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Secular trend of geomagnetic elements in the Indian region
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In the present study, secular trends and jerks in the geomagnetic elements D, H and Z are investigated at the
six Indian magnetic observatories using annual and monthly mean values for all days, quiet days and night base
(night time mean). The residuals of all-day annual and monthly means are computed by removing a polynomial
fit from their best fitting curves. The residuals of D, H and Z curves do not show any parallelism with the 11-year
sunspot cycle. At Alibag, the D residual shows a periodicity of 2 solar cycles, whereas the H and Z residuals
indicate a quasi-periodicity of 3 solar cycles for the period 1921–2009. At the Indian stations, an in-phase solar
cycle component is observed for 2 of the solar cycles in the D and Z residuals, while the H residual shows out-
of-phase variations with the sunspot cycle for the period 1958–2009. Two geomagnetic jerks, 1970 and 1991, are
well reflected in the monthly and annual mean values in the Indian region, as observed globally.
Key words: Secular variation, core-mantle, geomagnetic jerks, solar cycle, polynomial fit.

1. Introduction
Gilbert, in 1600 A.D., suggested a model Earth called

Terrella in his book De Magnete. According to this model,
the planet Earth is a huge magnet and is approximated to a
magnetic dipole placed at its center. This geomagnetic field
changes over a wide range of time scales from a fraction of a
second to millions of years. The geomagnetic field consists
of an internal and external field; the internal field is the main
field on which external field variations such as Sq, storms
and sub storms are superimposed. The main field variations
(more than 90%) are generated by the Earth’s liquid outer
core. The core-mantle interactions lead to secular changes.
The external source (less than 10%) is located in the Earth’s
ionized upper atmosphere and is due to highly-penetrating
radiations from cosmic rays, solar, planetary or lunar origin.
Among all these external sources, the Sun is the major
energy source, causing upper atmosphere ionization that
sets up currents responsible for short-period variations, such
as Sq, storms and sub storms in the Earth’s magnetic field.

The annual mean values of magnetic observations are
used to determine the secular variations of the geomagnetic
field components. These variations differ from place to
place and vary with time. The secular variation covering a
period of ∼100 to 1000 years in which the major part of the
geomagnetic field does not undergo reversals comes under
this type of study. Moos (1910) studied the secular variation
of the geomagnetic field components at Bombay for the
period 1871–1905 and, after reducing Bombay (Colaba)
data to Alibag, Pramanik (1952) extended these secular
variation curves up to 1949. Rao and Bansal (1969) fitted
polynomials of a third order to the observed annual mean
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values of H, Z and D for Alibag from 1905–1965. Bhardwaj
and Rangarajan (1997) further extended these curves up to
1990 for Alibag. In the present study, secular variations,
long-period oscillations in the residuals, and secular jerks,
are discussed using annual and monthly mean values of
observations from six Indian magnetic observatories.

2. Data and Technique Used
The data used in this study are the annual and monthly

mean values of the geomagnetic field components D,
H and Z for all days, five international quiet days and
night base (quiet days monthly mean values from 23–01
h LT) from six Indian observatories: Trivandrum (TRD)
/ Tirunelveli (TIR), Kodaikanal (KOD), Annamalainagar
(ANN) / Pondicherry (PND), Hyderabad (HYB), Alibag
(ABG) and Sabhawala (SAB). Table 1 shows the IAGA
code, the geographic and geomagnetic coordinates of these
stations, and the period of data used. The locations of these
observatories, shown in Fig. 1(a), are located from the dip
equator up to the Sq focus near Sabhawala (30.37◦N Geo-
graphic Latitude). The position of the dip equator for the
years 1975, 1985, 1995 and 2005 are shown in Fig. 1(b).

The data sets for Alibag are from 1921–2009, and,
for other equatorial electrojet stations, from 1958–2009.
As Annamalainagar and Trivandrum observatories are
closed, the data for these stations have been reduced from
Pondicherry and Tirunelveli by applying correction factors
to all three elements D, H and Z. Data sets for Hyderabad
and Sabhawala are from 1965–2009. Data for Kodaikanal
station are from 1965–2005 for D and H, whereas data for
Z are from 1965 to 1997 due to technical problems. It is to
be pointed out that the declination (D) at Alibag was east-
erly up to 1926, and from 1927 has continued to be westerly
and, at present, is again swinging towards the east.

The technique used in this study is propagating least
squares as suggested by Gangi and Shapiro (1977). Us-
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Table 1. List of stations along the Indian Sector, their Geographic and Geomagnetic coordinates, and the period of data used.

Observatory Name IAGA Code Geographic Geomagnetic Period of data used

Latitude (◦N) Longitude (◦E) Latitude (◦N) Longitude (◦E)

Sabhawala SAB 30.37 77.80 20.93 151.50 1965–2009

Alibag ABG 18.63 72.86 9.74 145.55 1921–2009

Hyderabad HYB 17.42 78.55 7.97 150.87 1965–2009

Annamalainagar / ANN/ 11.37 79.68 1.85 151.39 1958–2009

Pondicherry PND

Kodaikanal KOD 10.23 77.46 0.92 149.11 1965–2005

Trivandrum / TRD/ 8.48 76.95 −0.77 148.44 1958–2009

Tirunelveli TIR

Fig. 1. (a) The location of the six Indian Magnetic observatories—Trivandrum (TRD)/Tirunelveli (TIR), Kodaikanal (KOD), Annamalainagar
(ANN)/Pondicherry (PON), Hyderabad (HYB), Alibag (ABG) and Sabhawala (SAB). (b) shows the position of the Dip Equator for the years 1975,
1985, 1995 and 2005 and its migration towards the south. Note Pondicherry (PND) is shown as PON.

ing this technique, fifth-order polynomials were fitted for
all days, quiet days and night base. The secular trend curves
for annual and monthly mean values at all six observatories
are not much different for all three categories, viz, all days,
quiet days and night base. However, they differ in coeffi-
cients as shown in Tables 2 and 3 for quiet days and night
base. In the present study, the annual mean quiet days plot
for Alibag are shown in Fig. 2(a) and, for monthly mean all

days, in Fig. 2(b). Plots for quiet days annual mean values
at all six stations are shown in Figs. 3(a)–3(c) and, for night
base, in Figs. 4(a)–4(c).

3. Results and Discussion
The results are based on the annual and monthly mean

values of the geomagnetic field components D, H and Z
and are discussed in terms of (a) trends in secular variations
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Table 2.

(a) List of coefficients for D computed by quiet-day annual mean best-fitting curves at the Indian stations.
Station a0 a1 a2 a3 a4 a5

TRD 181.4642 −0.1203 −0.0380 0.00039 — —

KOD 159.3763 −2.9317 0.2439 −0.00941 0.00011 —

ANN 173.0193 −3.0471 0.3232 −0.01542 0.00029 −0.000002

HYB 106.1196 −3.8899 0.5905 −0.03442 0.00079 −0.000006

ABG 50.4585 −0.2133 0.1131 −0.01017 0.00026 −0.000002

SAB 18.1249 2.2947 −0.4009 0.02588 −0.00062 0.000005

(b) List of coefficients for H computed by quiet-day annual mean best-fitting curves at the Indian stations.
Station a0 a1 a2 a3 a4 a5

TRD 40037.446 31.8294 −3.7060 0.1099 −0.00091 —

KOD 39636.265 −47.4673 4.6686 −0.3476 0.0110 −0.000113

ANN 40571.243 22.9623 −1.9759 0.0085 0.0012 −0.000014

HYB 40124.488 −1.33896 −3.0627 0.1091 −0.0010 —

ABG 38576.915 65.5623 −6.1481 0.1510 −0.0011 —

SAB 34194.990 19.5580 −4.9207 0.1717 −0.0018 —

(c) List of coefficients for Z computed by quiet-day annual mean best-fitting curves at the Indian stations.
Station a0 a1 a2 a3 a4 a5

TRD −342.1428 −39.6445 −2.3314 0.3945 −0.01144 0.000101

KOD 2209.6492 −68.1931 8.0936 −0.2235 0.00265 —

ANN 3809.6931 24.1544 −7.2175 0.5721 −0.01425 0.000117

HYB 15189.328 −113.277 12.1131 −0.3674 0.00389 —

ABG 17789.010 −19.6960 −3.5039 0.3542 −0.00943 0.000082

SAB 34782.070 −76.4116 5.6646 −0.1641 0.00189 —

Table 3.

(a) List of coefficients for D computed by quiet day’s night-time annual mean best-fitting curves at the Indian stations.
Station a0 a1 a2 a3 a4 a5

TRD 179.8490 0.0947 −0.0457 0.00047 — —

KOD 159.3060 −2.9849 0.2480 −0.00952 0.00011 —

ANN 172.7217 −3.0832 0.3320 −0.01592 0.00030 −0.0000020

HYB 105.4217 −3.3481 0.5164 −0.03078 0.00072 −0.0000059

ABG 50.3889 −0.0324 0.1152 −0.01030 0.00026 −0.0000022

SAB 18.2142 2.2592 −0.3961 0.02563 −0.00061 0.0000051

(b) List of coefficients for H computed by quiet day’s night-time annual mean best-fitting curves at the Indian stations.
Station a0 a1 a2 a3 a4 a5

TRD 40005.441 33.8969 −3.8286 0.1124 −0.00093 —

KOD 39619.178 −48.5988 4.7564 −0.3509 0.01108 −0.000114

ANN 40540.598 27.5909 −2.4591 0.0297 0.00077 −0.000012

HYB 40117.033 −2.0848 −3.0216 0.1081 −0.00104 —

ABG 38561.087 66.6735 −6.2157 0.1525 −0.00117 —

SAB 34199.419 17.2593 −4.7598 0.1693 −0.00182 —

(c) List of coefficients for Z computed by quiet day’s night-time annual mean best-fitting curves at the Indian stations.
Station a0 a1 a2 a3 a4 a5

TRD −348.670 −38.763 −2.3973 0.3968 −0.01147 0.000101

KOD 2128.734 −3.38921 −4.9038 0.8105 −0.03257 0.000428

ANN 3820.802 22.709 −7.0530 0.5644 −0.01410 0.000116

HYB 15190.476 −112.887 12.0755 −0.3658 0.00387 —

ABG 17796.631 −22.256 −3.1781 0.3374 −0.00905 0.000078

SAB 34782.838 −75.218 5.5345 −0.1597 0.00185 —

(b) long-period oscillations in the residuals, and (c) secular
jerks.
3.1 Secular trends at Alibag (1921–2009)

Figure 2(a) shows the plots of annual mean values of D,
H and Z for quiet days at Alibag together with best-fitting

curves for the period from 1921 to 2009. The cumulative
percentage of variance accounted for by polynomial fits
in successive orders is given in Table 4. The 2nd-order
polynomial is fitted for D as there is not much difference
in the percentage of variance of 2–5 degree polynomials.
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Table 4. Percentage of the variance in Alibag quiet-day annual means accounted for by polynomial fits.

Element 1st Degree 2nd Degree 3rd Degree 4th Degree 5th Degree

D 5.7 97.3 98.4 98.8 98.8

H 24.0 86.6 91.6 98.7 99.4

Z 44.3 72.7 94.4 96.7 96.9

The secular trend for D is a smooth parabola with a broad
maximum around 1960–65. Negative values of D from
1921 to 1926 indicates that the declination was easterly up
to 1926, and from 1927 it became westerly, which again
swings towards easterly as D is approaching zero for the
year 2009.

For the H-component, the percentage of variance ac-
counted by a 5th-order polynomial is 99.4% and fitting well
with the observed annual mean values in comparison with
other low-order polynomials. The secular trend of H shows
that this field has increased continuously since 1921, reach-
ing a maximum by about 1965, and thereafter decreased
at a rate of about 20 nT/year. This H-field has a quasi-
periodicity of around 90–100 years and is consistent with
earlier results.

The percentage of variance of the Z-component for the
5th-order polynomial is 96.9%. The secular trend of Z
shows a near-sinusoidal variation with a periodicity of ∼80
years, known as the Gleissberg cycle (Gleissberg, 1965).
The continuously increasing trend of the Z-field at present
denotes another periodicity in the coming years.

Figure 2(b) shows the plots of D, H and Z for monthly
mean values at Alibag for all days. There is no distinct
difference between the monthly mean and the annual mean
plots for all days and quiet days. Also, the cumulative
percentage of variance accounted for by polynomial fits in
successive orders is almost the same for the annual and
monthly means of all days and quiet days.
3.2 Secular trends in the Indian chain of observatories

Three out of the six stations—TRD, KOD and ANN—
are under the influence of the daytime equatorial electrojet.
This causes an enhancement of the daily variation and short-
period fluctuations in H, and though the electrojet does not
contribute in any measurable way to the secular trends of
H or D, it may introduce significant departures from the
trend (Bhardwaj and Rangarajan, 1997). The diurnal vari-
ation in the vertical component close to the dip equator is
expected to be small, but the analysis of south India mag-
netic array data suggests a significant internal contribution
due to the channeling of induced currents through a sub-
surface conductor between India and Sri Lanka (Rajaram et
al., 1979) and a regional south Indian offshore conductivity
anomaly (Arora and Subba Rao, 2002). The three stations
HYB, ABG, and SAB, are the low- and mid-latitude sta-
tions. The westerly declination (D-trend) is decreasing at
all six Indian stations (the sign of SAB has been reversed to
indicate westerly) and, at Alibag, it has again been swinging
easterly from 2009, as shown in Fig. 3(a). The cumulative
percentage of variance accounted for by the 5th-order poly-
nomials varies between 97.0 to 99.6 for the D component,
98.7 to 99.6 for the H component, and 98.5 to 99.5 for the
Z component, at all six Indian stations.

Secular trends for the horizontal component (H) at the
six Indian stations for quiet day annual means are shown in
Fig. 3(b). A distinct difference between equatorial and low-
latitude stations is that the H-field increases rapidly after
1990 for equatorial stations and is linear for non-equatorial
electrojet stations. The parallelisms in the secular trend of
Hyderabad, Alibag and Sabhawala indicate that the feature
has a broad regional coverage, whose southern latitudinal
extent may be just above the edge of the equatorial electrojet
belt. A quasi-periodicity of nearly 40–50 years is suggested
close to the equator. In broader terms, we can say that
all six stations show comparable trends without large local
anomalies.

The secular trends of the vertical component (Z) for the
six Indian stations for quiet day annual means is shown in
Fig. 3(c). The Z-field decreased since 1958, reaching a min-
imum value around 1970, and then it increased again. The
increase in Z from 1970 is more rapid at equatorial stations
(denoting the southward migration of the dip equator) as
compared with mid-latitude stations. The southward migra-
tion of the dip equator was suggested by Srivastava (1992)
and confirmed by Rangarajan and Deka (1991). The max-
imum speed of the southward migration of the dip equator
is estimated to be ∼5 km/year during 1980–1990 (Deka et
al., 2005). The southward migration of the dip equator is
also shown in Fig. 1 for different years from 1975 to 2005.
Srivastava and Abbas (1977) have found a quasi-periodicity
of ∼80 years in the migration of the dip equator. In our
analysis, the Z-field also completes a half-cycle in 40 years;
hence, the period of the secular change of the position of
the dip equator is of the order of ∼80 years, attributable to
the Gleissberg cycle (Gleissberg, 1965).

Night base plots at three equatorial, and three non-
equatorial, stations for the D, H and Z components, which
are shown in Figs. 4(a)–4(c), are not much different com-
pared with all days and quiet days plots. Hence, the equa-
torial electrojet current does not contribute to secular vari-
ations. Also, the cumulative percentage of variance of the
5th-order polynomials for D, H and Z is almost the same for
all days, quiet days and night base at the six Indian stations.
3.3 Solar cycle component in the monthly means at

Alibag
To observe the presence of a solar cycle component in

the monthly means, residuals from the best fitting curves of
D, H and Z are plotted as shown in Fig. 5. These residu-
als of D, H and Z for all days at Alibag, the monthly mean
sunspot numbers from 1921–2009, covering 8 complete 11
year solar cycles are shown in the bottom panel. To see the
presence of the Hale cycle (or double sunspot cycle) in the
data, the monthly mean sunspot numbers are also plotted
with a reversed sign in the alternate cycles. As the solar
cycle component is more prominent in the all-day residu-
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Fig. 2. (a) Observed annual mean values of D, H, and Z, for quiet days at Alibag from 1921 to 2009, together with their best-fitting curves. (b) Observed
monthly mean values of D, H, and Z, for all days at Alibag from 1921 to 2009, together with their best-fitting curves.

Fig. 3. Observed annual mean values of (a) declination (D), (b) horizontal component (H), and (c) vertical component (Z) for quiet days at the six
Indian stations from 1958 to 2009, together with their best-fitting curves. Westerly-increasing declination is plotted downwards.

Fig. 4. Observed annual mean values of (a) declination (D), (b) horizontal component (H) and (c) vertical component (Z) for night base at the six Indian
stations from 1958 to 2009, together with their best-fitting curves. Westerly-increasing declination is plotted downwards.

als rather than for the quiet day and night base, we have
shown the residuals for all days in Fig. 5. The D residuals
are computed from the 2nd-order best-fitting curves, while
the residuals for H and Z are estimated from 3rd-order poly-

nomials. The residual D, H and Z curves do not show any
parallelism with the 11-year sunspot cycle. However, the D
residual has a periodicity of nearly 2 solar cycles, whereas
the H and Z residuals indicate a quasi-periodicity of 3 solar
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Fig. 5. Residuals of D, H, and Z, monthly mean values for all days from the smooth secular trend at Alibag and the annual mean sunspot numbers
together with the Hale-cycle from 1921 to 2009.

Fig. 6. Residuals of (a) declination (D), (b) horizontal component (H), and (c) vertical component (Z) annual mean values for all days at the six Indian
stations, together with annual mean sunspot numbers and the Hale-cycle from 1958 to 2009.

cycles at Alibag. The H and Z residuals do not have iden-
tical periodicities. The 25–30-year oscillation (3 minima
near 1930, 1955 and 1985) in the Z residuals do not match
the H residuals, indicating a quasi-periodicity of about 50
years. Hence, these oscillations cannot be considered to be
associated with sources of an external origin.
3.4 Solar cycle component in the annual means at the

Indian observatories
To see the presence of a solar cycle, or Hale cycle, in

the annual means at the Indian observatories, third-order
residuals from the best fitting curves for all days annual
means of D, H and Z together with the 11-year and 22-
year sunspot cycles, for the period from 1958 to 2009, are
plotted in Figs. 6(a)–6(c). The D residuals in Fig. 6(a)
show a minimum at the equatorial stations in the initial part

between 1958–65, and another minimum between 1980–85,
and do not show any parallelism with the 11-year sunspot
cycle. However, it shows a periodicity of nearly 2 solar
cycles. The H residuals in Fig. 6(b) show an anti-correlation
with sunspot cycles. This is because, when solar activity
increases, the ring current increases which decreases the
variation in the H component and vice-versa.

From Fig. 6(c), an in-phase solar-cycle component can
be seen for 2 of the solar cycles in the Z residuals, with
minima near 1963, 1986 and 2009, i.e. the Z residuals ap-
pear in phase with the double sunspot cycle at all the Indian
stations (except KOD). The equatorial and lower-latitude
group of stations do not indicate different patterns, so these
variations are due to external sources. The minimum in Z
in phase with the solar activity minimum is consistent with
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Fig. 7. Plot of the first difference of monthly mean values (from 1921 to 2009) of (a) declination (D), (b) horizontal component (H), and (c) vertical
component (Z) for all days at Alibag.

the expectations of the signature of the equatorial ring cur-
rent in the northern hemisphere, since this source (ring cur-
rent) would create an increase in Z (a downward field) in the
northern hemisphere and a decrease in Z (an upward field)
in the southern hemisphere as the ring current (as well as
the sunspot number) increases.
3.5 Secular impulse or Jerk

A sudden change in the slope of the magnetic secular
variation is known as a secular impulse, or geomagnetic
jerk, that arises from sources inside the Earth (Cafarella
and Meloni, 1995; Macmillan, 1996; Le Huy et al., 1998).
Recently, these jerks have been suggested as geomagnetic
rapid secular fluctuations (Olsen and Mandea, 2008; Man-
dea and Olsen, 2009; Qamili et al., 2013) that have peri-
ods ranging from several months to a few years (Macmillan,
2007). These events are observed in magnetic data as sud-

den V-shaped changes in the slope of the secular variation
(Mandea et al., 2010). Geomagnetic jerks have been ob-
served around 1901, 1913, 1925, 1932, 1949, 1958, 1969,
1978, 1986, 1991, 1999, and 2003, at a number of obser-
vatories around the world (e.g. Malin and Hodder, 1982;
Courtillot and Le Mouël, 1984; Alexandrescu et al., 1996;
Mandea et al., 2000; Mandea et al., 2010).

Jerks can be seen by plotting first differences of observa-
tory monthly and annual means. Two straight line segments
with distinctly different slopes are indicative of a possible
signature of a jerk. Figures 7(a)–7(c) show the plots of the
first difference of the monthly mean values of D, H and Z
for all days at Alibag for the period 1921–2009. Geomag-
netic jerks observed during the different years mentioned
above are shown by arrows. The 1970 and 1991 jerks are
well reflected in all three components, the 1932 jerk is well
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Fig. 8. Plot of the first difference of annual mean values of declination (D), horizontal component (H), and vertical component (Z), for all days at (a)
Trivandrum, (b) Kodaikanal, (c) Annamalainagar, (d) Hyderabad, (e) Albag, and (f) Sabhawala, from 1958 to 2009.

observed in the D and H components, the 1949 and 1986
jerks are seen in the D and Z components, and the 1958 and
1978 jerks in the H and Z components.

Mandea et al. (2000) reported jerks around 1970 and
1999 by using data from Chambon la Foret (∼118 years)
and Niemegk (∼111 years) observatories’ monthly mean
values of the East magnetic component (Y). The jerk of
∼1970 was recorded all over the globe in declination data.
1932, 1949 and 1970 jerks were reported by Alexandrescu
et al. (1996) by using 97 European observatories, and Ker-
ridge and Barraclough (1985) by using data of annual mean
values from worldwide observatories. Gubbins and Tom-
linson (1986) also noticed the signature of the 1969–70
jerk at Apia and Amberley magnetic observatories in New
Zealand.

Plots of the first difference of annual mean values of D,
H and Z for all days at the six Indian stations for the period
1958–2009, are shown in Figs. 8(a)–8(f). No sign of jerks
can be seen in the declination at the six stations. At TRD,
KOD, ANN and ABG, we found a jerk around 1969/70
in the H data. In the vertical component (Z), we found a
geomagnetic jerk around 1991 at TRD, ANN, HYB and
ABG. Macmillan (1996) also reported the signature of this
geomagnetic jerk around 1991 in the Y component at 15
European observatories using the first difference of annual
mean values. Jerks are observed around 1969/70 and 1991
at ANN and ABG in the Z data. The cause for these jerks in
the secular variation could be the upper layers of the liquid
core filtering through the conducting mantle material (Le
Mouël et al., 1982; Golovkov et al., 1992).

4. Conclusions
• The secular change of D curves show a decreasing

trend in the westward direction at all the Indian ob-
servatories, and, at Alibag, at present it again swings
back towards the eastward direction.

• The secular trends of the H field show a distinct dif-
ference between the equatorial and non-equatorial sta-
tions.

• Increasing trends of the Z field at equatorial stations
since 1970 indicates the southward migration of the
dip equator, which has a periodicity of ∼80 years—
the so-called Gleissberg cycle.

• At the Indian chain of stations, D and Z residuals show
a periodicity of ∼2 solar cycles, while H residuals
show out-of-phase variations with the sunspot cycle.
At Alibag, the D residuals show a periodicity of ∼2
solar cycles, whereas the H and Z residuals are found
to be opposite in phase with a quasi-periodicity of 3
solar cycles for the period 1921–2009.

• As observed globally, geomagnetic jerks are observed
in the Indian region. The 1970 and 1991 jerks are well
reflected in the 3 components of the monthly mean
values.
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