB‐VB) and KTB Main Hole (KTB‐HB) From Different Depth
With ± Prediction Error

Borehole
(samples of data taken)

Depth
(m)

Density
(g/cc)

Neutron
Porosity
(%)

Gamma
Ray Intensity

(API)

Desired
Output/

Binary Code Neural Networks Output ± STD

KTB‐VB 3119.17 2.71 10.80 107.1 1 0 0 1.00 ± 0.30 0.00 ± 0.30 0.03 ± 0.30
KTB‐VB 1574.29 2.94 12.34 45.00 0 1 0 0.00 ± 0.31 0.98 ± 0.31 0.01 ± 0.31
KTB‐VB 89.00 2.73 10.46 82.05 0 0 1 0.05 ± .0.31 0.02 ± 0.31 0.83 ± 0.31
KTB‐VB 305.86 2.94 14.06 32.61 0 1 0 0.00 ± 0.31 0.81 ± 0.29 0.18 ± 0.28
KTB‐VB 893.82 2.82 12.94 128.41 0 0 1 0.67 ± 0.31 0.00 ± 0.31 0.31 ± 0.31
KTB‐VB 1393.54 3.01 11.24 23.26 0 1 0 0.00 ± 0.30 0.99 ± 0.30 0.01 ± 0.31
KTB‐VB 2252.47 2.80 14.94 119.17 1 0 0 0.75 ± 0.30 0.00 ± 0.30 0.22 ± 0.30
KTB‐VB 3864.25 2.94 13.59 19.10 0 1 0 0.00 ± 0.30 0.98 ± 0.30 0.01 ± 0.31
KTB‐VB 3559.45 2.74 12.11 104.35 1 0 0 1.00 ± 0.30 0.01 ± 0.30 0.03 ± 0.30
KTB‐VB 771.60 2.68 5.33 112.73 1 0 0 0.96 ± 0.31 0.00 ± 0.31 0.01 ± 0.31
KTB‐VB 1072.43 2.776 9.72 115.58 1 0 0 1.00 ± 0.30 0.0 ± 0.30 0.02 ± 0.30
KTB‐VB 1145.74 2.745 12.03 106.69 1 0 0 0.99 ± 0.31 0.01 ± 0.30 0.00 ± 0.31
KTB‐ VB 1374.03 2.97 8.73 15.83 0 1 0 0.00 ± 0.30 0.99 ± 0.31 0.01 ± 0.31
KTB‐ VB 1715.26 2.70 10.08 105.55 1 0 0 1.02 ± 0.30 0.01 ± 0.31 0.00 ± 0.30
KTB‐ VB 1878.48 2.72 12.03 111.65 1 0 0 1.00 ± 0.30 0.01 ± 0.30 0.00 ± 0.30
KTB‐ VB 2084.83 2.75 16.51 120.17 1 0 0 1.03 ± 0.30 0.00 ± 0.31 0.01 ± 0.30
KTB‐ VB 2290.42 2.75 14.70 119.58 1 0 0 0.96 ± 0.30 0.01 ± 0.30 0.02 ± 0.30
KTB‐ VB 2697.17 2.65 10.00 103.20 1 0 0 1.02 ± 0.31 0.00 ± 0.30 0.01 ± 0.31
KTB‐ VB 2891.33 2.71 8.76 103.30 1 0 0 1.00 ± 0.31 0.01 ± 0.31 0.02 ± 0.31
KTB‐ VB 3177.84 2.77 9.69 96.31 1 0 0 0.78 ± 0.31 0.02 ± 0.31 0.20 ± 0.30
KTB‐ VB 3801.16 3.04 14.10 30.46 0 1 0 0.00 ± 0.31 0.99 ± 0.30 0.01 ± 0.31
KTB‐ VB 3889.55 3.00 8.677 29.21 1 0 0 0.00 ± 0.30 1.00 ± 0.31 0.03 ± 0.30
KTB‐HB 6515.86 3.00 14.82 20.32 0 1 0 0.00 ± 0.30 0.99 ± 0.31 0.00 ± 0.31
KTB‐HB 6807.09 2.74 11.17 55.44 0 0 1 0.00 ± 0.30 0.05 ± 0.29 0.95 ± 0.30
KTB‐HB 6470.14 2.72 25.11 16.72 0 1 0 0.00 ± 0.31 1.00 ± 0.31 0.01 ± 0.31
KTB‐HB 6999.12 2.85 12.47 49.45 0 0 1 0.00 ± 0.31 0.38 ± 0.31 0.61 ± 0.31
KTB‐HB 5677.35 2.95 1.66 26.75 0 1 0 0.00 ± 0.31 1.00 ± 0.31 0.03 ± 0.31
KTB‐HB 5372.25 2.97 15.23 16.83 0 1 0 0.00 ± 0.31 1.00 ± 0.31 0.02 ± 0.31
KTB‐HB 5217.87 2.93 4.08 29.53 0 1 0 0.00 ± 0.31 1.00 ± 0.31 0.12 ± 0.31
KTB‐HB 4547.00 2.82 8.67 35.92 0 1 0 0.00 ± 0.30 0.79 ± 0.29 0.22 ± 0.29
KTB‐HB 4427.37 2.81 4.52 38.63 0 1 0 0.00 ± 0.31 0.88 ± 0.31 0.17 ± 0.31
KTB‐HB 4433.16 2.75 4.89 42.33 0 1 0 0.00 ± 0.31 1.02 ± 0.31 0.01 ± 0.31
KTB‐HB 4442.00 2.92 10.21 37.06 0 1 0 0.00 ± 0.31 0.99 ± 0.31 0.01 ± 0.31
KTB‐HB 4950.56 2.90 12.09 33.75 0 1 0 0.01 ± 0.31 0.99 ± 0.31 0.03 ± 0.31
KTB‐HB 6325.36 2.75 15.72 13.35 0 1 0 0.01 ± 0.31 0.87 ± 0.31 0.01 ± 0.31
KTB‐HB 4006.59 2.95 15.73 36.147 0 1 0 0.00 ± 0.31 0.84 ± 0.31 0.15 ± 0.31
KTB‐HB 4002.93 2.84 16.83 109.94 1 0 0 1.00 ± 0.31 0.00 ± 0.30 0.01 ± 0.31
KTB‐HB 4206.24 2.90 14.51 44.58 0 1 0 0.00 ± 0.30 1.00 ± 0.27 0.05 ± 0.27
KTB‐HB 4311.39 2.92 17.16 22.42 0 1 0 0.00 ± 0.31 0.98 ± 0.31 0.02 ± 0.31
KTB‐HB 4548.22 2.87 7.96 34.12 0 1 0 0.00 ± 0.31 0.64 ± 0.29 0.41 ± 0.29
KTB‐HB 4556.76 2.97 5.31 25.51 0 1 0 0.00 ± 0.31 1.01 ± 0.26 0.03 ± 0.25
KTB‐HB 4630.67 2.89 2.73 24.59 0 1 0 0.01 ± 0.31 0.85 ± 0.31 0.14 ± 0.31
KTB‐HB 4873.75 3.08 3.00 28.48 0 1 0 0.00 ± 0.31 1.02 ± 0.31 0.01 ± 0.31
KTB‐HB 5054.34 2.87 10.66 32.95 0 1 0 0.00 ± 0.31 0.99 ± 0.31 0.00 ± 0.31
KTB‐HB 5058.30 2.69 14.47 135.41 0 0 1 0.16 ± 0.31 0.22 ± 0.31 0.62 ± 0.31
KTB‐HB 5149.90 2.97 9.91 19.61 0 1 0 0.00 ± 0.31 1.01 ± 0.31 0.03 ± 0.31
KTB‐HB 5321.19 2.86 6.56 40.54 0 1 0 0.03 ± 0.31 0.64 ± 0.28 0.380 ± 0.28
KTB‐HB 5743.95 3.06 6.10 18.39 0 1 0 0.00 ± 0.31 1.01 ± 0.31 0.00 ± 0.31
KTB‐HB 5840.27 2.65 14.53 16.09 0 1 0 0.00 ± 0.31 0.98 ± 0.31 0.00 ± 0.31
KTB‐HB 6271.56 2.96 18.45 13.75 0 1 0 0.00 ± 0.31 1.00 ± 0.31 0.00 ± 0.31
KTB‐HB 6486.90 2.78 15.27 42.39 0 1 0 0.00 ± 0.31 0.77 ± 0.31 0.22 ± 0.31

Table 5. Showing the Comparison of the Performances Between the Present SCG‐Based BNN and the HMC/MCMC‐Based BNN

Methods
Number

of Iterations
Time

Taken (s)
Error
Bars

Number
of Parameters Computer Processor Used With Memory

SCG‐BNN 100 3 0.30 143 Intel(R) Core(TM) 2 Due CPU E7500@ 2.93GHz RAM 4GB
HMC/MCMC‐BNN 100 15 0.15 143 Intel(R) Core(TM) 2 Due CPU E7500@ 2.93GHz RAM 4GB
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empirical examples for network prediction. The experiment
guided us to choose appropriate hyperparameters for the
actual data analysis. In this way, we could also fairly rule
out the uncertainty due to choosing the appropriate hy-
perparameters in interpretation. The experimental data
analysis suggests that the true prediction heavily depends on

the ratio
�

�
. Accordingly, the hyperparameter was set in for

the real KTB data analysis. Further regression analysis of
both borehole results and between two approaches (SSABP
and BNN–SCG) also shows consistent and good agreements
(R ∼ 0.97) (Figures 6a–6f).
[44] It may thus be emphasized that the BNN algorithm

employed here combined with its validation, test and

regression analyses do provide credentials to the present
results. As discussed above, despite various sources of
errors, the apparently visible changes in litho‐logs succes-
sions appears to be the inter‐bedded geological structures
that remained ambiguous/unrecognized in earlier qualitative
investigations. The output of the histogram type networks
for choosing a maximum a posterior probability value, as
discussed in detail by Bishop [1995], is more appropriate
and provides better guidance on data analysis for such a
complex data analysis.

11. Conclusions

[45] A new BNN approach [Nabney, 2004] is employed to
decode changes in layer successions from well‐log data. The

Figure 6. (a–f) Regression analysis of pilot hole (KTB‐VB) and KTB main hole (KTB‐HB) corresponds
to the paragneisses, metabasites, and hetero‐series shows very good agreement between the BNN and the
SSABP results. A dashed line indicates the best linear fit (slope 1 and y‐intercept 1). The solid line in the
figure shows the perfect fit. The correlation coefficient (R), between the two approaches actually, mea-
sures how well the variation is in two results. If this number is equal to 1, there is a perfect correlation
between the two approaches.
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stability and the efficiency of the BNN approach are
examined on empirically generated noisy as well as noise‐
free data sets. The BNN has inherent ability to approximate
the functional relationship between the input and the output
space/domain by learning through examples, even if there is
no deterministic relationship between the input and the
output space/domain. The method provides a neat and
tractable mathematical framework in which the network
weights could be adjusted in a fully probabilistic way. The
proposed method is robust for uncertainty analysis and takes
care of over‐fitting and under‐fitting in a natural way. The
BNN technique is also an efficient and cost‐effective tool to
interpret a large amount of borehole log data. This provides
a good testimony to use the BNN‐based techniques to solve
the nonlinear inversion problem for borehole geophysics.
[46] The BNN approach is then successfully applied to

classify changes in the litho‐facies boundaries from the real
well‐log data obtained from the German Continental Deep
Drilling site. The method essentially allows us to estimate
uncertainty in network prediction along the entire length of
litho‐section of the KTB. Some mismatching observed in
the BNN analysis might result due to the presence of red
signals with nonzero mean and/or lack of resolution in the
KTB data. Over all the results of present analyses suggest
that, besides corroborating well with the existing results on
the KTB site, the method also uncovers additional finer
details of intervening layer successions in the bigger geo-
logical units, which seem to be of some geological signifi-
cance and should form the basis for more detailed
quantitative examination. Thus, besides introducing a new
probabilistic inversion scheme to the problems of well‐log
data for litho‐facies classification, the present analysis also
reveals some new results and thus explores the generality of
the new method for its actual application to other domains of
earth sciences. Because of its computational efficiency, it is
proposed that the BNN methods could be further exploited
for analyzing a large amount of borehole data in some other
geologically complex areas of interest.
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