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Stability of magnetosonic waves in an anti-loss cone plasma
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Abstract: We have studied the stability of magnetosonic wave in a plasma, where the ions and electrons are described by

anti-loss cone (ALC) distributions. Our studies indicate that the magnetosonic waves produced by ions and electrons with

ALC distributions are in the higher frequency end within the range of frequencies, as observed by the Combined Release

and Radiation Effects Satellite spacecraft. They are weakly damped and can, therefore, travel long distances. These waves

are expected to play an important role in the acceleration of radiation belt electrons.
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1. Introduction

Field fluctuations, with frequencies close to the proton

gyrofrequency and its harmonics and up to the lower hybrid

frequency, have been observed at radial distances of 2–8 RE

around the geomagnetic equator in the magnetosphere [1,

2]. These waves, observed mainly in the afternoon and pre-

midnight sectors, propagate nearly perpendicular to the

magnetic field. Observational [3, 4] and theoretical [5–7]

studies indicate that the wave is driven by energetic (of the

order of tens of keV) protons with ring like distributions.

More recent observations are made by the CLUSTER

satellite in the plasma sheet boundary layer (PSBL) [8].

These waves, initially called ‘‘equatorial noise’’ [1] are

now referred to as ‘‘magnetosonic waves’’. In contrast to

their generation mechanism in the PSBL, magnetosonic

waves in the inner magnetosphere are driven by a tenuous,

energetic (of tens of keV) protons, in the presence of a cold

background plasma (electrons and ions with energies of

*1 eV) [3, 9]. Other studies on these waves, as observed

by the Combined Release and Radiation Effects Satellite

(CRRES) spacecraft from the proton gyrofrequency up to

the upper hybrid wave frequency, have been restricted to a

frequency range between 0.5 fLHR and fLHR (fLHR is the

lower hybrid frequency). Emissions are observed to occur

most of the time outside plasmapause; the most intense

being in region of L = 3–4 [4]. These waves are generally

believed to contribute to the transverse heating of protons

[10, 11] and the acceleration of radiation belt electrons

[12–14]. Other proposed mechanism is a new variant of the

theory of magnetospheric resonator for magnetosonic

waves [15] and the numerical investigations of temporal

evolution of cylindrical magnetoacoustic waves in plane-

tary magnetospheres [16]. It has also been shown that the

slow magnetosonic perturbations generated in vicinity of

magnetopause can be transformed into fast magnetosonic

wave, which can then propagate into the magnetosheath

[17]. The association of Pc5 pulsations with the Alfven and

magnetosonic waves has also been studied [18]. The dis-

persion characteristics of low frequency waves in multi-ion

plasmas have also been investigated recently [19]. Other

relevant studies are the investigations of effect of an

electric field on electromagnetic ion cyclotron (EMIC)

wave [20] where it is found that the electric field control

the growth rate of these waves, while the steep loss cone

distribution enhance the growth rate and perpendicular

heating of the ions. Wave propagation around the electron

cyclotron frequency has also been investigated [21].

In magnetopause, the loss cone cannot be completely

empty since a fraction of the loss cone particles is scattered*Corresponding author, E-mail: cvgmgphys@yahoo.co.in
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back into the loss cone. Besides, newer particles may be

continuously entering the loss cone through convection or

pitch angle diffusion. Thus realization of a loss cone dis-

tribution is not easy in practice. Wu [22],therefore, has

suggested a partially filled loss cone distribution that could

be constructed by subtracting two Maxwellians. This new

distribution is called the anti-loss cone (ALC) distribution,

the existence of which has been predicted by Roederer [23]

and is characterized by a deficit of particles with vjj � 0.

This distribution has been observed to be present beyond

the plasmasphere and near earth plasmasheet [24], the

extra-terrestrial ring current region [25] and the central

plasma sheet (CPS) [26]. In addition, protons streaming

along magnetic field lines, with maxima near 0� or 180�
pitch angle are well described by ALC distributions [27].

Such streaming protons have been observed in the dayside

magnetosphere [28] and the polar cusp [29]. Another

instance is that by the SCATHA satellite, which observed

electrons with a pronounced pitch angle minimum of 90�
[30]. Again, in a modeling study, Ashour-Abdalla et al.

[31] have reproduced the essential features of both large

scale distributions of ions in the geomagnetic tail and their

small scale structures in configuration and velocity space.

A very important conclusion of their study is that the

plasma in the CPS exhibits a ALC distribution. More

recently, INTERBALL observations of the low latitude

boundary layer (LLBL) has revealed that the ions are field

aligned and counter streaming [32]. It is thus evident that

the plasma in the inner regions of the magnetosphere can

be well modeled by ALC distribution.

Instabilities driven by ALC distributions have been

studied by a number of researchers: Kennel et al. [33] and

Nambu and Watanabe [34] have studied the ion acoustic

and the electrostatic ion cyclotron waves in such plasmas to

explain the high frequency waves observed in the magne-

tosphere. That this distribution is unstable to electrostatic

and electromagnetic drift instabilities has been demon-

strated [25, 35–37]. The whistler mode has also been

shown to be unstable in this plasma [38, 39]. Other wave

modes investigated using this distribution function are the

lower hybrid and modified electron acoustic instabilities

[40] and the electromagnetic ion cyclotron wave [41].

We have studied the stability of magnetosonic wave in a

plasma, where the ions and electrons are described by anti-

loss cone distributions: the motivation is conjecture of

Meredith et al. [4] that magnetosonic waves produced in

remote regions propagate both radially and azimuthally. Our

studies indicate that the magnetosonic waves produced by

ions and electrons with ALC distributions are in the higher

frequency end within the range of frequencies observed by

the CRRES spacecraft. They are weakly damped and can,

therefore, travel long distances as conjectured in [4].

2. The general dispersion formula

We are interested in the propagation and stability of the

magnetosonic wave in a plasma where both the ions and

electrons are described by ALC distributions.

For this purpose we consider a homogeneous, uniformly

magnetized plasma of ions and electrons in an external

magnetic field B ¼ B0ẑ. In presence of a wave described by

ðx; k~Þ the response of the plasma medium is described by

the Vlasov equation

ofa

ot
þ v~ � r~fa þ

qa

ma
E~þ v~axB~

T

c

" #
� ofa

ov~
¼ 0 ð1Þ

where a ¼ i (ions) or e (electrons). E~ðr; tÞ and B~ðr; tÞ are

the self consistent electric and magnetic fields with

B~
T ¼ B~0 þ B~ðr; tÞ. qa and ma denote, respectively, the

charge and mass of species a.

We transform Eq. (1) to cylindrical coordinates in

velocity space, namely (v?; 0; vjj). Neglecting the mag-

netic component of the wave in comparison to electrical

component (as it is smaller by a factor of v=c) and

assuming a perturbation of the form exp½iðk~ � r~� xtÞ�, the

Fourier–Laplace transform of the linearised form of Eq.

(1) [42], is

iðk~ � v~� xÞfakx � xca
ofakx

o/
¼ � qa

ma
E~kx �

ofa0

ov~
ð2Þ

In Eq. (2) xca ¼ qaj jB0=ðmacÞ is the gyrofrequency, Bo

is the ambient magnetic field and c is the velocity of

light. We assume k~ to lie within the x–z plane and

k~¼ ðk?; 0; kjjÞ. Using the same notation as in [42] and

defining

q?ðjjÞ ¼
k?v?ðjjÞ

xca
; s ¼ x

xca
; f � fakx ð3Þ

and

Kð/Þ ¼ qa

maxca
Ekx �

ofa0ðv2
?; v

2
jjÞ

ov
; ð4Þ

we can write Eq. (2) as

of

o/
¼ iðq? cosð/Þ þ qjj � sÞf þ Kð/Þ ð5Þ

The solution to Eq. (5) is given by [42]

f ¼ exp½iðq? sinð/Þ þ qjj/� s/Þ�

�
Z

duKð/Þ exp½�iðq? sinð/Þ þ qjju� s/Þ� ð6Þ

We now need an explicit form for the particle distribution

function fa0. In this paper we choose
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fa0 ¼ fa00 expð�v2
?a?aÞ½expð�v2

jjataÞ � qa expð�v2
jjamaÞ�

ð7Þ

In Eq. (7) fa00 ¼ p�3=2a?a a�1=2
ta � qaa

�1=2
ma

� ��1

is the

normalization constant, while, a?a ¼ ðma=2kBT?aÞ and

ama ¼ ðma=2kBTmaÞ. Tt and Tm denote the temperatures

of the trapped and missing particles, T? is the temperature

perpendicular to the magnetic field, kB is the Boltzmann’s

constant and the parameter q controls the strength of the

anti-loss cone.We thus get

Kð/Þ ¼ K1 cosð/Þ þ K2 sinð/Þ þ K3 ð8Þ

with

K1 ¼ �
qa

maxca
E~xkxð2v?a?Þfa0

K2 ¼ �
qa

maxca
Eykxð2v?a?Þfa0

and

K3 ¼ �
qa

maxca
Ezkxfa00ð2vjjatÞ expð�v2

?a?aÞ

� expð�v2
jjataÞ � qa

ama

ata
expð�v2

jjamaÞ
� �

ð9Þ

Using a well known identity connecting the exponential

and Bessel’s function Jn, we can write down the solution of

Eq. (6) as:

fakx ¼ �i
qaa?a

ma

X
n;l

Jnðq?aÞ exp½iðn� lÞ/�
kjjvjj � xþ lxca

Aakx ð10Þ

where

Aakx ¼ axExkw þ ayEykw þ azEzkw ð11Þ

with

ax ¼ v?½Jlþ1ðq?aÞ þ Jl�1ðq?aÞ�fa0

ay ¼ �iv?½Jlþ1ðq?aÞ � Jl�1ðq?aÞ�fa0

and

az ¼ Jlðq?aÞ2vjj
ata

a?a
fa00 expð�v2

?a?aÞ

� expð�v2
jjataÞ � qa

ama

ata
expð�v2

jjamaÞ
� �

ð12Þ

As a check on our results, we note that Eq. (12) reduces

to the corresponding equation in [42] if a?a ¼ ata and

qa ¼ 0. fakx of Eq. (10) that can be used to calculate the

perturbed current is defined by

Jkx ¼
X

a

na0qa

Z
v~fakxdv~� r~ � E~ ð13Þ

where general expression for the components of the

conductivity tensor are [42]

rlm ¼�i
X

a

naq2
aa?a

ma

X
n;l

Z
vlamJnðq?aÞexp½iðn� lÞ/�

kjjvjj �xþ lxca
fa0dv~

ð14Þ

3. Dispersion formula for magnetosonic waves

We consider the near perpendicular propagation of an

electromagnetic wave in a plasma, where both the ions and

electrons are described by ALC distribution. We assume

that x� xci, Ex ¼ Ez ¼ 0; ðEy 6¼ 0Þ; k~¼ x̂k? þ ẑkjj with

k2
? � k2

jj. The dispersion formula for the magnetosonic

wave is given by [42]

c2k2

x2
¼ 1þ vyy ð15Þ

where

vyy ¼
4pi

x
ryy ð16Þ

Using Eq. (14) and carrying out the du—integration, we

get the final expression for ryy as

ryy ¼ �i
X

a

x2
paa?a

X
1

Z
J0lðq?aÞ
� �2

kjjvjj � xþ lxca
fa0v3

?dv?dvjj

ð17Þ

where J
0
l is the derivative of the Bessel function.

Substituting for fa0 from Eq. (7) and carrying out the

dv?—integration using the basic integral [43]

Iða; bÞ ¼
Z1
0

dv?v? expð�v2
?a?ÞJlðav?ÞJlðbv?Þ

¼ 1

2a?
exp �ða

2 þ b2Þ
4a?

� �
Il

ab

2a?

� 	
ð18Þ

and the dvk—integration using the plasma dispersion

function, we arrive at the final form for vyy as

vyy ¼
1

x

X
a

x2
pa

kjja
�1=2
ta

1

1� qa
Tma
Tta

� �1=2
KðL?aÞ½ZðftaÞ

� qaZðfmaÞ� ð19Þ

In Eq. (19)

KðL?aÞ ¼ expð�L?aÞ½L?aIlðL?aÞ þ ð1

� 2L?aÞ
d

dL?a
IlðL?aÞ þ L?a

d2

dL2
?a

IlðL?aÞ� ð20Þ

with
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L?a ¼
k2
?

2x2
caa?a

ð21Þ

Il is the modified Bessel function. The arguments of the

plasma dispersion function are

ftðmÞ ¼
ðx� lxcaÞa1=2

tðmÞ
kjj

ð22Þ

3.1. The dispersion relation and growth/damping rate

In this section, we have derived the dispersion relation and

the expression for the growth/damping rate for the mag-

netosonic wave.

For near perpendicular propagation, kjj � 1; hence from

Eq. (22), ftðmÞ � 1. The asymptotic expansion of the plasma

dispersion function is thus needed and it is given by [44]

ZðfÞ � � 1

f
� 1

2

1

f3
. . .þ i

ffiffiffi
p
p k

kj j expð�f2Þ ð23Þ

We also assume L?i � 1 so that both the exponential and

the modified Bessel functions in Eq. (20) can be

expanded as a power series. Substituting Eq. (23) and

the power series expansion of Eq. (20) and considering

only l = 0 and ±1 contributions from both electrons and

ions, Eq. (19) in conjunction with Eq. (15) yields the

following dispersion relation for propagation of

magnetosonic waves:

k2c2

x2
� 1þ

x2
pe

x2
2L?e þ

x2

x2 � x2
ce

ð1� 3L?eÞ
� �

þ
x2

pi

x2
2L?i þ

x2

x2 � x2
ci

ð1� 3L?iÞ
� �

¼ 0 ð24Þ

As a check on Eq. (24) we note that for L?e ¼ L?i ¼ 0

(cold plasma) and for x2 � x2
ci it reduces to

x2 ¼ k2v2
A

1þ v2
A

c2

ð25Þ

which is the dispersion relation for the fast magnetosonic

wave [45]. In Eq. (25), vA is the Alfven velocity defined by

v2
A ¼ B2

0=ð4pn0imiÞ. On the other hand, for L?i ¼ 0 but L?e 6
¼ 0 (cold ions and hot electrons), Eq. (24) can be shown to

reduce to

x2

c2k2
¼ v2

A þ v2
s

v2
A þ c2

ð26Þ

which is the same as given by Chen [46] for magneto-

acoustic waves. In Eq. (26), vS is the ion acoustic speed

defined by vS ¼ ð2Te=miÞ1=2
. Using the imaginary part of

dispersion function expansion given by Eq. (23) and

writing x ¼ xr þ ixi, Eqs. (15) and (19) yield the

expression for the growth/damping rate as

xi ¼

�
ffiffiffi
p
p

kjj

X
a¼e;i

x2
paL?aa

1=2
ta

1�qa
Tm

Tt

� �1=2

a

expð�f2
ta0Þ�qa expð�f2

ma0Þ
� �

8><
>:

9>=
>;

ð27Þ

In Eq. (27), we have retained only the l = 0 electron and ion

contributions. As a check on Eq. (27), we note that for qi ¼
qe ¼ 0 it reduces to the corresponding expression in [42]. It

is also seen from Eq. (27) that the magnetosonic wave is

always damped, the damping being dominated by electrons.

However, as is obvious from Eq. (27), the damping is lesser

in a plasma described by an ALC distribution than in a

plasma described by a Maxwellian distribution.

4. Results

The dispersion relation given by Eq. (24) and the expres-

sion for the damping rate [Eq. (27)] have been derived with

restrictive assumptions. To relax these conditions, it is

decided to solve the dispersion relation numerically. Hence

the dispersion relation given in Eq. (15) is set up using

Eq. (19) and solved using the IMSL routine ZANALY

which calculates the complex zeros of a function f(z) using

Muller’s method [47]. It may also be noted at this point that

a subtracted Maxwellian distribution is used in a simulation

study of magnetosonic waves [48].

Magnetosonic waves starting from the proton gyrofre-

quency up to the upper hybrid frequency have been

observed by the CRRES spacecraft. However, the survey of

Meredith et al. [4] concentrates on waves between 0.5 fLHR

and fLHR to provide a balance between including the

strongest emissions, in the region of L = 3–4 and provides

a reasonable coverage in L. It may also be mentioned here

that magnetosonic waves have also been observed even in

the absence of proton rings [49]. Also observational evi-

dence generally suggests that these waves are associated

with energetic protons of energies of 10 s of keV [3, 4].

Thus the parameters used in our computations are as fol-

lows: the background magnetic field B0 ¼ 0:31=L3 with

L = 4, ion and electron temperatures respectively equiva-

lent to 25 keV and 100 eV and an ion density of 10 cm-3.

The damping rate is studied as a function of the parameters

of the ALC distribution namely q; Tm; Tt, etc.

Figure 1 is a plot of the damping rate versus k?rL (rL

being the ion Larmour radius) as a function of the propa-

gation angle # for ðTm=TtÞi ¼ ðTm=TtÞe ¼ 0:9; qe ¼ qi ¼
0:5 and ðT?=TtÞi ¼ 10:0. The continuous curve is for a

propagation angle of 65� and the dashed one for an angle of
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85�. As can be seen from the figure, the damping rate is

generally larger for near perpendicular propagation angles,

with the maximum shifting towards larger k?rL as the

propagation angles increases.

Figure 2 is a plot of the damping rate versus k?rL as a

function of the ALC index q; the other parameters for the

figure being # ¼ 85	, ðTm=TtÞi ¼ ðTm=TtÞe ¼ 0:9 and

ðT?=TtÞi ¼ 10:0. The dashed curve is for qe ¼ qi ¼ 0

(Maxwellian plasma) and the continuous curve for

qe ¼ qi ¼ 0:9. We see that the damping rate is a maximum

for a Maxwellian plasma; this result being in agreement

with the conclusion from Eq. (27).

Figure 3 is a plot of the damping rate versus k?rL as a

function of ðTm=TtÞ with a propagation angle # ¼ 85	. The

other parameters are : ðT?=TtÞi ¼ 10:0, qe ¼ qi ¼ 0:9; the

dashed curve is for ðTm=TtÞi ¼ ðTm=TtÞe ¼ 0:1 while the

continuous curve is for ðTm=TtÞi ¼ ðTm=TtÞe ¼ 0:9. We

find that peak value of the damping rate is smaller for

larger values of ðTm=TtÞ; there is also a shift in the peak

value to larger k?rL as ðTm=TtÞ decreases.

5. Discussion

Fast magnetosonic waves in the magnetosphere are expec-

ted to play an important role in the scattering and acceler-

ation of radiation belt electrons [13]. They are believed

responsible for accelerating electrons from *10 keV to a

few MeV on a time scale of 1–2 days and hence play an

important role in radiation belt dynamics [4, 14].

The study of Meredith et al. [4] which is restricted to

magnetosonic waves of frequencies between 0.5 fLHR and

fLHR, for reasons already mentioned, revealed low energy

(ring energy ER \ 30 keV but with ER [ EA, the Alfven

energy) proton rings to be closely associated with the

observation of magnetosonic waves both inside plasma-

pause as well as outside the plasmapause on the dusk side.

Ion ring distributions are therefore put forward as a likely

source of generation for these waves. However, the

observation of proton rings with energies ER \ EA sug-

gests that rings are not the only source for these waves. One

of the explanations offered by Meredith et al. [4] is the

propagation of these waves over long distances, both

radially and azimuthally, from a remote source region.

In a recent analytic study, based on Snell’s law, it is

found that untrapped waves launched inside and outside the

plasmasphere could travel azimuthally 0–4 and 0–7 h in

local times respectively. This substantial radial and azi-

muthal propagation may account for the presence of

magnetosonic waves far away from the source region [49].

Our numeric results show a frequency range extending

from 0.38 fLHR to 1.94 fLHR, in broad agreement with

observations at the higher frequency end in Meredith et al.

[4]. Since they are weakly damped, they can propagate

both radially and azimuthally as required [4, 49]. The local

acceleration of electrons is expected to occur over a time

scale of 1–2 days [4, 14]; the waves should therefore be

weakly damped for an effective absorption of wave energy.

Since our results show that the wave is weakly damped,

such an effective transfer of energy is plausible.

Fig. 1 Plot of damping rate

versus normalised wavelength

k?rL for ðTm=TtÞi ¼ ðTm=TtÞe
¼ 0:9, qi ¼ qe ¼ 0:5,

ðT?=TtÞi ¼ 10:0. The

continuous curve is for a

propagation angle # ¼ 65	; the

dashed curve is for # ¼ 85	.
The numerical values have been

multiplied by 1.0e?05
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6. Conclusions

We have studied the stability of magnetosonic wave in a

plasma where the ions and electrons are described by anti-

loss cone distributions. We have derived expressions for

both the dispersion relation and the growth/damping rate in

a plasma where both the ions and electrons are described by

anti-loss cone distribution functions. Real part of the dis-

persion relation is shown to reduce to standard results under

limiting conditions. Our numeric calculations show that the

waves have, indeed the correct frequency range at the

higher end of the wave spectrum. They are weakly damped

and can, therefore, travel long distances as conjectured in

[4]. Due to their weak damping they can effectively interact

with electrons; they can thus be considered as one of the

agents for the acceleration of electrons.

Acknowledgments Authors at SPAP acknowledge financial assis-

tance by the UGC under its Special Assistance Programme and the

DST under its FIST and PURSE Programmes.

Fig. 2 Plot of damping rate

versus normalised wavelength

k?rL for ðTm=TtÞi ¼ ðTm=TtÞe
¼ 0:9, ðT?=TtÞi ¼ 10:0 and a

propagation angle # ¼ 85	. The

continuous curve is for an ALC

plasma with qi ¼ qe ¼ 0:9 and

the dashed curve is for a

Maxwellian plasma

qi ¼ qe ¼ 0. The numerical

values have been multiplied by

1.0e?05

Fig. 3 Plot of damping rate

versus normalised wavelength

k?rL for qi ¼ qe ¼ 0:9,

ðT?=TtÞi ¼ 10:0 and a

propagation angle # ¼ 85	. The

dashed curve is for ðTm=TtÞi ¼
ðTm=TtÞe ¼ 0:1 and the

continuous curve for

ðTm=TtÞi ¼ ðTm=TtÞe ¼ 0:9. The

numerical values have been

multiplied by 1.0e?05
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