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ABSTRACT

The precise classification of changes in rock boundaries/facies
from well-log records is a complex problem in geophysical data
processing. Observed well-log data are a complex superposi-
tion of nonstationary/nonlinear signals of varying wavelengths
and frequencies, shaped by the heterogeneous composition and
structural variation of rock types in the earth. This impairs our
ability to use traditional statistical techniques, which in most cas-
es fail to discriminate and/or, at best, do not precisely extract fa-
cies changes from complex well-log signals. We propose a new
method, set in a Bayesian neural network �BNN� framework and
using a powerful hybrid Monte Carlo simulation scheme to iden-
tify facies changes from complex well-log data. We first con-
struct a complex, composite, synthetic time series using the data
from three simple models: first-order autoregressive, logistic,
and random white noise. Then we attempt to identify individual
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ignals in the pooled synthetic time series. We use the autocorre-
ation and the spectral characteristics of the individual signals as
nput vectors for training, validating, and testing the artificial
eural network model. The results show that the Bayesian sepa-
ation scheme provides consistently good results, with accuracy
t more than 74%. When the method was tested using well-log
ata from the German Continental Deep Drilling Program
KTB�, it was able to discriminate boundaries of lithofacies with
n accuracy of approximately 92% in validation and 93% in test
amples. The efficacy of the BNN in the presence of colored
oise suggests that the designed network topology is robust for
p to 30% correlated noise; however, adding more noise �say,
0% or more� obscures the desired signals. Our method provides
robust means for decoding finely detailed successions of litho-

acies from complex well-log data, better describing the nature of
he underlying inhomogeneous crust.
INTRODUCTION

Sharp changes in rock properties recorded in the form of well logs
eflect physical boundaries and facies changes within various rock
ypes. The well logs recorded in such rocks exhibit complex signal
haracteristics comprising nonlinear/nonstationary and random be-
avior. Discrimination of different rocks types/facies from such
omplex well-log signals is therefore an important challenge in geo-
hysical signal analysis. Graphical crossplotting �Pickett, 1963;
assaway et al., 1989� and other statistical techniques �multivariate

tatistical methods such as principal component and cluster analyses
Wolff and Pelissier-Combescure, 1982� and discriminant function
nalysis �Busch et al., 1987; Delfiner et al., 1987�� frequently have
een used to study borehole data.

However, in complex geologic situations, such as in the presence
f crystalline rocks where metamorphism leads to facies changes, it
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s not easy to extract accurate information from well-log data using
hese conventional methods. Moreover, inferences drawn by such

ethods are ambiguous because of strong overlapping of nonlinear/
onstationary well-log signals, which are also tainted with deceptive
olored noise. Traditional techniques, which are semiautomated and
equire a large amount of data, are costly and not always easily avail-
ble �Rogers et al., 1992�. Further, these methods are very tedious
nd time consuming, particularly when dealing with noisy, complex
orehole data.

Leonardi and Kumpel �1999� examine the fractal behavior of
ell-log signal variability, presuming that well-log signals in the su-
erdeep German Continental Deep Drilling Program �KTB� bore-
ole display nonlinear characteristics. Their study implies that non-
inear well-log data reveal signatures of crustal heterogeneities.
owever, it is difficult to differentiate individual nonlinear signals

rom composite and overlapping well-log signals arising from vari-

9 July 2009; published online 12 February 2010.
02@yahoo.co.in.
rediffmail.com.
SEG license or copyright; see Terms of Use at http://segdl.org/



o
i
�
a
t
c
i

t
t
o
n
d
B
m
P
m
f
2
b
c

s
t
l
t
u
t
a
M
c
1
e
a

i
m
t
t
e

d
s
t
r
e
a
E

M

a
b
c
m
t
p
w
o
m
f

k
B
s
a
�
t

w
s
t
l
m
g

M

w
p
t
c

w
t
n
�
k

o
a
p
e

F
s
l
t
t
t

E68 Maiti and Tiwari
us physical sources. The problem becomes even more acute with
ndividual signals characterized by varying degrees of complexity
e.g., nonlinearity, stochasticity, and randomness�. Thus, it is imper-
tive to search for a better, alternative perspective that takes care of
he nonlinearity as well as the nonstationarity of well-log signals and
an yield an appropriate mean for distinct classification of compos-
te signals.

The artificial neural network �ANN� technique is used extensively
o classify complex nonlinear signals because of its inherent ability
o approximate the functional relationship between the input and the
utput space/domain by learning through examples, even if there is
o deterministic relationship between the input and the output space/
omain �Raiche, 1991; Bishop, 1995; Devilee et al., 1999; van der
ann and Jutten, 2000; Poulton, 2001�. ANN has been applied to al-
ost all branches of geophysics �van der Bann and Jutten, 2000;
oulton, 2001; Meier et al., 2007�. Maiti and Tiwari have developed
ultiple linear and nonlinear algorithms to identify rock boundaries

rom the KTB borehole signal �Maiti and Tiwari, 2005; Maiti et al.,
007�. However, one problem with the very popular ANN-based
ack-propagation algorithm �Rumelhart, 1986� is that it does not
onverge to a global minimum during optimization.

We therefore propose a more powerful approach known as Baye-
ian inference �Tarantola, 1987; Sambridge and Mosegaard, 2002�
o approximate the a posteriori probability distribution from data
ikelihood and a priori information using a Monte Carlo algorithm in
he case of the KTB well-log data. These methods have proven very
seful in several other contexts because they yield nonunique solu-
ions of complex geophysical inverse problems. The practical use of
sample-based inversion scheme, e.g., hybrid Monte Carlo �HMC�/
arkov-chain Monte Carlo �MCMC�, for neural network training

an be found in several works �MacKay, 1992; Bishop, 1995; Neal,
996; Lampinen and Vehtari, 2001; Maiti and Tiwari, 2009�. How-
ver, the efficacy and applicability of these theoretical developments
re not well explored for the case of complex and noisy signals.

Hence, we explored the stability of the method on noisy, synthet-
c, nonlinear models of varying complexity and then applied the

ethod to the real KTB data. We tested the method on various syn-
hetic data generated from well-known models: �1� first-order au-
oregressive �Ar �1��, �2� complex/logistic, and �3� white noise. Our
xperiment was intended to provide useful guidelines and confi-

wji wkj

igure 1. Layout of MLP with a three-layer neural network: x repre-
ents input, subscript i represents the number of nodes in the input
ayer, wji represents the connection weight between the ith node in
he input layer and the jth node in the hidden layer, and wjk represents
he connection weight between the jth node in the hidden layer and
he kth node in the output layer.
Downloaded 26 Jul 2010 to 203.193.153.35. Redistribution subject to 
ence in classifying complex data sets and thereby to help make
ound physical interpretations of actual well-log data. We applied
he method to density �RHOB�, neutron porosity �NPHI�, gamma-
ay intensity �SGR�, seismic P-wave transit traveltime �DTCO�, and
lectrical resistivity �LLD� KTB borehole data to discriminate
mong three lithofacies in a complex metamorphic region of central
urope.

THEORY

ultilayer perceptrons

Multilayer perceptron �MLP� networks are parallel computation-
l units composed of many simple processing elements that mimic
iological neurons �Figure 1�. Processing elements/nodes are inter-
onnected layer by layer, and the functions of each node are deter-
ined by connections, by weights and biases, and by the topology of

he network �Bishop, 1995; Poulton, 2001�. In the popular back-
ropagation method, the error is usually minimized by adjusting the
eights and biases using a gradient-based iterative chain rule from
utput to input layer �Rumelhart, 1986�. The main drawback of the
ethod is that it often becomes stuck in local minima on an error sur-

ace.
To avoid the latter problem, we use HMC simulations �also

nown as a leapfrog discretization scheme� in conjunction with
ayesian probability theory, which is naturally parsimonious, thus

uiting our needs. Complete details of the neural network topology
nd learning rules can be found in Bishop �1995� and Poulton
2001�. Here, we relate the geophysical observations to the model
hrough the following forward equation:

x� f�d���, �1�

here f is a nonlinear function relating the model space and data
pace, � is an error vector, x is the data vector, and d is the model vec-
or. A common way of inverting for d in equation 1 is via an iterative
east-squares method. This, however, does not provide uncertainty

easures, which are essential for sound physical interpretation of
eophysical observations �Tarantola, 1987�.

odel solution in the Bayesian framework

To solve equation 1 in the Bayesian framework, we recast it as

d� fNN�x;w�, �2�

here fNN is output predicted by the neural network, x is a given in-
ut vector, and w is the network weight parameters. In the conven-
ional approach for solving equation 1, regularization is often in-
luded to minimize the misfit function:

E�w���ES��ER, �3�

here ES�1 /2�k
N�dk�ok�xk;wk��2 and ER�1 /2�i�1

R wi
2; R is the

otal number of weights and biases in the network, ok is the neural
etwork output at the output layer from a finite data sets, and � and
, which control other parameters �synaptic weight and biases�, are
nown as hyperparameters.

In this approach, the training of a network starts with an initial set
f weights and biases and ends up with the single best set of weights
nd biases to optimize the objective function. In the Bayesian ap-
roach, a suitable prior distribution, say, P�w� of weights, is consid-
red before observing the data instead of considering only a single
SEG license or copyright; see Terms of Use at http://segdl.org/
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Signal discriminations, Bayesian network E69
et of weights. Using Bayes’ rule, an a posteriori probability distri-
ution for the weights, say, P�w �s�, can be defined as �Khan and
oulibaly, 2006�

P�w�s��
P�s�w�P�w�

P�s�
. �4�

ere, P�s �w� is a data-set likelihood function and the denominator
�s� is a normalization factor. Because P�s� is intractable, direct es-

imation of a posteriori P�w �s� is impossible. Using the rule of con-
itional probability, the distribution of the output for a given input
ector x can be defined in the form �Khan and Coulibaly, 2006�

P�d�x,s���P�d�x,w�P�w�s�dw . �5�

The major problem in Bayesian computation is evaluating the in-
egrals for the a posteriori weights �equation 4� and for the network
utput �equation 5�. In this regard, the MCMC sampling-based
ethod plays an important role in evaluating a posteriori integrals.
quation 5 can be approximated as

P�d�x,s��
1

N
�
n�1

N

P�d�x,wm�, �6�

here �wm� represents an MCMC sample of weight vectors obtained
rom the distributions P�w �s� and N is the number of points w sam-
led from P�w �s�.

ybrid Monte Carlo (HMC)

In the HMC algorithm, each trajectory is updated by approximat-
ng the Hamiltonian differential equations by a leapfrog discretiza-
ion scheme �Duane et al., 1987�. The MCMC algorithm draws
n independent and identically distributed �IID� sample �w�i�; i�1,
, . . . ,N� from the target distribution P�w �s�. The Markov process
orms a sequence of states to draw samples from the posterior proba-
ility. The chain converges to P�w �s� if given enough space to do so.
he complete mathematical details can be found in Bishop �1995�
nd Nabney �2004�. Unfortunately, the pure Metropolis-Hastings al-
orithm �Metropolis et al., 1953; Hastings, 1970� is very slow be-
ause it does not use gradient information. Contrary to this, the
MC-based algorithm for sampling from the target distribution uses
radient information.

The following steps are needed once a step size � and the number
f iterations L have been decided upon. First, we randomly choose a
irection � , which can be �1 or �1 with probability 0.5 to simulate a
orward or backward step in time. Second, following the theory of
amiltonian statistical mechanics, the transition probability matrix

hould satisfy microscopic reversibility, which means that the prob-
bility of the two transitions from qj to qi or from qi to qj be the same
t all times and each pair of points maintains a mutual equilibrium
Sambridge and Mosegaard, 2002�. Third, we iterate starting with
he current state �q,p	� ��q�0�,p�0��	 of energy H, where p is a mo-
entum term that is randomly evaluated at each step. Fourth, we let

he algorithm be applied L times with a step size of � , resulting in the
Downloaded 26 Jul 2010 to 203.193.153.35. Redistribution subject to 
andidate state �w*,p*	 with energy H*. The candidate state is ac-
epted with the usual Metropolis probability of acceptance
in�1,exp���H*�H�	� �Bishop, 1995�. If the candidate state is

ejected, then the new state will be the old state.
In essence, these steps describe how the sampling is done from a

osterior distribution of network parameters so that the summation
f equation 6 can be accomplished and the posterior distribution can
e found, thus optimizing the network. The main idea of the algo-
ithm is that the acceptance probability is evaluated at each step to
roduce the necessary number of realizations �Rabben et al., 2008�.
hus, we estimate the posterior distributions that are not easily trac-

able analytically. The desired statistics can be estimated from the
ame realizations.

eural network implementations

Following Cybenko �1989�, the network topology for our purpos-
s has one input layer and one output layer, each consisting of three
odes �output nodes are binary coded�, and a single hidden layer
onsisting of 15 nodes. This number of hidden-layer nodes is suit-
ble for our work �Table 1�. The raw data �input/output� must be nor-
alized before presenting it to the network to avoid saturation while
apping a nontrivial problem �Maiti et al., 2007�. Hence, we scale

ll input/output pair values between zero and one /��1 and �1� by
sing a simple linear transformation algorithm �Poulton, 2001�: nor-
alized input � 2 � �input � minimum input�/�maximum input �

inimum input� �1.
The initialization of the model parameters is performed using a

istribution of model parameters. The initial values of model param-
ters of the MLP networks �synaptic weight and biases� are formed
y Gaussian prior distributions of zero mean and inverse variance �
also known as regularization coefficient or prior hyperparameter�.

e prefer a Gaussian prior distribution because it provides computa-
ional simplicity and favors small values for the network weights.
etworks with large weights usually result in a map with large cur-
ature �Nabney, 2004�.

We consider a hyperparameter ��0.02, a single initial-value hid-
en layer, and output-layer weights as detailed in Table 1. To define
he objective function in a Bayesian framework, an error model for
he data likelihood is required. We assume that target data are formed
y a smooth function with additive zero-mean Gaussian noise. Ac-
ordingly, hyperparameter ��50 is estimated for the hidden-layer
nd output-layer weights �Table 1�. After defining prior and likeli-
ood functions, we estimate the a posteriori distribution using
ayes’ rule. The parameter � controls the tendency of the model to
verfit the noise in the training data. The uncertainty of the network
utput is controlled by the value of � �Tables 1 and 2�.

We performed several experiments with different model setups
see Table 1�. The number of hidden nodes �Nh�15�, hyperparam-
ters ���0.02; ��50�, step size �� �0.002�, and total iterations
L�100� were found to be suitable, producing an average uncer-
ainty value of approximately 0.14 at network output �see Table 1�.
ur experimental results also indicate that neither a very small step

ize nor a very large number of iterations improves accuracy of the
etwork for our work �see Table 1�.

It should be noted that this is a sampling-based algorithm. The
eapfrog scheme updates the candidate state. The new state is accept-
d if the threshold value is greater than the Metropolis acceptance
robability, which is a random number between zero and one decid-
SEG license or copyright; see Terms of Use at http://segdl.org/
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E70 Maiti and Tiwari
d at each step �Figure 2a�. Control of the acceptance probability
nd, thus, the acceptance rate is very important. If it is equal to one,
ll states will be accepted and the result will be linear inversion
Bishop, 1995; Rabben et al., 2008�. However, if it is close to zero, it

able 1. Noise-analysis test results.

arameters
Red-noise

level

A
va

PG

h�15; ��0.02;
�10; � �0.002;
�100; AU�0.31

10% 81.25

20% 75.00

30% 66.19

40% 60.23

50% 55.40

h�15; ��0.02;
�50; � �0.002;
�100; AU�0.14

10% 87.22

20% 83.24

30% 81.53

40% 76.42

50% 72.73

h�15; ��0.02;
�100; � �0.002;
�100; AU�0.10

10% 87.78

20% 82.67

30% 77.56

40% 73.30

50% 70.17

h�5; ��0.02;
�50; � �0.002;
�100; AU�0.14

10% 78.98

20% 76.70

30% 75.28

40% 73.58

50% 72.44

h�20; ��0.02;
�50; � �0.002;
�100; AU�0.14

10% 82.67

20% 77.27

30% 69.32

40% 63.92

50% 57.95

h�15; ��0.1;
�50; � �0.002;
�100; AU�0.14

10% 86.66

20% 82.39

30% 78.69

40% 73.30

50% 70.45

h�15; ��0.001;
�50; � �0.002;
�100; AU�0.14

10% 85.80

20% 82.39

30% 79.83

40% 75.57

50% 71.59

h�15; ��0.001;
�50; � �0.0002;
�200; AU�0.14

10% 57.67

20% 51.14

30% 46.02

40% 41.48

50% 36.08

AU�average uncertainty
Downloaded 26 Jul 2010 to 203.193.153.35. Redistribution subject to 
ill produce very few updates and will lead to poor convergence
Bishop, 1995; Rabben et al., 2008�. In the present case, the accep-
ance rate is quite satisfactory �0.92� �Figure 2a�. The algorithm re-
ains a defined number of samples �here, 100� in the Markov chain.

y in
n set

Accuracy in
test set

�%�

HS PG MB HS

84.94 72.73 75.00 75.85

76.14 70.74 69.89 69.60

70.74 62.22 61.93 61.65

63.92 55.68 56.53 57.10

54.26 51.42 52.27 51.99

86.93 75.57 78.13 78.41

83.52 75.00 75.57 75.28

79.55 71.59 72.44 71.88

77.84 67.61 68.18 69.32

73.58 65.91 66.19 66.19

87.40 75.57 76.42 76.14

81.53 72.44 74.43 73.86

76.70 67.90 70.45 68.75

72.44 65.63 67.90 64.77

69.89 64.49 65.63 63.07

79.55 71.31 71.31 71.02

78.13 69.60 70.45 69.89

77.27 69.32 70.17 68.75

74.72 67.61 68.18 67.71

73.30 65.91 67.33 67.33

86.65 75.57 76.99 75.85

79.26 68.75 72.44 71.02

73.01 62.50 64.77 63.64

64.49 57.39 57.67 56.53

57.10 53.13 55.40 52.56

84.38 75.28 77.56 74.43

80.97 74.15 75.85 74.43

78.41 70.45 72.44 70.74

73.86 65.63 67.90 67.33

69.32 63.07 65.06 63.92

87.50 77.27 79.26 76.70

82.95 75.57 76.42 74.15

80.11 70.74 72.44 71.31

74.43 67.05 69.89 66.76

69.89 62.78 66.76 63.07

55.66 52.27 53.41 55.11

49.43 45.74 49.43 49.15

41.48 38.64 41.76 43.47

35.51 36.08 36.65 35.23

33.24 31.53 32.39 32.10
ccurac
lidatio

�%�

MB

83.81

75.00

63.90

61.08

54.83

87.78

82.95

78.69

78.41

73.58

87.50

81.82

78.13

73.01

69.60

79.55

77.56

76.14

73.86

72.73

86.36

78.98

71.31

65.63

60.80

87.78

82.10

78.69

75.28

71.31

87.50

82.67

79.83

75.00

72.73

54.55

50.57

42.90

38.92

35.80
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Signal discriminations, Bayesian network E71
hus, during the run, hundreds of inverted network parameters are
btained �Figure 2b�. The output of the Bayesian approach can be in-
erpreted as the a posteriori mean of hundreds of model realizations
nd, thus, as the solution to the inverse problem �Tarantola, 1987�

NETWORK MODEL FOR
SYNTHETIC DATA

Before these methods can be used on actual well-log data, we test
he efficiency of the proposed techniques on three
heoretical models: autoregressive �Ar �1��, logis-
ic, and a white-noise process.

utoregressive model

An Ar �1� model �Fuller, 1976� takes the form
t�AXt�1�	t; where t�1,2,3, . . . ,N denotes

he discrete spatial increment. Here, A is a maxi-
um-likelihood estimator and 	t denotes a purely

andom process �an uncorrelated normal distribu-
ion uniformly distributed in the interval between
ero and one�. An autocorrelation coefficient de-
cribes the degree of signal correlation in the
oise and is calculated from the data. Its value
anges from zero to one. The term Xt depends
artly on Xt�1 and partly on the random distribu-
ion 	t. The Ar �1� model exhibits a tendency to
luster toward low values �Figure 3a�.

ogistic model

A complex system can be represented by the logistic model equa-
ion �May, 1976�, which is of the form Xt�1�BXt�1�Xt�, where Xt

nd Xt�1 are the present and future values of a generating process
ith relative values ranging from zero to one and where B is a coeffi-

ient �control parameter� between zero and four. Theoretically, com-
lexity reaches the maximum for a B value near four. A 3D phase-
pace characteristic is displayed in Figure 3b, which plots present
bservations X�t� on the x-axis, one step ahead X�t�1� on the
-axis, and X�t�2� on the z-axis. The data based on the logistic
odel evolve toward a well-behaved set �Figure 3b�.

andom white-noise model

Random white noise is uncorrelated and has zero mean. Such a
rocess is unpredictable because of its uncorrelated nature. A ran-
om 3D phase plot shows that the values scatter equally in all direc-
ions �Figure 3c�.

pectral and autocorrelation characteristics of
ynthetic data

Figure 4 shows the relationship among three data sets — logistic,
tochastic, and random — in 3D phase space. The plot shows scatter-
ng that indicates a complex and nonlinear relation among the obser-
ations. It is not easy to draw any parametric boundary to classify the
hree sets of time-series data using linear methods �Figure 4�. The
pectral and statistical characteristics of the individual signals are
sed to distinguish between random, stochastic and deterministic
omponents from the complex signals. We used these characteristics

Table 2. Unc

Network para

Nh�15; ��
L�100

Nh�15; ��
L�100

Nh�15; ��
L�100

Nh�15; ��
L�100

Nh�15; ��
L�100
Downloaded 26 Jul 2010 to 203.193.153.35. Redistribution subject to 
s input to an initial ANN model. This is because the spectral power
pectra of chaotic and stochastic models exhibit broadband charac-
eristics that distinctly classify random, red-noise, and deterministic
omponents �Figure 5�.

Figure 5 shows Fourier power spectra for all three models. The au-
ocorrelation indicates the similarity between observations as a
unction of the time separation between them. More precisely, it is

ty analysis for nonlinear series.

Control parameter Average uncertainty

�100; � �0.002; A�0.5; B�3.8

N�0,1�

0.10

�10; � �0.002; A�0.5; B�3.8

N�0,1�

0.31

�50; � �0.002; A�0.5; B�3.8

�0,1�

0.14

�50; � �0.002; A�0.5; B�4.0

N�0,1�

0.14

�50; � �0.002; A�0.75; B�4.0

N�0,1�

0.14

a)

b)

igure 2. �a� The acceptance threshold history against iteration. Rj

enotes the rejected threshold. Fraction of sample rejection is 8%.
b� Simulation of a synthetic underlying function using 100 data
oints in the presence of noise via HMC method. The standard devi-
tion �STD� of the noise is 0.3.
ertain

meter

0.02; �

0.02; �

0.02; �

0.02; �

0.02; �
SEG license or copyright; see Terms of Use at http://segdl.org/
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E72 Maiti and Tiwari
he crosscorrelation of a signal with itself.Autocorrelation functions
ACFs� with lag computed for three models show distinct character-
stics.

etwork model for synthetic data

We train the MLP network coupled with HMC using the data of
he three basic models as described above, their power spectra, and
CF coefficients. In all, 768 data sequences were used for network

raining. The results of a linear regression analysis of the training
ata are displayed in Figure 6 and Table 3. Parameters u� and v corre-
pond to the slope and the y-intercept of the best linear regression fit

)

)

–

–

–
– –

–

–

–

–
– –

–

)

igure 3. �a� Phase space plot of Ar �1�/stochastic series. The maxi-
um-likelihood estimator A value used for the stochastic series is

.5. �b� Phase-space plot of chaotic/logistic series. The control pa-
ameter B used for the chaotic/logistic series is 3.8. �c� Random
hite-noise processes.
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elating to the network output A and target T, respectively. The net-
ork outputs are plotted against T, shown as open circles. A dashed

ine indicates the best linear fit �slope�1; y-intercept�0�. The sol-
d line in Figure 6 shows the perfect fit �output equal to target�. The
hird variable is the correlation coefficient R between the network
utputs and the targets, which is a measure of how well the trained
etwork predicted the target. The number is equal to one if there is
erfect correlation between targets and output.

A composite time series of three models �Figure 7� is used to test
he trained network. Spectral discriminates are used to train the net-
ork, and the resulting network output for the presence or absence of
nonlinear sequence is indicated in the form of a probabilistic index

Figure 7�. The trained network is able to discern individual signals
rom the test model sequence with 74% accuracy �Figures 6 and 7�.
ncertainty analysis of the predicted output is performed by calcu-

ating standard deviation �STD� from the a posteriori covariance ma-
rix of the network output. The discrimination results are presented
n three gray bands, with black representing one and white represent-
ng zero �Figure 7�.

We have experimented with different network parameters to esti-
ate the uncertainty of the network output �see Table 2�. The aver-

ge uncertainty of the predictions is approximately 0.14 at network
utput, with a 90% confidence interval. The uncertainty of the net-
ork prediction depends on � �see Table 2�. It is interesting that clas-

igure 4. A 3D scatter plot of three types of nonlinear series, shows
verlapping signal contents.

– – –

– –

– – –

igure 5. Plot of three types of nonlinear series; Fourier power spec-
rum and autocorrelation functions �ACFs� correspond to a nonlin-
ar model.
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Signal discriminations, Bayesian network E73
ification results for the composite signals �comprising nonlinear,
tochastic, and random sequences� by our method are very good.
hus, our method could be used as an alternative way to discriminate
mong complex signals.

igure 6. Linear regression analyses of total set of data correspond-
ng to �a� chaotic/logistic model �B�3.8�, �b� Ar �1� series �A

0.5�, and �c� white-noise model.
Downloaded 26 Jul 2010 to 203.193.153.35. Redistribution subject to 
NETWORK MODEL FOR FIELD DATA

After describing the successful test of the proposed algorithm on
omplex synthetic series, we now demonstrate the method on real
TB, main-borehole records — density �RHOB�, neutron porosity

NPHI�, gamma-ray intensity �SGR�, seismic P-wave transit travel-
ime �DTCO�, and electrical resistivity �LLD� — for discriminating
mong three lithofacies in a complex metamorphic region of central
urope.

bout the KTB site and data

The KTB drill site is located near the western margin of the Bohe-
ian massif, the largest surface exposure of crystalline rocks in cen-

ral Europe. The drill site is located within the Zone of Erbendorf-
ohenstrauss, a small crustal unit consisting mainly of paragneisses

PG�, metabasites �MB�, and a heterogeneous series �HS�. Detailed

able 3. Linear regression analysis of nonlinear series.

ock type

Correlation
coefficient R

between target T &
network output A

Slope
u

y-intercept of best
linear regression
relating target to
network output v

haotic 0.95 0.91 0.02

tochastic 0.62 0.38 0.19

andom 0.65 0.43 0.19

–

–

igure 7. �a� HMC-based classification results of composite signals.
n the chaotic model, the value for constant B is 3.8; for the stochas-
ic model, the assigned value for A is 0.5. �b� Same as �a� with B

4.0 for the chaotic model and A�0.25 for the stochastic model.
n both, the random white-noise signal is added point by point.
SEG license or copyright; see Terms of Use at http://segdl.org/
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E74 Maiti and Tiwari
nformation about the KTB data is presented in several papers
Franke, 1989; Berckhemer et al., 1997; Emmermann and Lauter-
ung, 1997; O’Brien et al., 1997; Pechnig et al., 1997; Leonardi and
umpel, 1998, 1999�.
In a complex geologic setting such as that of the KTB, it is desir-

ble to know the general well-log response of the various rocks to
repare an appropriate training set for ANN modeling. Spectral
amma ray �SGR� is the well-log parameter most effective in sepa-
ating the different successions in the metamorphic rocks of the
TB. Because of their chemical compositions, SGR exhibits a gen-

ral increase from the most mafic rocks �ultramafites� to the most
cidic rocks �potassium-feldspar-gneiss� observed in the boreholes.

In general, amphibolites and metagabbros, the main rock types of
he massive metabasite unit, are characterized by lower SGR and
igher density �RHOB� than the rocks of paragneiss units. This is be-
ause the metabasites are composed of more mafic and dense miner-
ls such as hornblende and garnet biotite than are the paragneisses,
hich are composed mainly of quartz, plagioclase, and micas. The
ighest gamma-ray activity is recorded in response to the potassium
ontent. These paragneisses are characterized geochemically by
ery high aluminum values, bound to the feldspar minerals. The re-
ation between aluminum content and amount of feldspar minerals
lso explains the low aluminum values recorded in the ultramafites,
hich are almost free of feldspar.
Enhanced NPHI generally reflects discrete zones of faulting and

racturing �Berckhemer et al., 1997�. The rock types that are poor in
hyllosilicates or amphibolites, such as quartz and feldspar-rich
neiss, exhibit very low NPHI; but rocks with high phyllosilicate
nd amphibole content produce striking increases in the NPHI log.
n general, DTCO decreases with increasing density and conse-
uently with the amount of mafic minerals. Significant differences,
anging between 165 and 200 µs/m, were established between the
TCO in metabasites with average values of 160 �s/m and the
TCO in paragneisses �Berckhemer et al., 1997; Pechnig, 1997�.
nlike RHOB, NPHI, SGR, and DTCO, the LLD is affected little by

ock composition �see Table 4�. LLD values are generally very high
n crystalline basement rocks. Variations between 103 and 106 ohm
m �LLD� are nearly independent of the main lithology penetrated
y the KTB. One can see these distribution patterns in the well-log
ata of Figure 8.

ayesian network model for the KTB borehole data

For the actual data modeling, we designed our network with a sin-
le input layer consisting of five nodes corresponding to RHOB,
PHI, SGR, DTCO, and LLD well-log records. We implemented bi-

able 4. Significant limits to generate forward model for neur

ock
ype

Density
RHOB

�g /cm3�

Neutron
porosity
NPHI
�%�

Gamma-
ray

intensity
SGR

� �API�

G 2.65–2.85 5–15 70–130

B 2.75–3.10 5–20 0–50

S 2.60–2.90 1–15 40–90

120–190
Downloaded 26 Jul 2010 to 203.193.153.35. Redistribution subject to 
ary discrimination codes in a single output layer that consisted of
hree nodes representing PG, MB, and HS �see Table 4�. There was
ne intermediate hidden layer with 15 nodes. Before reaching any
onclusion, we conducted several experiments by altering the num-
er of nodes in the hidden layer, finding the present setup suitable for
ur problem �see Table 1�. We parameterized five sets of log respons-
s �considering the well-log response of RHOB, NPHI, SGR,
TCO, and LLD to the rock compositions, and the significant pa-

ameter limit as described above and in Table 4� and generated corre-
ponding representative input/output pairs.

Atotal of 1408 input/target pairs were considered for the analysis.
ll available data sets were randomly partitioned for training �50%�,
alidations �25%�, and testing �25%�. However, there is no rule of
humb for partitioning the data; the percentage depends on data and
he problem. We rechecked different target units in each independent
ubset carefully and reshuffled all samples �1408 input and output
airs�, partitioning them randomly to each independent subset. Early
topping is a common technique in conventional neural network
earning. One avoids overfitting problems by monitoring the valida-
ion-set error during training �Poulton, 2001�. We have adopted a
owerful sampling-based Bayesian approach that is parsimonious
nough to take care of the overfitting problem, even in a complex
odel �Bishop, 1995�.
We considered even more realizations to obtain the generalized

raining set. The network parameters are well resolved through opti-
izing the HMC-based sampling �Figure 9�. The robustness and sta-

ility of the method is examined by noise analysis �Maiti et al.,
007�. To do that, maximum-likelihood-estimator �MLE� constants
re estimated from the data series chosen for analysis. For the valida-
ion set, the MLE constants of RHOB, NPHI, SGR, DTCO, and LLD
re 0.68, 0.64, 0.85, 0.91, and 0.89, respectively; for the test set, they
re 0.67, 0.65, 0.84, 0.92, and 0.88, respectively. After successfully
ompleting the network training, we input the test sets �validations
nd test� corrupted with different levels of correlated colored �red�
oise. The noise-sensitivity analyses demonstrated that the network
as stable for up to 30% correlated colored �red� noise mixed with

he well-log data �Table 1; Figure 10�. Further, we performed linear
egressions analysis �Maiti et al., 2007� to examine overall perfor-
ance of the trained networks for all of the data sets chosen for anal-

sis. The linear regression analyses showed very good results �with
99% accuracy� for resolving different rock types �Table 5; Figure

1�.
After successfully completing the training and the test for robust-

ess of our method, we used the trained network to discriminate
mong lithofacies in the pilot borehole �KTB-VB� for a depth inter-
al of 28–4000 m and in the main hole �KTB-HB� for a depth inter-

work learning.

P-wave transit
traveltime

DTCO
�� /m�

Ln
�resistivity�

LLD
�ohm-m�

Desired
output�binary

code�

165–200 3–9 100

143–196 4–10 010

174–220 5–9 001
al-net
SEG license or copyright; see Terms of Use at http://segdl.org/
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Signal discriminations, Bayesian network E75
al of 3000–7000 m. The pilot borehole and main-hole data were
ampled at a common interval of 15.24 cm �6 inches�. The total
epth of the main hole and the pilot hole were 9101 and 4000 m, re-
pectively. It is important to mention that the well logs used here
ere continuous and uninterrupted throughout the depth intervals
sed.

The output of the networks is interpreted as a maximum a posteri-
ri geologic section �MAPGS� derived from the BNN with HMC
odeling for both KTB boreholes. Output is displayed as a gray-

haded matrix in Figure 12, along with real KTB well-log data, for
ritical and thorough examination. The STD of the error maps �aver-
ge value 
0.14 within a 90% confidence interval� corresponding to
he three lithofacies is estimated by Bayesian code to quantify the
rediction uncertainties in the network output over the entire KTB
ithosection. The result is presented in Figure 12 in the form of prob-
bility matrix with same gray shading. The maximum a posteriori
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igure 8. A3D scatter plot showing the overlapping signal content of
TB data. It is very difficult to draw any parametric boundary.

�

�

�

�

�

�

�

�

)

)

igure 9. Correlation matrix plot �a� between input-layer and hid-
en-layer weights and �b� between hidden-layer and output-layer
eights.
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eologic section �MAPGS� corresponds to the class with maximum
posteriori probability. In the ideal case, if the lithofacies of a partic-
lar class exists, the output value of the node in the last layer is one or
ery close to one; if not, it is zero or very close to zero. The MAPGS
s consistent with main-borehole lithosections �Maiti et al., 2007;
heir Figure 2�. In addition, the proposed method detects some finer
tructures over a couple of depth intervals within the major succes-
ions of paragneiss, metabasites, and heterogeneous series. These
ner structures appear to be geologically significant �Maiti et al.,
007�.

Additional findings of heterogeneous series in between the para-
neisses and metabasites were ambiguous in previous studies be-
ause of the strong superposition of well-log signals produced by the
arying composition and structure of the crystalline rocks. For ex-
mple, at depth intervals of 500–600 m, 1010–1040 m, 1100–1120
, 1510–1550 m, 2500–2520 m, and 3400–3500 m for the pilot hole

KTB-VB� and 3210–3260 m, 4000–4010 m, 4100–4150 m, 4800–

able 5. Linear regression analysis of major rock types.

ock type

Correlation
coefficient R

between target T &
network output A Slope u

y-intercept of best
linear regression
relating target to
network output v

G 0.99 0.99 0.01

B 0.99 0.99 0.00

S 0.99 0.99 0.00

a)

b)
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igure 10. Network stability history for �a� validation samples and
b� test samples when both data sets are corrupted with 50% of corre-
ated red noise.
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810 m, 5300–5310 m, 5500–5520 m, 6000–6050 m, 6530–6550 m,
750–6800 m, and 6900–6960 m for the main hole �KTB-HB�, the
S lithotype is detected �Figure 12a and b�. In the main hole, the

hange of MB to HS at a depth of 3413.15 m is also confirmed. It is
eologically significant in view of the extension of the Franconian
ineament, which cuts the KTB main hole �KTB-HB� at that particu-
ar depth �Emmermann and Lauterjung, 1997�.
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igure 11. Linear regression analysis of the total set of data corre-
ponding to �a� paragneisses, �b� metabasites, and �c� heterogeneous
eries.
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Our analysis shows clear demarcation of the three types of lithofa-
ies. HS contains cataclastic rocks, hornblende, and lamprophyre,
hich usually occur at the faulted and altered zones in the KTB deep
ole. So the identification of the HS series with our enhanced inter-
retation technique certainly helps us develop a clearer picture of
TB heterogeneity as well as understand the degree of alteration of
ifferent stages of metamorphism over the entire KTB lithosection.
n general, these findings must have great implications for under-
tanding the complex tectonic setting during different phases of
etamorphism. Thus, the HMC-based Bayesian network approach

ncreases insight into the evolution and present heterogeneity of the
uropean crust in a more quantitative and qualitative manner.

DISCUSSION

In demonstrating our HMC-based BNN algorithm for classifying
ithofacies boundaries, we first used complex synthetic signals gen-
rated from the well-known simple models because these data repre-
ent, directly or indirectly, the inherent complexity of earth signals.
e tested the potential of the discrimination scheme on synthetic

ata, resulting in an approximately 93% success rate. We also used
everal statistical parameters shown to have discrimination power
or classifying complex signals. The impacts of the various control
arameters were studied extensively �Tables 1 and 2�. It is clear that
ncertainty estimation is mostly controlled by � �Tables 1 and 2�.
he hyperparameter � controls the regularization of noise present in
ata �Table 1�.Actual KTB log analyses provide more detailed infor-
ation of geologic relevance, and our results correlate nicely with

he existing geologic and geophysical findings available. Hence, our
ethod could be applied for any type of complex data using various

ombinations of the statistical parameters; nothing in the method re-
tricts its application to specific lithologies.

No geophysical field records are completely free from noise, but
e do not know the exact level of noise present in the real well-log
ata. Keeping this in mind, we tested the stability of our scheme in
he presence of different levels of correlated red signals. Often, this
ed noise is misread as data because of its correlation structure. Our
est results on such noisy records show that the HMC-based scheme
s stable even up to mixing 30% of red noise with the actual data.
ence, we believe our HMC-based scheme can reliably tackle the
roblem of correlated noise present in the data. In the same way, it
rovides more confidence in interpreting noisy geophysical records.

We performed uncertainty analysis and found an average uncer-
ainty value of approximately 0.14 throughout the KTB lithosection.
owever, at some depths intervals, it varied significantly from that
alue. For instance, a somewhat anomalous uncertainty value of
.30 was observed in the depth interval of 300–350 m in the pilot
ole �KTB-VB�, which may result from the poor sampling rate, as
an be seen in the other three STD error maps. Again, looking at the
epth interval of 6855–6865 m in the main hole �KTB-HB�, we find
nomalous uncertainty values that might arise from the presence of
ncreased metabasites in the heterogeneous series.

The Bayesian approach incorporates a posteriori data uncertainty
aused by inherent correlated noise and by inexact theory �modeling
ncertainty� in a very natural way. The MAPGS by an HMC-based
lgorithm �Figure 12� demonstrates patterns that more or less match
ublished lithology �Maiti et al., 2007�. In addition, the HMC-based
ayesian model also reveals finer structural details that seem to be
eologically significant. The HMC-based Bayesian network ap-
roach provides results that are consistent with prior geologic and
SEG license or copyright; see Terms of Use at http://segdl.org/
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eophysical information. Some mismatch with published results
ould be explained by inexact theory �modeling uncertainty� or poor
ampling. Our HMC-based Bayesian approach, combined with cor-
elated noise sensitivity, uncertainty, and regression analyses, lends
redence to these results.

Density porosity gamma Sonic Ln-Resis
(µs/m) (ohm-m)

Density porosity gamma Sonic Ln-Resis
(µs/m) (ohm-m)

)

)

igure 12. �a� MAPGS based on Bayesian neural networks with HM
ot borehole KTB-VB from a depth of 28–4000 m. �b� Same for main
rom a depth of 3000–7000 m.
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The MAP probability value identifies a robust solution for the
resence of lithofacies within the error limit of approximately 5%.
ur result is further constrained by error analyses in estimating
oundaries of lithofacies �Figure 12�. Hence, we conclude that the
aximum a posteriori �MAP� value identifies real, interbedded geo-

logic structures that went unrecognized in previ-
ous visual interpretations.

CONCLUSIONS

We have developed an HMC-based Bayesian
neural network method to discriminate among
geophysical signals emanating from complex
geologic sources. We examined the method’s ro-
bustness and stability using complex synthetic
data in the presence of different kinds of correlat-
ed noises. The important advantage of this HMC-
based BNN approach is that it can discriminate
accurately complex signals even in the presence
of different kinds of noises that are encountered
in many geologic situations. Our KTB data analy-
sis using the method suggests that the method can
accurately classify lithofacies boundaries. Com-
parative results confirm that the HMC-based
model results corroborate favorably with existing
results inferred from earlier geologic and geo-
physical studies. In addition to agreeing well with
earlier findings, our model result suggests the
presence of finer bed boundaries that were missed
in previous studies. The presence of finer struc-
tures seems to have geologic significance for un-
derstanding the crustal inhomogeneity and struc-
tural discontinuities within the central European
crust. Thus, our main contribution has been to
demonstrate how our method could be used to
generate boundaries of lithofacies from well-log
signals decoded from the borehole. The method
could be further exploited for modeling different
kinds of geologic and geophysical well-log sig-
nals.
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