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ABSTRACT

Magnetic field magnitude decreases (MDs) are observed in several regions of the interplanetary medium. In this
paper, we characterize MDs observed by the Ulysses spacecraft instrumentation over the solar south pole by using
magnetic field data to obtain the empirical size, magnetic field MD, and frequency of occurrence distribution
functions. The interaction of energetic (100 keV to 2 MeV) protons with these MDs is investigated. Charged
particle and MD interactions can be described by a geometrical model allowing the calculation of the guiding center
shift after each interaction. Using the distribution functions for the MD characteristics, Monte Carlo simulations
are used to obtain the cross-field diffusion coefficients as a function of particle kinetic energy. It is found that the
protons under consideration cross-field diffuse at a rate of up to ≈11% of the Bohm rate. The same method used in
this paper can be applied to other space regions where MDs are observed, once their local features are well known.
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1. INTRODUCTION

The interaction of energetic charged particles with magne-
tized plasmas remains one of the most fundamental problems
in space and astrophysical plasma physics. This particle–field
interaction plays an essential role in solar energetic particle
transport in the heliosphere (Shalchi et al. 2006), shock accel-
eration of particles both in interplanetary (Li et al. 2003; Zank
et al. 2000, 2006) and astrophysical shocks, and cosmic-ray
modulation and propagation in the interstellar medium (Shalchi
et al. 2006). In most plasmas, the ambient magnetic field, B0,
sets a preferred direction for energetic charged particle prop-
agation, and an additional random or turbulent magnetic field
component induces transport. Unperturbed orbits, computed in
terms of B0 alone, are the starting point for quasilinear theory,
which has dominated the conceptualization of particle transport
for more than 30 yr. If one assumes a diffusive motion of the par-
ticles, then the parallel and perpendicular diffusion coefficients
can be calculated to describe the motion within the plasma
(see, e.g., Shalchi 2009). The diffusion coefficients have been
derived following different theoretical approaches, e.g., quasi-
linear approximations (Jokipii 1966), a hard-sphere scattering
model (Gleeson 1969), and nonlinear guiding center theories
(Matthaeus et al. 2003; Shalchi 2009), among others. Dosch
et al. (2009) have discussed the relationship between different
theories for the cosmic-ray diffusion. In particular, cross-field
particle transport is believed to arise from diffusive or fraction-
ally diffusive processes (del Castillo-Negrete 2006), and thus in-
herently involves a decorrelation process either associated with
collisions or wave-particle interactions.

Recently, Shalchi (2010) presented a new nonlinear theory
for cosmic-ray scattering across the mean magnetic field.
He concluded that this new theory can explain subdiffusive
transport for slab turbulence and recover the nonlinear standard
theory for field line wandering as a special limit. Shalchi (2009)
investigated charged particle scattering in the limit of strong
turbulence. In that paper, it is shown that the Bohm limit is the
correct limit for strong turbulence.

In this paper, we deal with the cross-field diffusion of
energetic charged particles resulting from their interaction with
magnetic dips called magnetic decreases, or MDs. The main
effect of a charged particle interaction with an MD is the cross-
field diffusion due to particle guiding center displacements
(Tsurutani et al. 1999; Tsurutani & Lakhina 2004; Costa Jr. et al.
2011). We emphasize that an interaction between a particle and
an MD is a nonresonant process, and differs substantially from
wave–particle interactions. We compare the numerical diffusion
coefficient that we obtain with a Bohm-like diffusion coefficient
appropriated for a highly variable magnetic field magnitude
(strong turbulence) given by DB = (ωci/16)r2

L (Hasegawa
& Tsurutani 2011), where rL is the unperturbed Larmour
radius.

MDs are depletions in the magnitude of the interplanetary
magnetic field (IMF) of up to 90% of the ambient magnetic field
(B0) and are convected by the solar wind. They are pressure
balance structures filled with hot plasma where the magnetic
pressure decreases are supplanted by plasma thermal pressure
increases (Winterhalter et al. 1994; Tsurutani et al. 2002a). MD
sizes range from a few to thousands of proton gyroradii or more,
assuming the gyroradius of a ≈1 keV proton (Tsurutani et al.
2009). They are observed at different heliocentric distances and
at both low and high heliospheric latitudes (Turner et al. 1977;
Burlaga & Lemaire 1978; Winterhalter et al. 1994; Tsurutani
et al. 1999, 2009, 2010; Franz et al. 2000).

We focus on MDs detected by the Ulysses spacecraft instru-
mentation over the solar south pole. In the solar polar regions,
the solar wind is usually characterized by pure coronal hole fast
streams (Tsurutani et al. 2011), and MDs are convected by the
wind at speeds of ≈750–800 km s−1. For those regions where
there are no stream–stream interactions (Neugebauer 1999),
one proposed mechanism of MD formation is the evolution
of large amplitude right-hand polarized Alfvén wave packets
propagating at large angles to the IMF (Buti et al. 2001).
Tsurutani et al. (2002a, 2002b, 2005) have suggested that ther-
mal proton acceleration due to Alfvén wave damping creates
MDs by a diamagnetic effect.
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A geometrical model to describe energetic particle/MD
interactions was presented by Tsurutani et al. (1999) and
Tsurutani & Lakhina (2004). More recently, Costa Jr. et al.
(2011) used Monte Carlo simulations to obtain the displacement
of the particle guiding centers perpendicular to the magnetic
field. Here, we present the perpendicular diffusion coefficient
(D⊥) as a function of the proton energy associated with a large
number of MDs observed by Ulysses in 1994, in its first pass
over the south pole of the Sun. We first empirically characterize
these MDs and then perform Monte Carlo simulations of
the interaction of energetic protons with these structures to
obtain D⊥. These Monte Carlo simulations, first suggested by
Tsurutani et al. (1999), confirm the rough estimate of a cross-
field diffusion coefficient of ≈0.1 DB presented by Tsurutani
et al. (2005).

2. DATA

MD events used in this study were observed by Ulysses
when it first passed over the south pole of the heliosphere
(≈−80◦ and ≈2.3 AU from the Sun) in 1994. Figure 1 shows
27 days (days 242–268 of 1994) of magnetic field data from
Ulysses. Panel (A) of Figure 1 shows one-minute averaged IMF
magnitudes, presenting a typical result of MD studies: many
magnetic field decreases of various amplitudes but very few
magnetic field increases (Tsurutani et al. 1999). Panels (B)–(D)
of Figure 1 show the three components of the IMF with the same
time resolution. The coordinate system is RTN, where R̂ points
radially outward from the Sun and T̂ = Ω̂ × R̂/|Ω̂ × R̂|, where
Ω̂ is the rotation axis of the Sun. The third vector, N̂ , completes
the right-hand system. Finally, panel (E) shows four to eight
minutes of averaged solar wind speed. At that time, the region
was dominated by a high speed (≈750–800 km s−1) solar wind
emanating from a polar coronal hole (Phillips et al. 1994).

For the interval of data presented in Figure 1, 129 MDs were
identified with magnetic field amplitude decreases greater than
20% of B0. These events were plotted as a histogram and were
curve-fitted to obtain the empirical size, magnetic field MD, and
occurrence frequency distribution functions (Tsurutani et al.
1999). The parameters used for fitting are the MD diameter
in km, dm, and the relative field decrease dB = 1 − BMD/B0,
where BMD is the minimum magnetic field magnitude within
the MD. The values have been fitted by exponentials and the
percentage of events, Ydm and YdB, are given below (Tsurutani
et al. 1999; Costa Jr. et al. 2011):

Ydm = 38.5e−1.5×10−5dm, (1)

and

YdB = 5.4 + 348.7e−8dB. (2)

Burlaga & Lemaire (1978) noticed that some of the MDs
had little or no magnetic field directional changes across them.
They called these linear events. Figure 2 shows an example of
a linear MD with high-resolution 1 s averaged data. The event
was detected during day 246 of 1994. The three components of
the IMF and the magnetic field magnitude are shown. As can
be seen by the figure, there are minor magnetic field directional
changes across the MD. However, the magnetic field magnitude
returns to approximately the same value after the event.

3. MODEL AND RESULTS

We use a geometrical model to calculate the guiding center
displacement after a charged particle and an MD nonresonantly

(A)

(B)

(C)

(D)

(E)

Figure 1. Twenty seven days of one-minute averaged IMF magnitudes obtained
by Ulysses over the south pole of the Sun in 1994, in nT: panels (A) magnetic
field magnitude, (B) BR component, (C) BT component, and (D) BN component.
Panel (E) 27 days of four to eight minutes averaged solar wind speed (km s−1).

interact (Tsurutani et al. 1999; Tsurutani & Lakhina 2004).
Figure 3(A) gives a schematic of this interaction. The particle
gyroradius is r, the impact distance is d (the distance between
the center of the particle gyromotion and the center of the
MD), and the magnetic field is directed into the plane.

2



The Astrophysical Journal, 778:180 (5pp), 2013 December 1 Costa Jr. et al.

Figure 2. Example of a linear MD where there are small magnetic field
directional changes within the structure.

For simplicity, we assume that the MDs have a circular cross-
section of radius a, given by dm/2, and a cylindrical geometry in
a three-dimensional view aligned along the magnetic field. The
magnetic field magnitude inside the MD is assumed to be con-
stant with no change in angle, so the model will apply to linear
MDs. The other parameters, such as the decrease of the mag-
netic field inside the MD and the size of the MD, are obtained
from Ulysses observations. The MD radii detected for the time
interval studied and used in this paper range from ≈1.2×103 to
≈2 × 105 km, while the Larmour radii of the energetic particles
with energies of 100 keV to 2 MeV range from ≈3.2 × 104

to ≈1.5 × 105 km, respectively, considering a 45◦ pitch angle.
These values are for the unperturbed Larmour radii, while the
particles move in the assumed unperturbed field, outside the
MDs.

(A)

(B)

Figure 3. ((A) and (B)) Geometry of the interaction of a charged particle of
gyroradius r and an MD of radius a. The other symbols are explained in the
text. Adapted from Tsurutani et al. (1999).

Figure 3(B) shows how the guiding center of a charged
particle is displaced perpendicular to the magnetic field due to
the interaction with the MD. The particle initially moves in the
ambient field B0 from the bottom upward, and its gyrocenter is
located at point O. The interaction with the MD takes place
at point P1. Due to the decrease in the ambient magnetic
field within the MD, from B0 to BMD, the particle gyrocenter
becomes the point O ′. Inside the MD, the gyroradius is given
by r ′ = r(B0/BMD). After leaving the MD at point P2, the new
gyrocenter is located at point O ′′. The net result of the interaction
is that the guiding center of the particle has moved from point
O to point O ′′. The latter is shown in Figure 3(B) by the
symbol λ. The diffusion distance λ is given by the expression
(Costa Jr. et al. 2011):

λ = 2(m − 1)

m

×
[
a2 − (a2 + d2 + r2(1 − 2m) + (m − 1)(−a2 + d2 + r2))2

4(d2 + r2(m − 1)2 + (m − 1)(−a2 + d2 + r2))

] 1
2

,

(3)

where m = B0/BMD.
Equation (3) was obtained assuming that there are no sig-

nificant changes of the field direction within the regions inside
and outside of the MD. Our assumption is based on numerous
observations in space plasmas showing that under special cir-
cumstances, the magnetic field MDs are not accompanied by
changes in the field vector directions (Winterhalter et al. 1994;
Tsurutani et al. 2009, 2011).

We use Equation (3) and Monte Carlo simulations to obtain
the cross-field diffusion coefficients as a function of particle
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kinetic energy resulting from energetic proton nonresonant in-
teractions. In the Monte Carlo model, we select three parameters
randomly: (1) the impact parameter, (2) the scale size of the MD,
and (3) the depth of the decrease in the magnetic field magnitude.
Two other parameters are handled by making separate runs: (4)
the particle energy and (5) the particle pitch angle.

We first select a proton kinetic energy E. The ambient field
magnitude was assumed to be B0 = 1.2 nT, defining the proton
unperturbed gyroradius r, assuming a pitch angle of 45◦. The
proton interactions with “N” different MDs are simulated by
solving Equation (3) “N” times. For each interaction, it is
necessary to assign values of a, m, d, and the proton–MD
phase angle (θ ). The values for a (=dm/2) and m (= B0/BMD)
are taken from Equations (1) and (2), respectively, using the
Metropolis–Hastings rule with symmetric selection rates (Amar
2006; Costa Jr. et al. 2011). The Monte Carlo method (MCM)
was used to sample as accurately as possible the properties
of the MDs from statistical distributions. The MCM consists of
starting with a random initial value for a variable (we call it initial
state i). After this, a possible new value is selected for the
variable (the possible new state j). The new state can be accepted
with probability P acc

ij or can be rejected with probability 1−P acc
ij .

The Metropolis–Hastings rule with symmetric selection rates for
the selection of the values is given by P acc

ij = min(1, Pj/Pi),
where Pj is the value of the distribution function as calculated
for state j and Pi is the value calculated for state i. The process
is repeated until the necessary number of values is selected.

Finally, the impact parameter d is randomly selected in the
range where the interaction is possible (|r − a| < d < |r + a|)
and the proton–MD phase angle is randomly selected between
0 and 2π , which means that the interactions can occur at any
point on the particle’s trajectory.

In the simulation runs, each proton interacts with 100 MDs,
solving Equation (3) for each interaction. The simulations
were run 1000 times with the MDs selected by the Monte
Carlo Metropolis–Hastings approach. For each of the 1000
runs, a value of the net guiding center displacement (λi) was
determined. The 1000 values of λi were later used to calculate
the cross-field diffusion coefficient. A second set of runs was
performed using 200 MDs with the purpose of studying the
stability of the simulation approach. It was concluded that
100 MD interactions gave stable results. The Monte Carlo
simulations were repeated for proton energies varying from
100 keV to 2 MeV, with energy steps of 100 keV. All of the
particles simulated are considered to be non-relativistic.

Finally, the perpendicular diffusion coefficient for the non-
resonant interactions is obtained by

D⊥ = 〈Λ2〉
2Δt

, (4)

where 〈Λ2〉=∑1000
i=1 λ2

i /1000 and Δt is the average time between
interactions. The parameter Δt depends on the distance between
adjacent MDs and on the proton parallel speed. The distances
between MDs were obtained empirically using the solar wind
convection speed VSW. Thus, Δt is given by

Δt = VSWts

NMD

(
1

V‖

)
, (5)

where ts is the total data interval time in seconds, NMD is the
number of MDs detected within this interval, and V‖ is the
particle speed parallel to B0, again assuming a pitch angle of

Figure 4. Ratio between the obtained perpendicular diffusion coefficient (D⊥)
and Bohm diffusion coefficient (DB). The circles represent 100 particle–MD
interactions and the triangles represent 200 interactions.

(A color version of this figure is available in the online journal.)

45◦. The numerator of the diffusion coefficient (〈Λ2〉) depends
on the proton perpendicular energy and the denominator (2Δt)
depends on the proton parallel energy. The parallel velocity
component is important for timing the interactions between
successive MDs. As the MDs are of finite sizes, the time interval
between interactions with adjacent MDs is much larger than the
time duration of a particle–MD interaction.

Results for the perpendicular diffusion coefficient (D⊥)
normalized by the Bohm diffusion coefficient (DB) are shown
in Figure 4 as a function of proton energies. The circular points
in Figure 4 correspond to the 100 interaction simulations and
the triangles to the 200 interaction simulations. The value of
D⊥/DB is ≈0.11 for E ≈ 100 keV and monotonically decreases
to ≈0.055 at E ≈ 2 MeV. The slope of the curve approaches zero
at E = 2 MeV. From the results in Figure 4 it can be expected
that cross-field diffusion will continue for E > 2 MeV at the
same rate.

4. DISCUSSION AND CONCLUSION

Cross-field diffusion resulting from interactions between
energetic protons and linear MDs was investigated using a
geometrical model and a Monte Carlo approach. It was found
that for 45◦ pitch angles, the cross-field diffusion of 100 keV
protons will occur at a rate of ≈11% of DB and of 2 MeV protons
at a rate of ≈5.5% of DB.

Similar diffusion processes may occur in other space and
astrophysical situations where there are large magnetic field
magnitude changes. Here, we have used MDs as an example. It
is possible that diffusion at compressive waves near heliospheric
shocks or astrophysical shocks (Duffy 1992; Jokipii 1992;
Dosch et al. 2011) may occur if either the waves or MDs are
found to exist near these structures. In the case of MDs, it is
thought that nonlinear wave processes (Tsurutani et al. 2002a;
Buti et al. 2001) create the magnetic decreases. The interaction
of energetic protons that we consider here is a parasitic process.

The method presented in this paper can be employed to
calculate the cross-field diffusion of heavy ions and electrons
and for other space regions where MDs are present, such as
interplanetary space at low latitudes, planetary magnetosheaths,
interplanetary shocks, heliospheric sheaths, and astrophysical
plasmas. However, it is necessary to take into account the
features of the MDs in the regions of interest.

Tsurutani et al. (2009) have recently shown that compressive
mirror mode (MM) structures occur in the sheath region of
heliospheric shocks. Although MMs and MDs are different
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mechanisms (Tsurutani et al. 2010), similar to linear MDs, MMs
are characterized by decreases in the magnitude of the magnetic
field, without significant angular rotation. Our model have not
been tested yet with these compressive magnetic structures.
However, we could expect that the cross-field diffusion through
MMs will occur at the same rate we obtained here for MDs.
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