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The concept of acoustic supersolitons was introduced for a very specific plasma with five

constituents, and discussed only for a single set of plasma parameters. Supersolitons are

characterized by having subsidiary extrema on the sides of a typical bipolar electric field signature,

or by association with a root beyond double layers in the fully nonlinear Sagdeev pseudopotential

description. It was subsequently found that supersolitons could exist in several plasma models

having three constituent species, rather than four or five. In the present paper, it is proved that

standard two-component plasma models cannot generate supersolitons, by recalling and extending

results already in the literature, and by establishing the necessary properties of a more recent

model. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4881471]

I. INTRODUCTION

When Dubinov and Kolotkov introduced the concept of

acoustic supersolitons in their seminal papers,1,2 it was for a

very specific plasma with five constituents, which moreover

was only discussed for a single set of plasma parameters.

This clearly established that what they coined “super solitary

waves” could exist, mathematically speaking, when a plasma

model is able to support three consecutive local extrema of

the Sagdeev pseudopotential3 between the undisturbed con-

ditions and an accessible root. This leads to a characteristic

supersoliton signature in the electric field, viz., the simple

bipolar shape associated with a usual soliton is enriched by

the presence of subsidiary extrema on each side of the

structure.

In their original paper, Dubinov and Kolotkov1 also

claimed that at least four plasma species were necessary to

generate supersolitons, and subsequently discussed a corre-

sponding plasma model.4 This raised the question that super-

solitons might be artefacts of rather complicated plasma

compositions. As plasma models with soliton roots beyond a

double layer had been encountered before,5–8 in plasmas

with fewer than four constituents, the challenge was to

study supersolitons in various plasmas with only three

components. These were duly found and their properties

investigated in a systematic way,9–12 in models that were

sufficiently different to prove the point that it was not neces-

sary to have at least four species in the plasma composition,

as used, e.g., by Maharaj et al.13

It is to be remarked that in the latter paper a different

definition is used of what a supersoliton is, namely the exis-

tence of an accessible root beyond the double layer range.

The argument is that the soliton velocity (or equivalent

Mach number) rather than the electric field profile is a quan-

tity which can be observed, and that the soliton velocity is

not necessarily restricted to a rather narrow interval.

However, for the discussion in this paper the distinction

between the two definitions of what is understood by super-

solitons does not play a role, since the occurrence of soliton

roots beyond the double layer range is the necessary condi-

tion to have them, in both cases.

During those explorations of various plasma composi-

tions, it was felt that in plasmas with only two components

supersolitons could not occur, because such plasmas do not

have enough adjustable parameters.9,10 We therefore prove

in the present paper that known standard two-component

plasma models cannot satisfy the requirements, by recalling

and extending results already in the literature, and by estab-

lishing the necessary properties of a more recent model.

Fully nonlinear acoustic solitary waves in a plasma

involving two polytropic species are investigated in Sec. II A.

In Secs. II B–II D, we deal successively with three commonly

used plasma models that are characterised by an adiabatic in-

ertial component and a hot species whose velocity distribu-

tion exhibits an enhanced non-Maxwellian superthermal

“tail,” viz., the so-called Cairns nonthermal distribution,14 the

kappa distribution,15,16 and the q-nonextensive (or Tsallis)

distribution.17,18 These three distributions have all previously

formed the basis of numerous investigations of soliton behav-

iour and characteristics. Our conclusions follow in Sec. III.

II. DISCUSSION OF VARIOUS TWO-COMPONENT
PLASMAS

A. Polytropic pressure-density relations

First, we begin with a two-component plasma, where, in

a fluid description, the pressure-density relations are poly-

tropic. One may wish to think of a classic electron-proton

plasma, but no specific mass ratios or thermal velocity prop-

erties are assumed, and for the two species both inertial and

pressure effects are included. There is only a requirement that

the two species should have distinct and sufficiently separated

thermal speeds, as otherwise, acoustic waves are not sup-

ported. Using the McKenzie fluid-dynamical interpretation19
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of nonlinear acoustic modes, it was proved earlier20 that at

most one compressive soliton solution could be found, the

polarity of which is governed by the sign of the cooler of the

two species. Here cool is defined in terms of appropriate ther-

mal velocities, and the cooler species is then supersonic (its

thermal velocity being smaller than the soliton velocity), the

hotter species being necessarily subsonic in this picture.

For the sake of readability, we recall some elements of

this proof, which is not based on Sagdeev pseudopotential

expressions, but relies on determining the number of charge-

neutral points, as necessary conditions for solitons to occur,

although these are in themselves not sufficient conditions.20

We start from the integrated form of the momentum equation

per species, which in the fluid-dynamic approach is written

in terms of velocities rather than densities, since, for a poly-

tropic fluid, pj / n
cj

j / v
� cj

j . Here pj, nj, vj, and cj refer to the

pressure, density, fluid velocity, and polytropic index of

species j, respectively. For simplicity, we use j¼ i for the

ions and j¼ e for the electrons, but no special mass or tem-

perature relations are involved. Mass flux conservation

yields neve ¼ n0V ¼ nivi, where V is the velocity a soliton

would have in a laboratory frame, but the treatment has been

worked out in a frame co-moving with the soliton.

We thus get an energy expression of the form

Ej �
mj

2
v2

j � V2
� �

þ
mjc

2
tj

cj � 1

Vcj�1

v
cj�1

j

� 1

 !
¼ � qj /; (1)

for cj 6¼ 1. Here, mj, qj, and ctj represent the mass, charge,

and thermal velocity per species, and the electrostatic poten-

tial is /. We reiterate that the only assumption regarding the

thermal velocities is that cti < cte.

Hence, these integrals are such that for a two-component

plasma Ee þ Ei ¼ 0 always holds. In a charge-neutral point,

one has ne ¼ ni, and from mass flux conservation also that

ve ¼ vi, denoted as v. Combining this information gives

f ðvÞ �mi þ me

2
v2 � V2ð Þ þ mic

2
ti

ci � 1

Vci�1

vci�1
� 1

� �

þ mec2
te

ce � 1

Vce�1

vce�1
� 1

� �
¼ 0: (2)

It is obvious that limv!0þ f ðvÞ ! þ1, f ðVÞ ¼ 0 and

limv!þ1 f ðvÞ ! þ1. Since

d2f ðvÞ
dv2

¼mi þ me þ
mic

2
tici

V2

V

v

� �ciþ1

þ mec2
tece

V2

V

v

� �ceþ1

> 0; (3)

df ðvÞ=dv is monotonically increasing from �1 at v¼ 0 to

þ1 for v! þ1, and can be shown to be positive already

for v¼V. Because of the monotonicity, df ðvÞ=dv has one

and only one root, in the range v < V, where f(v) has a (nega-

tive) minimum. This means that f(v) goes through v¼V with

a positive slope, and hence has one and only one root outside

v¼V, �v in �0;V½, which gives a charge-neutral point on the

side where v < V. In terms of the densities, this means that

n > n0. In two-component plasmas both species are either

compressed or rarefied (here compressed), otherwise no

charge neutral points can be generated outside the undis-

turbed conditions.19,20 Other conditions are then needed to

realize the soliton existence.

We have earlier excluded the cases cj ¼ 1, which repre-

sent an isothermal pressure-density assumption, in which

case

lim
cj!1

mjc
2
tj

cj � 1

Vcj�1

v
cj�1

j

� 1

 !
¼ mjc

2
tj ln

V

vj

� �

¼ mjc
2
tj ln

nj

n0

� �
; (4)

and one may repeat the above arguments in a slightly modi-

fied form, to find the same result.21 Moreover, when inertia

is neglected, as might be the case for hot electrons, one

recovers the well known Maxwell-Boltzmann distributions.

This proof includes in particular the standard ion-

acoustic model, where ion pressure and electron inertia are

neglected. Obtaining at most one compressive soliton is a far

cry from the three roots needed to have a double layer and a

third root beyond that. Hence, the polytropic model rules out

having supersolitons, and covers many two-component

plasma models in the literature, such as a plasma with

adiabatic positive ions and Boltzmann electrons, or familiar

notions of cold, isotropic or adiabatic constituents.

B. Nonthermal Cairns distributions

What remains to be discussed are several instances

where the pressure is not a polytropic function of the species’

density, or when the density is derived from one or the other

velocity distribution function in phase space. Three models

are currently encountered in the space physics literature, all

three designed to account for non- or superthermal wings in

the distribution, as compared to the standard Maxwellian:

the Cairns nonthermal distribution,14 the kappa superthermal

distribution,15,16,22 and the more recent q-nonextensive

Tsallis distribution.17,18 We will discuss these in what

follows, in that order, and see what they allow in two-

component plasmas.

The Cairns distribution,14 commonly used in theoretical

space plasma studies, models a Maxwellian with an

enhanced nonthermal tail, which may be characterized at the

macroscopic level by a parameter b.23 It will be recalled that

Cairns et al.14 introduced this velocity distribution function

to model the excess of superthermal particles often observed

in space plasmas, as an ad hoc vehicle to explore their effects

on nonlinear waves in space.

Cairns et al.14 found rarefactive solitary structures (of

the polarity associated with the subsonic species) even in a

two-component plasma, besides the ubiquitous compressive

modes. There are also compositional and Mach number

parameter ranges for which solutions of both polarities can

“coexist,” with the (implicit) understanding that only one

solution can be realized at a time. However, Cairns et al.
were satisfied with establishing the possibility of having
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rarefactive (negative polarity) solutions, for fairly large b,

but did not give an exhaustive discussion of all possibilities

in terms of compositional parameters and Mach numbers

(equivalent to soliton velocities).

Our study,24 based on cold inertial ions and Cairns-

distributed electrons confirmed the possibility of having rare-

factive solitons at sufficiently high values of b (while retain-

ing a single-humped distribution).23 The range in soliton

speed of the negative polarity solitons was limited by a rare-

factive double layer. To broaden the discussion, we will now

assume that the ions are warm rather than cold. The ion den-

sity follows from the stationary form (in a frame co-moving

with the solitary structure) of the normalized fluid equations

of continuity and momentum,

d

dx
nivið Þ ¼ 0; (5)

vi
dvi

dx
þ rni

dni

dx
þ du

dx
¼ 0; (6)

as

ni ¼
1

2
ffiffiffi
r
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMþ

ffiffiffi
r
p
Þ2 � 2u

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM�

ffiffiffi
r
p
Þ2 � 2u

q� �
: (7)

The restriction to adiabatic ions (pi / n3
i ) has been intro-

duced for analytical tractability. The notation is standard and

normalized as usual, M ¼ V=Va is a Mach number, in terms

of an acoustic reference velocity; r ¼ c2
ti=V2

a measures the

ion pressure effects and u is the normalized electrostatic

potential. Further details of the normalization are not rele-

vant for the discussion given here. In (7), we have followed

the way of writing introduced by Ghosh et al.,25,26 as being

easier to deal with. The ions are superacoustic, so that

r < M2.

Besides the warm ions, the model also includes nonther-

mal Cairns electrons, with normalized density

ne ¼ ð1� buþ bu2Þexp½u�: (8)

These densities are inserted in Poisson’s equation (not

given), the integration of which with respect to u yields a

typical energy-like conserved integral

1

2

du
dx

� �2

þ SðuÞ ¼ 0: (9)

This can be analyzed as in classical mechanics,3 in terms of

the Sagdeev pseudopotential

Sðu;MÞ ¼
ðM �

ffiffiffi
r
p
Þ2 � 2u

h i3=2

� ðM þ
ffiffiffi
r
p
Þ2 � 2u

h i3=2

6
ffiffiffi
r
p

þ 3M2 þ r
3

þ 1þ 3b

� ð1þ 3b� 3buþ bu2Þexp½u�: (10)

By choice of integration constants and invoking overall

charge neutrality in the undisturbed conditions, one sees that

Sð0;MÞ ¼ S0ð0;MÞ ¼ 0, with a prime denoting a derivative

with respect to u. The required curvature to make the origin

an unstable maximum, needed to give solitary wave solu-

tions, is S00ð0;MÞ � 0. At the same time, the global acoustic

Mach number Ms is a solution of S00ð0;MÞ ¼ 0, yielding in

this case

M2
s ¼ rþ 1

1� b
: (11)

There is another interesting property, found empirically

earlier for a number of plasma models,6,24,27–29 but proved in

general only recently,30 in that S000ð0;MsÞ ¼ 0 gives the value

of the compositional parameters where the soliton polarity

changes sign. Here, we have that

S000ð0;MsÞ ¼ 2� 6bþ 3b2 þ 4rð1� bÞ3 ¼ 0: (12)

For different values of the effective temperature ratio, r, one

thus finds bc, critical values of the Cairns parameter, b, at

which the soliton polarity is reversed. It is seen that polarity

reversals are possible inside the permissible range 0 � b <
4=7 (where the Cairns distribution is properly defined),23

going from bc ¼ 0:423 at r ¼ 0 to bc ¼ 0:5 at r ¼ 0:5. We

note that the latter value of r would already be too large to

leave a sizeable window in Mach number space for solitons

to occur.31 Thus, unlike the polytropic fluid case, Cairns

electrons support both positive (compressive) and negative

(rarefactive) solitons, and we shall consider the two polar-

ities separately.

Negative polarity roots of the pseudopotential can only

occur in pairs, owing to the required convexity at the origin

and the asymptotic behavior for large negative u. Plotting

(10) for combinations of b and r such that negative double

layers are found clearly shows that there are no roots beyond

these, so that these double layers are indeed the limit of a

range of rarefactive solitons.

On the other hand, on the positive polarity side, there is

only the possibility of having at most one (compressive) root

as in the polytropic pressure-density model. This has been

checked on the relevant Sagdeev pseudopotential graphs for

a whole range of parameter combinations. The compressive

soliton range is limited by encountering a sonic point,19,20 or

by infinite ion compression in the case of cold ions. Hence, it

follows that Cairns electrons, too, do not support the exis-

tence of supersolitons in a two-component plasma.

C. Superthermal kappa distributions

Another way of modeling particle distributions with a

high energy tail which can deviate significantly from a

Maxwellian is by a kappa or generalized Lorentzian distri-

bution function15,16,22 that appears to be more appropriate

than a thermal Maxwellian distribution in a wide range of

plasma situations. Both space and laboratory plasma envi-

ronments may have such an excess superthermal electron

population due to velocity space diffusion, leading to an

inverse power-law distribution at a velocity much higher

than the electron thermal speed. The kappa distribution has

thus been widely adopted to model observed

distributions.32,33
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Because of this interest, Saini et al.34 gave a thorough

discussion of what replacing a Maxwellian by a kappa distri-

bution for the electrons entailed for ion-acoustic solitary

modes in a two-component plasma. In the limit j!1 the

kappa distribution reduces to a Maxwellian, much as the

Cairns distribution does for b ¼ 0. Their model included

cold ions, but we will again assume warm adiabatic ions

with density (7) (as in Sec. II B), and kappa-distributed elec-

trons, with density34,35

ne ¼ 1� u
j� 3=2

� ��jþ1=2

: (13)

The Sagdeev pseudopotential for this plasma composition is

Sðu;MÞ ¼ ½ðM �
ffiffiffi
r
p
Þ2 � 2u�3=2 � ½ðM þ

ffiffiffi
r
p
Þ2 � 2u�3=2

6
ffiffiffi
r
p

þ 3M2 þ r
3

þ 1� 1� u
j� 3=2

� ��jþ3=2
" #

:

(14)

Here, we have used a similar normalization to that above.

The global acoustic Mach number Ms is a solution of

S00ð0;MÞ ¼ 0, here defined through

M2
s ¼ rþ 2j� 3

2j� 1
: (15)

For changes of polarity, one would need to find a root j
of

S000ð0;MsÞ ¼
4ð2j� 1Þðj� 1Þ
ð2j� 3Þ2

þ 4r
ð2j� 1Þ3

ð2j� 3Þ3
: (16)

Given the standard restriction j > 3=2, one sees that

S000ð0;MsÞ is always positive for the kappa distribution

model. Between parentheses, at the time when Saini et al.
wrote their paper,34 the properties of the Sagdeev pseudopo-

tential at the acoustic speed were not fully realized, in partic-

ular the influence of S000ð0;MsÞ on the soliton polarity.30

Hence, in contrast to the Cairns model, which, at suffi-

ciently high b (but not exceeding the limits of acceptability

of the model),23 allowed solitons and double layers of the

reverse polarity (rarefactive) to exist, the kappa model was

unable to generate the latter, and only the well known com-

pressive soliton was obtained.34 In this sense, the behavior of

the kappa model in a two-component plasma is not vastly

different from that of the Maxwellian or polytropic descrip-

tions, at least as far as the soliton polarity is concerned.

There are, of course, considerable changes in the quantitative

details of the nonlinear modes. In summary, then, kappa-

distributed hot species, too, do not allow supersolitons in a

two-component plasma.

D. q-Nonextensive Tsallis distributions

This brings us to the third of the commonly used non-

thermal distributions with an enhanced non-Maxwellian

“tail,” the q-nonextensive distributions introduced by

Tsallis.17 Whereas the Cairns and kappa distributions are

essentially empirical models, the Tsallis distribution, based

on non-extensive statistical mechanics,17 has the attraction

that it may provide a rigorous theoretical foundation,

although it appears that the approach is still somewhat con-

troversial. However, we note that the Tsallis approach has

also been linked to the kappa distribution.36

The family of Tsallis distributions, with a parameter q,

has recently been much used in soliton theory, based on ear-

lier linear wave studies,18 but not always with the required

care, as will be seen below. We therefore propose to follow

the methodology of Verheest and Hellberg for the Cairns

distribution24 and of Saini et al.34 for the kappa distribution,

as far as the determination of the properties of large ampli-

tude nonlinear waves is concerned.

The plasma is composed of adiabatic positive ions and

Tsallis-distributed electrons, the latter with density37

ne ¼ 1þ ðq� 1Þu½ �ðqþ1Þ=ð2q�2Þ: (17)

This electron density has been obtained by integration of the

Tsallis distribution in phase space over all velocities, the

details of which are given elsewhere.18,37,38 However, the

restrictions on q that arise due to the convergence of some of

the integrals need to be kept in mind, because they are not

visible when one inspects expressions like (17). The phase

space distribution is unnormalizable for q � �1, just for the

number density, but the energy integral diverges for

q � 1=3.18,37,38 This restriction is equivalent to the well-

known limit j > 3=2 that is always included by users of the

kappa distribution.16 This means that the superthermal range

has to be restricted to 1=3 < q < 1, as for q¼ 1 the Tsallis

distribution reduces to a Maxwellian. Having a finite energy

is necessary if one wants to introduce concepts like pressure

and/or temperature in the fluid description of Tsallis species.

Unfortunately, the restriction to 1=3 < q < 1 is often not

adhered to in numerical applications,37 and invalidates some

of the conclusions in the literature, as we will point out

below.

For q > 1, the phase space velocities are restricted to a

finite interval, and so this part of the Tsallis distribution can-

not be used for the modeling of superthermal wings, nor-

mally needed for space plasma applications. Nonetheless, we

shall show below that the argument applicable to the range

1=3 < q < 1, applies for q > 1, too.

Using, again, a similar normalization, the Sagdeev pseu-

dopotential for this problem is

Sðu;MÞ ¼ ½ðM �
ffiffiffi
r
p
Þ2 � 2u�3=2 � ½ðM þ

ffiffiffi
r
p
Þ2 � 2u�3=2

6
ffiffiffi
r
p

þ 3M2 þ r
3

þ 2

3q� 1
1� 1þ ðq� 1Þu½ �ð3q�1Þ=ð2q�2Þ
n o

: (18)

Here the quantities of note are, from S00ð0;MsÞ ¼ 0 that

M2
s ¼ rþ 2

qþ 1
; (19)
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and

S000ð0;MsÞ ¼ qðqþ 1Þ þ 1

2
rðqþ 1Þ2: (20)

It is seen that for 1=3 < q < 1 this is always positive and so

changes in polarity cannot occur.

Clearly, the above constraint that prevents the occur-

rence of negative polarity solitons for 1=3 < q < 1, applies

equally well for q > 1.

Only a few papers in the literature deal with large ampli-

tude ion-acoustic solitons in two-component plasmas having

Tsallis electrons, of which we discuss two representative

ones. The paper by Tribeche et al.39 works with cold ions

(r ¼ 0), and their Sagdeev pseudopotential is a special case

of ours. They indicate that changes of polarity occur at q¼ 0,

and thus seemingly rarefactive solitons can exist for q < 0.

Alas, the range q � 1=3 is excluded for reasons of energy

convergence at the phase space level, so that there can be no

rarefactive solitons.

The other paper, by Roy et al.,40 includes ion thermal

effects and would correspond to our model, except that the

pressure term in their ion equation of motion [Eq. (2) of

Ref. 40] is written for isothermal pressures (pi / ni). Upon

integration that should give a logarithmic term, which

renders the inversion of the equation to extract the density as

function of u very complicated. To the contrary, their den-

sity expression [Eq. (8) of Ref. 40] is clearly written for adia-

batic pressures (pi / n3
i ), so there is a disconnect in their

algebra! Of their two figures, the first is for q > 1, the range

which cannot serve to model superthermal wings, whereas

the second is invalid as q is too close to 0, outside the

allowed range. In any case, they only discuss positive

solitons, and each time find only one root, the compressive

ion-acoustic mode.

Having derived the necessary information, we will plot

the existence domains in admissible Mach numbers, in terms

of q, for some typical values of r. The lower bound is clearly

given by Ms, whereas the upper bound follows from consider-

ing the limits imposed on u by the reality of the ion density.

From (7) we infer that this is given by u‘ ¼ 1
2
ðM �

ffiffiffi
r
p
Þ2,

reached before 1
2
ðM þ

ffiffiffi
r
p
Þ2. Since a soliton root should be

encountered before u‘, hence Sðu‘;MÞ > 0, we will use the

standard practice of determining the relevant M from

Sðu‘;MÞ ¼ 0. This is illustrated in Fig. 1.

Once we know where to choose appropriate parameter

values, we can plot the Sagdeev pseudopotentials, and illus-

trate them for some typical choices of q and r. In Fig. 2, the

values for r are the same as used in Fig. 1, with the same

curve styles, but panel (a) is for q ¼ 0:5, panel (b) for

q ¼ 0:8 and panel (c) for q ¼ 1:5. For negative u, all curves

in Fig. 2 ultimately tend to �1, whereas on the positive side

they have been limited for graphical clarity. The value of

FIG. 1. Existence diagram in fq;M=Msg space. The lower limit for M is at the

acoustic speed, or M=Ms ¼ 1, whereas the upper limit is given by the respec-

tive sonic points, for r ¼ 0 (blue solid curve), r ¼ 0:1 (red dashed curve),

r ¼ 0:2 (green dotted curve) and r ¼ 0:3 (black dotted-dashed curve).

FIG. 2. Graphs of typical Sagdeev pseudopotential curves, for M=Ms ¼ 1:1,

r ¼ 0 (blue solid curve), r ¼ 0:1 (red dashed curve), r ¼ 0:2 (green dotted

curve), and r ¼ 0:3 (black dotted-dashed curve). The corresponding values

for q are (a) 0.5, (b) 0.8, and (c) 1.5.
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M=Ms ¼ 1:1 has been chosen as it yields solitons for all the

values of r considered. It is seen that increasing q at a fixed

value of M=Ms decreases the soliton amplitudes, and that

there are no negative solitons at all.

Although not our main focus, we have briefly considered

the case q > 1. As we have seen above, polarity changes

cannot take place in this range. For completeness, we include

in Fig. 2, panel (c), typical Sagdeev pseudopotentials for the

case q ¼ 1:5 as an illustration of the pseudopotential behav-

iour in this range.

Again, as expected, Fig. 2 clearly shows that no superso-

litons can form, when the electrons are Tsallis-distributed. It

is seen that the effective temperature ratio parameter r has a

definite quantitative influence on the soliton amplitudes, but,

importantly, it cannot affect the positive or negative charac-

ter of the solutions. This is why in many applications the

ions are treated as cold, for mathematical simplicity.7,23,24,30

III. CONCLUSIONS

We recognise that it is not possible to provide a null

result for all possible two-component plasma models. Hence,

we have investigated a number of standard two-component

models that are commonly used in the broader space physics

literature. In particular, these include all the well-known

examples in which the inertialess species has a velocity

distribution that models the presence of an enhanced non-

Maxwellian superthermal “tail.”

We have shown that supersolitons cannot exist in cur-

rent two-component plasmas, by recalling results from the

literature where the pressure-density relations are polytropic,

even when full inertia and pressure effects have been

retained for both species. Only compressive solitons have

been found, the range of which is limited by ion density

limits, not by double layers.

This approach also covers Boltzmann distributions for

the hot species, and an extension of those to kappa or Tsallis

nonextensive distributions has not been able to generate

qualitative differences, or changes in soliton polarity. The

cases in the literature which discuss polarity changes for

Tsallis-distributed electrons at q¼ 0 are mistaken, in that a

correct delimitation of the superthermal range limits q to

1=3 < q < 1 by requiring that the energy in phase space be

normalizable. This is equivalent to the well-known lower

limit for kappa, viz. the requirement j > 3=2, and it should

be used as universally for the Tsallis model as is its analogue

for the kappa distribution.

The only exception to this general trend is when the

electrons have nonthermal Cairns distributions. Here a polar-

ity change is possible for sufficiently large b, but the nega-

tive soliton range is limited by double layers, without roots

beyond those. It is one of the enduring mysteries why the

Cairns distributions should be so different in this respect

from kappa or Tsallis distributions, as all include the

Boltzmann case as a limit. It appears that a first step in solv-

ing that mystery may have been taken in a recent paper by

Cairns,41 who considered another aspect of the different

behaviour of waves in kappa- and in Cairns-distributed

plasmas.
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