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A study of large amplitude ion-acoustic solitons is conducted for a model composed of cool and hot

ions and cool and hot electrons. Using the Sagdeev pseudo-potential formalism, the scope of earlier

studies is extended to consider why upper Mach number limitations arise for slow and fast ion-

acoustic solitons. Treating all plasma constituents as adiabatic fluids, slow ion-acoustic solitons are

limited in the order of increasing cool ion concentrations by the number densities of the cool, and

then the hot ions becoming complex valued, followed by positive and then negative potential double

layer regions. Only positive potentials are found for fast ion-acoustic solitons which are limited only

by the hot ion number density having to remain real valued. The effect of neglecting as opposed to

including inertial effects of the hot electrons is found to induce only minor quantitative changes in

the existence regions of slow and fast ion-acoustic solitons. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4916319]

I. INTRODUCTION

Nonlinear solitary wave structures often manifest them-

selves as travelling bipolar pulses in the magnetic field-

aligned component of electric field data. These waveforms

are indicative of positive polarity potential structures that

have been observed in the mid-altitude auroral zone,1 polar

magnetosphere,2 bow shock,3 plasma sheet boundary layer,4

and more recently in the dayside magnetosheath.5 A theoreti-

cal interpretation for these nonlinear waveforms was given

in terms of Bernstein-Green Kruskal (BGK) modes;6 how-

ever, these could also now be interpreted as electron-

acoustic type solitary waves in view of the theoretical

models which support high frequency positive polarity struc-

tures.7–12 On the other hand, low frequency signatures of

electrostatic solitary wave and double layers observed in ion

data by S3-3 and Viking in the auroral regions,13–15 having

negative potentials are most likely nonlinear structures of the

ion-acoustic type. There is a vast body of theoretical papers

which focus on ion (electron) dynamics in studies on ion

(electron)-acoustic solitons and double layers. The character-

istics of large and small amplitude ion-acoustic double layers

were investigated by Bharuthram and Shukla16 for a model

with cold ions and Boltzmann distributed cool and hot elec-

tron populations. The explanation as to why negative poten-

tial double layers occur in a model with positive ions

became evident in a later study by Baboolal et al.,17 wherein

it was found that double layers occur as upper limits on the

existence regions of solitons. Only double layers were inves-

tigated in an earlier paper by Baboolal et al.18 The studies in

Refs. 17 and 18 were based on models with one and two

(different mass) species of adiabatic ions. Contrary to the

belief that solitons are superacoustic, i.e., they can only prop-

agate at speeds which exceed the sound speed, positive

potential solitons were found to propagate at the acoustic

speed in Ref. 17. This appeared to have remained unnoticed

for many years even by the authors themselves up until very

recently when this was pointed out by Baluku et al.19 and

formed the basis for a study in which the focus was on pa-

rameter regions where ion-acoustic solitons propagate at the

acoustic speed. It was also found in Ref. 19 that positive

potential double layers are possible which is unexpected for

the model with positively charged ions, and Boltzmann cool

and hot electrons as one is inclined to believe that positive

potential solitons limited by number density considerations

of the ions should coexist with negative solitons limited by

double layers.17 The early theoretical studies on high fre-

quency electron-acoustic solitons were based on models

which neglected inertial effects of the hot electrons;20 conse-

quently, only negative potential solitons were found. In later

studies, it became evident that positive polarity electron-

acoustic solitons are possible by either treating the hot elec-

trons as inertial9 in the two-electron model with cool and hot

electrons; or if the choice is to treat the hot electrons as iner-

tialess (Boltzmann distributed) then the two-electron compo-

nent model has to be extended to include an additional

component of inertial electrons with21 or without10 a drift. In

view of the findings in Ref. 10, we are of the opinion that it

is not so much streaming as much as it is inertial effects of

an additional electron component that is required to invoke a

switch to positive polarity structures in the supported

electron-acoustic solitons. Studies on ion-acoustic solitons

with two species of ions22,23 were found to support only pos-

itive polarity structures. The traditional Sagdeev approach

was used in the study in Ref. 22, whereas the fluid-dynamic

paradigm24–26 was adopted in Ref. 23. It was found that the
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cool (positive) ions which are supersonic (thermal speed is

less than the speed of the nonlinear structure) are responsible

for the upper Mach number limitation for solitons found in a

model which was also composed of hot (negative) ions

which are subsonic (thermal speed is greater than the speed

of the nonlinear structure). In the model of Ref. 23 in which

only inertia was retained (thermal pressure was neglected)

for the cool ions and only thermal pressure was retained

(inertia was neglected) for the hot ions and the electrons, it

was found that there is a switch from the limit being imposed

by the cool ions to that of the hot ions for the value c¼ 2

(polytropic index of the two inertialess species). In the

Boltzmann limit (c¼ 1) for the hot electrons and hot ions,

the hot ion number density limit was eliminated and only the

cool ions were found to be responsible for the upper Mach

number limit.

The one-ion model11 was revisited by Maharaj et al.,27,28

wherein the objectives were to broaden the scope of the find-

ings in Ref. 11 by investigating the upper Mach number limi-

tations for ion-acoustic27 and electron-acoustic28 solitons.

These studies provided very valuable insights into how the

constraint imposed by the ion number density limits ion-

acoustic solitons27 and how number density considerations of

the cool and hot electrons, and the occurrence of negative and

positive double layers place constraints on the existence

regions of electron-acoustic solitons.28 It has already been

established in Ref. 12, that by extending the one-ion plasma

model to a model with two-temperature ions, two ion-

acoustic modes can be supported, viz., the lower phase speed

(or slow) ion-acoustic soliton which is associated with the

presence of the cool ions in the model; whereas a higher

phase speed or fast ion-acoustic soliton is associated with the

presence of the hot ions in the model. Furthermore, we recall

from the results presented in Ref. 12 that a polarity switch is

possible for electron-acoustic solitons, but only positive po-

larity structures were found for both slow and fast ion-

acoustic solitons. Two distinct ion-acoustic modes, viz., the

lower phase speed (slow) and higher phase speed (fast) ion-

acoustic modes are supported in plasmas if there is a differ-

ence in mass between the two inertial ion components and the

temperatures (or gradients in pressures) should also be differ-

ent. The properties of slow and fast ion-acoustic solitons are

discussed in a number of theoretical studies32–34 and in the

context of laboratory experiments.35,36 In Ref. 37, a range

(band) of velocities over which fast ion-acoustic solitons can-

not propagate was found.

Here, we will revisit the two-ion model of Lakhina

et al.,12 composed of cool and hot ions, and cool and hot elec-

trons which aptly models the plasma composition in the plasma

sheet boundary layer (PSBL) region.29 Magnetospheric plas-

mas which are composed of cooler, heavier ions (usually posi-

tively charged oxygen) and hotter, lighter ions (protons)38 are

quite common. In the PSBL region of the magnetosphere, the

hot ions are much hotter29 than the cool electrons and hence

this means that there is a not a very wide separation between

the hot ion and cool electron thermal speeds. The objective of

this study is to model a situation where all species including

the electrons have a sluggish response. Since the cool and hot

electrons species are treated as adiabatic fluids rather than

isothermal and inertialess (Boltzmann) species, the model rein-

forces the idea that on timescales of the ions, the cool and hot

electrons will not have sufficient time to thermalise to a single

electron species plasma. Thermalization of the electrons could

be easily achieved if once considers very long timescales asso-

ciated with dust dynamics, then, it makes sense that the elec-

trons in a dusty plasma model should be treated as isothermal

(Boltzmann distributed). It will be seen later that the phase

speeds of the slow and fast ion-acoustic modes differ at most

by one order of magnitude; hence, the slow ion-acoustic mode

phase speed is not low enough to warrant thermalisation of the

electrons to a single temperature. In this study, the hot ions will

not be considered hotter than the hot electrons as this will result

in strong Landau damping of the linear ion-acoustic waves. In

our study, we will assume that the hot ions and cool electrons

have the same temperature but the hot electrons are hotter than

the hot ions. This will also allow for broader applicability of

the theoretical model to other regions in the Earth’s magneto-

sphere than being restricted to the PSBL29 region but also pro-

vides sufficient justification for the model where all species

can be treated as adiabatic fluids.

We will extend here the scope of the study in Ref. 12 by

considering why upper Mach number limitations occur for

slow and fast ion-acoustic solitons. In view of the findings in

Refs. 27 and 28, it is clear that in seeking existence regions

for solitons, the merits of considering why upper Mach num-

ber limitations arise for solitons by far outweighs the benefits

of attempting to identify soliton existence regions by plotting

Sagdeev potentials for different combinations of fixed pa-

rameters as interesting soliton existence regions such as

those where polarity switches occur could easily be missed.

In addition, although this was not considered in Ref. 12 here

we will also establish to what extent is the Boltzmann

assumption for the hot electrons a good approximation by

comparing the existence regions obtained from assuming an

adiabatic fluid response for the hot electrons as opposed to

treating the hot electrons as being Boltzmann distributed.

The outline of the paper is as follows. In Sec. II, we

present details of the theory for the four-component model

composed of cool ions, hot ions, cool electrons, and hot elec-

trons, for which inertia and pressure are included for all spe-

cies.12 The model with Boltzmann hot electrons is discussed

in Sec. III. Existence regions of large amplitude slow and

fast ion-acoustic solitons are presented and discussed in Sec.

IV. A summary of our findings and conclusions are given in

Sec. V.

II. GOVERNING EQUATIONS FOR A MODEL WHICH
INCLUDES INERTIAL EFFECTS OF THE HOT
ELECTRONS

We consider an unmagnetized plasma composed of cool

ions, hot ions, cool electrons, and hot electrons. Including

inertia and pressure for all four plasma species, the continu-

ity, momentum, and pressure equations for all four species

are given by

@nj

@t
þ
@ njvjð Þ
@x

¼ 0; (1)
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@vj

@t
þ vj

@vj

@x
¼ � Zj

lj

@U
@x
� 1

ljnj

@Pj

@x
; (2)

@Pj

@t
þ vj

@Pj

@x
þ 3Pj

@vj

@x
¼ 0; (3)

@2U
@x2
¼ nce þ nhe � nci � nhi; (4)

where nj, vj, Tj, and Pj ¼ njTj denotes, respectively, the nor-

malized number density, fluid velocity, temperature, and

pressure of species j, where j ¼ ci; hi; ce, and he, respec-

tively, denotes the cool ions, hot ions, cool electrons, and hot

electrons. Furthermore, U is the normalized wave potential,

lce ¼ lhe ¼ le ¼ me=mi, where mj denotes the mass of spe-

cies j, lci ¼ lhi ¼ 1; Zce ¼ Zhe ¼ �1 for the cool (or hot)

electrons and Zci ¼ Zhi ¼ 1. All densities are normalized

with respect to the total equilibrium electron (or ion) number

density, viz., n0 ¼ nci0 þ nhi0 ¼ nce0 þ nhe0, velocities are

normalized with respect to the hot ion thermal speed

Chi ¼ ðThi=miÞ1=2
, time with respect to the inverse ion

plasma frequency xpi
�1 ¼ ðmi=4pn0e2Þ1=2

, lengths with

respect to the ion Debye length kdi ¼ ðThi=4pn0e2Þ1=2
, poten-

tial with respect to Thi=e, and thermal pressures with respect

to n0Thi. For all species, we have assumed an adiabatic fluid

response and used the same value for the polytropic index,

viz., c¼ 3.

We transform the set of Eqs. (1)–(4) to a frame moving

with the wave through the co-moving coordinate

n ¼ x�Mt, where the Mach number, M(¼V/Chi) denotes

the speed of the nonlinear structures, normalized with respect

to the hot ion thermal speed. Following the mathematical

procedure in Mendoza-Brice~no et al.,30 we solve for the den-

sities for the different species by making use of the boundary

conditions which are given by

U! 0; dU=dn! 0; nci ! n0
ci; nhi ! n0

hi; nce ! n0
ce;

nhe ! n0
he; Pci ! n0

ciTci; Phi ! n0
hi; Pce ! n0

ceTce;

Phe ! n0
heThe; as n! 61; (5)

where n0
j ¼ nj0=n0 such that n0

ce þ n0
he ¼ n0

ci þ n0
hi ¼ 1.

Solving for the number densities and expressing these in the

form nj ¼ nj0ð
ffiffiffi
a
p

6
ffiffiffi
b
p
Þ as in Ghosh et al.,31 respectively,

yields for the cool and hot ions, cool and hot electrons the

expressions given by

nci ¼
n0

ci

2
ffiffiffiffiffiffiffiffi
3Tci

p M þ
ffiffiffiffiffiffiffiffi
3Tci

p� �2

� 2U

� �1=2

6 M �
ffiffiffiffiffiffiffiffi
3Tci

p� �2

� 2U

� �1=2
( )

; (6)

nhi ¼
n0

hi

2
ffiffiffi
3
p M þ

ffiffiffi
3
p� �2

� 2U

h i1=2

6 M �
ffiffiffi
3
p� �2

� 2U

h i1=2
	 


; (7)

nce ¼
n0

ce

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tce=le

p M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tce=le

p� �2

þ 2U=leð Þ
� �1=2

6 M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tce=le

p� �2

þ 2U=leð Þ
� �1=2

( )
; (8)

nhe ¼
n0

he

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3The=le

p M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3The=le

p� �2

þ 2U=leð Þ
� �1=2

6 M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3The=le

p� �2

þ 2U=leð Þ
� �1=2

( )
: (9)

The choice of the lower sign (minus) in the density expressions given by Eqs. (6)–(9) is consistent with the boundary condi-

tions (Eq. (5)). On substituting these in Poisson’s equation and integrating it yields the energy integral-like equation

1

2

dU
dn

� �2

þ V U;Mð Þ ¼ 0; (10)

where our expression for the Sagdeev potential reads as

V U;Mð Þ ¼ n0
hi

6
ffiffiffi
3
p M þ

ffiffiffi
3
p� �3

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ

ffiffiffi
3
p� �2

� 2UÞ
q� �3

( )
� n0

hi

6
ffiffiffi
3
p M �

ffiffiffi
3
p� �3

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M �

ffiffiffi
3
p� �2

� 2U

q� �3
( )

þ n0
ci

6
ffiffiffiffiffiffiffiffi
3Tci

p M þ
ffiffiffiffiffiffiffiffi
3Tci

p� �3

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M þ
ffiffiffiffiffiffiffiffi
3Tci

p� �2

� 2U

r !3
8<
:

9=
;

� n0
ci

6
ffiffiffiffiffiffiffiffi
3Tci

p M �
ffiffiffiffiffiffiffiffi
3Tci

p� �3

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M �
ffiffiffiffiffiffiffiffi
3Tci

p� �2

� 2U

r !3
8<
:

9=
;
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þ n0
cele

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tce=le

p M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tce=le

p� �3

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tce=le

p� �2

þ 2U
le

s0@
1
A

3
8><
>:

9>=
>;

� n0
cele

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tce=le

p M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tce=le

p� �3

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tce=le

p� �2

þ 2U
le

s0@
1
A

3
8><
>:

9>=
>;

þ n0
hele

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3The=le

p M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3The=le

p� �3

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3The=le

p� �2

þ 2U
le

s0@
1
A

3
8><
>:

9>=
>;

� n0
hele

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3The=le

p M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3The=le

p� �3

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3The=le

p� �2

þ 2U
le

s0@
1
A

3
8><
>:

9>=
>;: (11)

The requirements for (10) to yield soliton solutions are:

(i) VðUÞ ¼ dVðUÞ=dU ¼ 0 at U¼ 0, (ii) ðd2VðUÞ=
dU2ÞU¼0 < 0 (the origin is an unstable fixed point), (iii)

VðUÞ ¼ 0 at U ¼ UnðpÞ where UnðpÞ is a negative (positive)

root of VðUÞ ¼ 0 such that VðUÞ < 0 for Un < U < 0 for

negative potential solitons and 0 < U < Up, for positive

potential solitons, (iv) ðd3VðUÞ=dU3ÞU¼0 < 0 for negative

potential solitons and ðd3VðUÞ=dU3ÞU¼0 > 0 for positive

potential solitons. In addition, a negative (positive) potential

soliton solution requires that (v) ðdVðUÞ=dUÞU¼Un
< 0 for

negative potential solitons and ðdVðUÞ=dUÞU¼Up
> 0 for

positive potential solitons ensuring that a pseudo particle

experiences a force in the direction of increasing negative

(decreasing positive) values of U for negative (positive)

potential solitons so that it is reflected back to the origin

(U¼ 0).

The requirements for a double layer solution is that in

addition to the conditions (i), (ii), and (iii) for solitons, the

requirement (vi) ðdVðUÞ=dUÞ ¼ 0 must be satisfied at U ¼
Un (or U ¼ UpÞ for a negative (positive) double layer.

It is important to point out here that small amplitude

soliton solutions which are obtained from the Korteweg-de

Vries (KdV) equation should be in reasonably good agree-

ment with the soliton results found using the arbitrary am-

plitude theory for soliton amplitudes which are not too

large. One must, however, still bear in mind that there are

significant differences in the results obtained from the two

approaches in that contrary to solitons obtained from the ar-

bitrary amplitude approach, KdV solitons cannot propagate

at the acoustic speed and coexistence (of opposite polarity)

KdV solitons is not supported. The polarity of a KdV soli-

ton is dictated by the sign of the coefficient of nonlinear

term in the KdV equation which is the sign of the third de-

rivative of the Sagdeev potential (at U¼ 0) stipulated as

the condition (iv) mentioned earlier. In the limit of small

amplitude, one may Taylor expand VðUÞ to third order to

obtain

VðUÞ � C2U
2 þ C3U

3; (12)

for which the solution for KdV solitons can be written as

U ¼ � C2

C3

� �
sech 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�C2

4
n2

r !
; (13)

where

C2 ¼
1

2

d2V Uð Þ
dU2

� �
U¼0

¼ n0
ci

M2 � 3Tci½ � þ
n0

hi

M2 � 3½ �

þ n0
ce

le M2 � 3Tce=leð Þ
 �þ n0

he

le M2 � 3The=leð Þ
 � (14)

and

C3 ¼
1

6

d3V Uð Þ
dU3

� �
U¼0

¼ n0
ci M2 þ Tci½ �

2 M2 � 3Tci½ �3
þ n0

hi M2 þ 1½ �
2 M2 � 3½ �3

� n0
ce M2 þ Tce=leð Þ
 �

2l2
e M2 � 3Tce=leð Þ
 �3 � n0

he M2 þ The=leð Þ
 �

2l2
e M2 � 3The=leð Þ
 �3 :

(15)

The expression (14) is identical with that given as (7) in

Ref. 12 assuming that none of the species are drifting. The

root(s) which correspond to the vanishing of (14) are

the phase speeds of the linear wave modes supported by the

model. These are the critical values of the Mach number,

Mcrit, which are the minimum allowed values of the Mach

number for which soliton solutions can be obtained for the

particular plasma composition. In order to determine the crit-

ical values of M, we solve (14) numerically. For the parame-

ter regions investigated in this paper, three distinct positive

roots corresponding to the vanishing of C2 have been

obtained of which the smallest value of Mcrit was identified

in Ref. 12 as a slow ion-acoustic mode, the intermediate root

is a fast ion-acoustic mode and the largest root is an

electron-acoustic mode. These critical values of the Mach

number provide lower limits on the velocity ranges of soli-

tons associated with the three different linear wave modes.

The distinction between cool and hot ions in the theoretical

model is what invokes the existence of slow and fast
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ion-acoustic waves, hence the existence of the former is

ruled out34 when there are no cool ions in the plasma compo-

sition. The sign of C3ðMÞ evaluated at M ¼ Mcrit dictates

what the polarity of the solitons should be in the limit of

small amplitude as stated earlier by the condition (iv). The

expression for C3 is very useful even in studies on solitons of

arbitrary amplitude since polarity switches in large ampli-

tude solitons occur precisely at the point where C3 ¼ 0

between regions in parameter space where positive (C3 > 0)

and negative (C3 < 0) potential KdV solitons are supported.

Having mentioned already that a minimum value of the

Mach number is required for solitons to be possible, it is im-

portant to point out that there also exist upper Mach number

limitations for solitons, consequently establishing that there

is a limit on the amplitude of the structures. Considering sim-

ple two-component plasma models with inertial positive ions

in addition to the electrons which can be treated either as in-

ertial or inertialess and Boltzmann distributed, it is known

that only positive polarity ion-acoustic solitons will be sup-

ported, which is consistent with the sign of the inertial ions

in the model. The amplitude of the positive potential solitons

will be limited by the constraint that the number density of

the ions should not become complex valued. Extending the

one-ion model to a two-ion model with inertial cool and hot

ions (both positively charged), will not only invoke the exis-

tence of both slow and fast ion-acoustic solitons but this also

now imposes two possibilities as to why there is an upper

limit on the amplitude, and consequently, the Mach number

of the positive potential soliton structures; the limit on the

amplitude of the positive polarity soliton structures could ei-

ther be imposed by the number density of the cool ions (6) or

the hot ions (7) becoming complex valued. If the cool ions

are responsible for the upper limit on M, then the maximum

permitted value of the positive potential, viz., Umax=cool ¼
ðM �

ffiffiffiffiffiffiffiffi
3Tci

p
Þ2=2 such that the cool ion number density (6)

remains real valued establishes the existence of a limit

on the amplitude of the positive polarity solitons. The ampli-

tude of the solitons will increase with increasing Mach num-

ber only up until U exceeds Umax=cool, then the cool ion

number density becomes complex valued and solitons will

no longer occur. The upper limiting value of M in this case is

precisely that value of M which coincides with the limit

U ¼ Umax=cool. Similarly, the other possibility is that the hot

ions in the model could be responsible for the limit on the

amplitude of the positive potential solitons, in which case, U
should not exceed Umax=hot ¼ ðM �

ffiffiffi
3
p
Þ2=2, else, the hot ion

number density (7) becomes complex valued and positive

potential solitons will no longer occur. When the hot ions are

responsible for limiting the amplitudes of the positive polar-

ity solitons, the upper M limit coincides precisely with

U ¼ Umax=hot. If it is neither the cool ions or the hot ions that

are imposing limits on the amplitudes of the solitons through

the number density, the other alternative is that double

layers, for which a positive or negative double root of VðUÞ
coincides with where a local maximum of VðUÞ occurs, can

also arise as upper limits on the admissible Mach number

ranges for solitons. It has been found in Ref. 28 that when

there is a switch in polarity of solitons (electron-acoustic in

Ref. 28) from negative to positive, the negative polarity

solitons and positive polarity solitons which occur in the

regions which are adjacent to the cross over point are lim-

ited, respectively, by negative and positive double layers.

Interestingly, the story on why the existence regions of soli-

tons terminate does not end even here because for some

models, solitons are even found beyond the M values for

which double layers are supported,19 i.e., supersolitons, and

are ultimately limited by the constraint imposed by appropri-

ate number density. Having provided in this discussion quick

insights into how upper Mach number limits arise for soli-

tons, we will now through numerical investigation identify

the different reasons as to why upper Mach number limits

occur for slow and fast ion-acoustic solitons, hence enabling

us to present the existence regions of slow and fast ion-

acoustic solitons in terms of the admissible Mach number

ranges after considering where the lower and upper Mach

number limits occur. In Sec. IV, we have presented the ad-

missible slow and fast ion-acoustic soliton Mach number

ranges as a function of the relative concentration and temper-

ature of the cool ions with respect to the hot ions. These fig-

ures depicting the existence regions provide very useful

insights into how the characteristics of slow and fast ion-

acoustic solitons differ. The results depicted in Figures 2–6

and 8 and upper set of curves in Figures 7(a) and 7(b) in Sec.

IV is based on the model which includes inertia and pressure

for all species.

III. MODEL WITH BOLTZMANN HOT ELECTRONS

In this section, we present the model where the inertia

(and pressure) of the cool and hot ions and the cool electrons

is retained but the hot electrons are assumed to be isothermal

and have a Boltzmann distribution. Equations (1)–(3) are all

still valid for the cool ions, hot ions, and the cool electrons;

however, the hot electron number density is now given by

nhe ¼ n0
he exp ðU=TheÞ (16)

and the corresponding Sagdeev potential contribution can be

written as

VðU;MÞhe ¼ n0
heThe½1� exp ðU=TheÞ�: (17)

To obtain Sagdeev potential for this model, the inertial hot

electron contribution in Eq. (11) needs to be replaced by the

expression in Eq. (17). All other terms remain the same as in

(11). Figure 9 and the lower set of curves in Figures 7(a) and

7(b) in Sec. IV are based on the model with Boltzmann hot

electrons.

IV. NUMERICAL RESULTS AND DISCUSSION

As a precursor to investigating solitons, we have to first

identify which linear wave modes are supported in our four-

component model which is composed of cool ions, hot ions,

and cool and hot electrons. The phase speeds of the linear

wave modes which coincide with the roots corresponding to

the vanishing of C2ðMÞ (14), thus establish the existence of

minimum values of the Mach number for which solitons

associated with the different linear wave modes can exist.
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We recall that C2 is the second derivative of the Sagdeev

potential which is evaluated at U¼ 0. Numerically, we found

three distinct roots of C2 ¼ 0 for a two-ion12 model as

opposed to only two in the one-ion11 model. We associate

the lowest and intermediate roots with the slow and fast ion-

acoustic modes, whereas the largest root is the electron-

acoustic mode. The roots obtained from C2 ¼ 0 are shown as

a function of the cool ion number density in Figure 1. From

Figure 1(a), it is clear that slow ion-acoustic modes have crit-

ical Mach numbers Mcrit¼ 0.17 to 1.73 so that their phase

speeds lie between the cool and hot ions thermal speeds. The

critical Mach numbers for the fast ion-acoustic are between

2.3 and 4.5 (Figure 1(a)), therefore their phase speeds will

lie between the hot ion and cool electron thermal velocities.

From Figure 1(b), it is seen that critical Mach numbers for

electron-acoustic modes are in the range of 90–180, and cor-

respondingly their phase speeds lie between the cool electron

and hot electron thermal speeds. The phase speed of

electron-acoustic modes is not sensitive to variations in cool

ion number density. This is expected as this is a high-

frequency mode where ion dynamics does not play an impor-

tant role; it merely provides a neutralizing background. The

characteristics of the slow and fast ion-acoustic waves from

the phase speeds which we obtained numerically are in

agreement with the behaviour of the modes inferred from an-

alytical expressions for the frequencies of the slow and fast

ion-acoustic modes (Refs. 32–34). We have verified that

when the temperatures of the two ions are the same, the slow

ion-acoustic mode disappears and we get only the fast ion-

acoustic mode.

Large amplitude solitons of the ion-acoustic type for

which existence regions are shown as a function of the cool

ion number density, viz., nci0=n0 in Figure 2, are referred to

as “slow ion-acoustic solitons.” The solid (–) curve in Figure

2 shows how the critical value of the Mach number for slow

ion-acoustic solitons varies with cool ion number density.

For a fixed value of nci0=n0, slow ion-acoustic solitons will

occur for Mach number values which exceed the critical

value which lies on the solid (–) curve but will terminate

once the upper limit on M has been reached which lies on ei-

ther one of the curves denoted by (� � �), (- -), (� � �), or

ð� � � � �Þ, depending on the particular choice of nci0=n0. As

a quick aside, it is important to take note that slow ion-

acoustic solitons are not possible if there are no cool ions in

the model, because the linear mode is non-existent.34 This

point is very clearly realised in Figure 2 and later in Figure 9

where it is seen that the lower (–) and upper Mach number

limits (� � �) tend to converge as nci0=n0 ! 0. A comparison

of Figure 2 with Figure 7 which depicts existence regions of

fast ion-acoustic solitons shows that fast ion-acoustic soli-

tons depend on the presence of hot ions in the model and

obviously do not vanish when nci0=n0 ! 0.

We consider first the soliton region which lies above the

curve denoted by (–) representing the lower M limits but

below the upper M limits (� � �, region I) in Figure 2, by fixing

the value of the cool ion density at a low value

nci0=n0 ¼ 0:1. The critical value of the Mach number

M¼ 0.532354 which coincides with the point (corresponding

to nci=n0 ¼ 0:1) on (–) in Figure 2 represents a lower limit-

ing value for solitons. It can be clearly seen that the value

M¼ 0.532354 (–) for which VðUÞ does not have a positive

root provides a lower M limit for the solitons shown in

Figure 3. For a possible soliton solution, the Mach number

values have to exceed the critical value which is clearly

shown in Figure 3 for M¼ 0.56 (� � �), M¼ 0.6 (– –), and

M¼ 0.62 (� � �). These are seen to become stronger

FIG. 1. Phase speeds of the linear (a) slow and fast ion-acoustic and (b)

electron-acoustic wave modes as a function of the cool ion number density for

the fixed parameters le ¼ 1=1836; Tce=Thi ¼ 1; The=Thi ¼ 10, and Tci=Thi

¼ 0:01. The curves correspond to nce0=n0 ¼ 0:1 (curve labelled 1), 0.3 (curve

labelled 2), and 0.5 (curve labelled 3).

FIG. 2. Existence regions of slow ion-acoustic solitons shown as a function

of the normalized cool ion number density for the fixed parameters:

le ¼ 1=1836; Tce=Thi ¼ 1; The=Thi ¼ 10; Tci=Thi ¼ 0:01, and nce0=n0 ¼ 0:1.

The lower (–) and upper Mach number limits beyond which the cool (cf. Eq.

(6)) (� � �, region I) and hot (cf. Eq. (7)) (- -, region II) ion number densities

become complex valued, and for which positive and (� � �, region III) and

negative (� � � � �, region IV) double layers are supported and the corre-

sponding maximum potentials (Umax) (� � �, region I) and (- -, region II) and

positive (� � �, region III) and negative (� � � � �, region IV) double layer

amplitudes are shown.
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(amplitudes increase) as inferred from the positive roots of

VðUÞ which become more positive for increasing values of

the Mach number. This increase in soliton amplitude with

increasing Mach number will not continue indefinitely.

Eventually the upper limit on the Mach number for slow

ion-acoustic solitons will be realized in Figure 3 when the

limiting curve ð� � � � �Þ for the Sagdeev potential which

corresponds to M¼ 0.6585157 is obtained. If we examine

the expression for the cool ion number density (6), it is appa-

rent from the second term that for positive values of the

potential, U should not exceed Umax=cool ¼ ðM �
ffiffiffiffiffiffiffiffi
3Tci

p
Þ2=2

for the cool ion number density to remain real valued. The

root of VðUÞ ¼ 0 corresponding to the upper limiting value

of M coincides precisely with this limit on U, viz., Umax=cool

¼ ðM �
ffiffiffiffiffiffiffiffi
3Tci

p
Þ2=2 such that (6) is still real valued.

Reverting to our Figure 2 which depicts the slow ion-

acoustic soliton existence regions, solitons will occur for M
values which lie above (–) but are below (� � �, region I),

where the latter upper M limits are imposed by the constraint

that the number density of the cool ions has to remain real

valued. Slow ion-acoustic solitons cease to exist for a value

for M which either lies on (� � �) in Figure 2 or above it such

as for M¼ 0.665 (– –) in Figure 3 in which case VðUÞ no

longer has a positive root. The upper limiting values of M
which lie on (� � �) in Figure 2 were obtained numerically by

solving VðU ¼ Umax=coolÞ ¼ 0. The limit for positive values

of the potential, viz., Umax=cool ¼ 0:1177632 beyond which

the cool ion number density (6) is no longer real valued,

coincides with the positive root of VðUÞ for M¼ 0.6585157

(� � � � �) in Figure 3. It is clearly seen in Figure 3 that slow

ion-acoustic solitons cease to exist and VðUÞ (– –) will no

longer have a positive root once M exceeds the upper limit

M¼ 0.6585157. Values of Umin=cool (� � �, region I) are shown

in the lower set of curves in Figure 2 for the entire range of

cool ion concentrations nci0=n0 where the cool ions are re-

sponsible for the upper limit.

We move now to the second region in parameter space

where the upper Mach number limits on (- -, region II) in

Figure 2 are imposed by the constraint that the number den-

sity of the hot ions (7) must remain real valued. Plots of

Sagdeev potentials in Figure 4 for the higher value nci0=n0

¼ 0:25 rather than nci0=n0 ¼ 0:1 (in Figure 3) look quite

similar to the Sagdeev potentials in Figure 3 except that the

lower and upper Mach number limits are different from that

in Figure 3. The value M¼ 0.82296736 for the critical Mach

number corresponding to nci0=n0 ¼ 0:25 which gives rise to

the lower limiting plot (–) of the Sagdeev potential in Figure

4 lies on (–) in Figure 2. On the other hand, the value

M¼ 0.955187 (for nci0=n0 ¼ 0:25) which gives rise to the

upper limiting plot of the Sagdeev potential (� � � � �) in

Figure 4 lies on the upper limiting curve (- -, region II) for M
in Figure 2. The upper limit on M coincides with the maxi-

mum permitted value of U, viz., Umax=hot ¼ ðM �
ffiffiffi
3
p
Þ2=2

beyond which the number density of the hot ions (7) is no

longer real valued. The variation of Umax=hot with nci0=n0 is

shown as (- -, region II) in the lower set of curves in Figure

2. The upper limits on M (- -, region II) in Figure 2 got from

VðU ¼ Umax=hotÞ ¼ 0 (as opposed to VðU ¼ Umax=coolÞ ¼ 0)

were in agreement with the M values which result in the

upper limiting curves of the Sagdeev potentials. This led us

in the right direction that the hot ion number density is re-

sponsible for limiting the occurrence of slow ion-acoustic

solitons in this region II of parameter space. Once the upper

limit M¼ 0.955187 corresponding to nci0=n0 ¼ 0:25 has

been exceeded, slow ion-acoustic solitons are no longer pos-

sible such as for the value M¼ 0.958 (– –) in Figure 4

because the Sagdeev potential becomes complex valued long

before a positive root of VðUÞ can be attained, similar to

what we discussed earlier when the cool ion number density

was responsible for the upper limit.

Reverting to the existence regions in Figure 2, the upper

M limits for slow ion-acoustic solitons which lie on (� � �,

region III) in the range 0:3019 � nci0=n0 < 0:505 are not

Mach number values beyond which either the number den-

sity of the cool ions (6) or the hot ions (7) becomes complex

valued, but these are now Mach number values for which

positive potential double layers occur. A double layer has an

asymmetric potential profile for which the behaviour of the

Sagdeev potential is such that dVðUÞ=dU ¼ 0 coincides with

the position of a double (non-trivial) root of VðUÞ. It can

clearly be seen in Figure 5 that the double layer which was

obtained for the value M ¼ 1:0663942 ð� � � � �Þ provides

FIG. 3. The Sagdeev potential for M¼ 0.532354 (–), M¼ 0.56 (� � �),
M¼ 0.6 (- -), M¼ 0.62 (� � �), M¼ 0.6585157 (� � � � �), and M¼ 0.665

(– –). The other fixed parameters are same as in Figure 2 except nci0=n0 ¼ 0:1.

FIG. 4. The Sagdeev potential for M¼ 0.82296736 (–), M¼ 0.87 (� � �),
M¼ 0.9 (- -), M¼ 0.92 (� � �), M¼ 0.955187 (� � � � �), and M¼ 0.958 (– –).

The other fixed parameters are same as in Figure 3 except nci0=n0 ¼ 0:25.
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the upper limit on the M range supporting slow ion-acoustic

solitons found for nci0=n0 ¼ 0:4. The amplitude of the double

layer, viz., U ¼ 0:1895192 coincides with the point corre-

sponding to nci0=n0 ¼ 0:4 on (� � �, region III) in the lower

set of curves in Figure 2. It is clearly seen in Figure 5 that

beyond the Mach number value for which a positive double

layer is supported, slow ion-acoustic solitons are no longer

possible.

Finally, for the largest cool ion concentrations spanning

0:5053 � nci0=n0 � 0:7, slow ion-acoustic solitons are found

to have negative potentials as opposed to positive potentials

found for solitons in the three regions discussed earlier.

Fixing the value for nci0/n0¼ 0.65 (Figure 6), the existence

of these negative polarity solitons starts at a value for the

Mach number M¼ 1.351656, which lies on (–) in Figure 2,

they become stronger (amplitudes become increasingly more

negative) with increasing values of the Mach number and

their existence terminates on the upper limiting curve

(� � � � �, region IV) at the value M¼ 1.4021812 which is a

negative potential double layer. Our results are quite similar

to the findings for two negatively charged inertial species

(electrons)9,10 in that, if one is warmer than the other, a

switch in polarity can be incurred by varying the concentra-

tion of the cooler species. In fact, the pattern for our exis-

tence regions depicted in Figure 2, is very similar to those

shown for electron-acoustic solitons in Refs. 9 and 28 in that

soliton regions limited by the cool and hot number densities

(of the electrons) is followed by a double layer region (soli-

ton structures limited by double layers have the same polar-

ity as the two inertial electron species) and this is followed

by another double layer region (nonlinear structures now

have opposite polarity to that of the two inertial electron spe-

cies). Reverting to our discussion of Figure 2 and examining

the lower set of curves, the cool ion concentration at which

there is a cross-over from positive (� � �, region III) polarity

solitons to negative (� � � � �, region IV) polarity solitons,

which is observed to occur at the value nci0=n0 ¼ 0:505 in

Figure 2 depends on the particular fixed concentration

of the cool electron density. We have defined the critical

value of the cool ion number density as being the cool ion

concentration which corresponds to the vanishing of the third

derivative of the Sagdeev potential (at Mcrit) evaluated

at U¼ 0. Positive ðd3VðU=dU3ÞU¼0 > 0Þ and negative

ðd3VðU=dU3ÞU¼0 < 0Þ potential KdV solitons having solu-

tions described by (13) occur on either of the critical value

for the cool ion concentration. The critical value of the cool

ion concentration at which a switch from positive to negative

potential slow ion-acoustic solitons will occur increases

from nci0=n0 ¼ 0:468 at nce0=n0 ¼ 0 to nci0=n0 ¼ 0:505 at

nce0=n0 ¼ 0:1. For a higher value of the cool electron con-

centration, viz., nce0=n0 ¼ 0:2 there is a switch from positive

polarity solitons to negative polarity solitons at nci0=n0

¼ 0:541.

Having discussed in detail the existence regions of slow

ion-acoustic waves, we now shift our focus to fast ion-

acoustic solitons. These will simply be referred to as ion-

acoustic solitons for the sake of brevity. The picture of the

ion-acoustic soliton existence regions shown in Figure 7 for

FIG. 5. The Sagdeev potential for M¼ 1.0439219 (–), M¼ 1.055 (� � �),
M¼ 1.058 (- -), M¼ 1.061 (� � �), M¼ 1.0663942 (� � � � �), and

M¼ 1.068 (– –). The other fixed parameters are same as in Figure 2 except

nci0=n0 ¼ 0:4.

FIG. 6. The Sagdeev potential for M¼ 1.351656 (–), M¼ 1.37 (� � �),
M¼ 1.38 (- -), M¼ 1.39 (� � �), M¼ 1.4021812 (� � � � �), and M¼ 1.404

(– –). The other fixed parameters are same as in Figure 2 except

nci0=n0 ¼ 0:65.

FIG. 7. Existence regions of fast ion-acoustic solitons shown as a function

of the normalized cool ion number density for both inertial and Boltzmann

hot electrons. The fixed parameters are same as in Figure 2. The lower (–)

and upper Mach number limits beyond which hot ion number density (cf.

Eq. (7)) (� � �) becomes complex valued are shown in (a). The corresponding

maximum values of the potentials (� � �) are shown in (b).
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inertial, adiabatic hot electrons is very much simpler than the

picture shown for slow ion-acoustic solitons in Figure 2

because there is only one reason as to why upper M limits

occur for ion-acoustic solitons. We conclude that only posi-

tive potential ion-acoustic solitons are possible for our model

in view of the fact that the third derivative (15) of the

Sagdeev potential (11) at U¼ 0 remains positive irrespective

of how the parameters are varied. It turns out that it is the hot

ions and not the cool ions which are responsible for the upper

M limits for fast ion-acoustic solitons. The hot ion number

density establishes the existence of a limiting value of

the potential, viz., Umax=hot ¼ ðM �
ffiffiffi
3
p
Þ2=2, such that, if

U > Umax=hot, then (7) becomes complex valued if the Mach

number exceeds the upper M limit on (� � �) in Figure 7(a).

The variation of Umax=hot with the cool ion number density

for adiabatic hot electrons is depicted in Figure 7(b). An

interesting comparison of our results for fast ion-acoustic

solitons with the results of Mishra et al.33 is that both nega-

tive and positive polarities were found for fast ion-acoustic

solitons in a negative-ion plasma when the cool and hot elec-

tron species are Boltzmann distributed. The results in the

studies by Baboolal et al.17,18 for a two-ion model discusses

only ion-acoustic solitons and/or double layers associated

with the fast ion-acoustic mode. The discussion of the results

for fast ion-acoustic solitons depicted in Figure 7 for

Boltzmann hot electrons will be deferred until later.

Up to this point, our focus was on examining the slow

ion-acoustic soliton existence regions as a function of the

cool ion number density by keeping the cool to hot ion tem-

perature ratio fixed at Tci=Thi ¼ 0:01. By fixing the cool ion

number density at the value nci0=n0 ¼ 0:3, and increasing

Tci=Thi, our Figure 8 reveals that there is a switch from a

region where the positive polarity soliton amplitude restric-

tions are due to the occurrence of positive potential double

layers, followed by the region where the soliton amplitude

restrictions are imposed by the number density constraints

imposed by the hot ions and then the cool ions. These three

mentioned regions are, respectively, bounded by the upper

Mach number limiting curves denoted by (� � �, region I), (- -,

region II), and (� � �, region III) in Figure 8. Values for

Umax are found to decrease with the increase of Tci=Thi as

seen in the lower set of curves in Figure 8. We did consider

Tci=Thi values up to Tci=Thi ¼ 0:9 and found that the cool ion

number density limit extends all the way up to Tci=Thi ¼ 0:9.

We have not shown the entire range in Figure 8 because it

would not have been possible to show the positive double

layer and the hot ion number density limited regions which

are much narrower.

Finally, we consider the case of treating the hot elec-

trons as inertialess in our model as opposed to including the

inertia of the hot electrons. At first glance, it will seem that

the slow ion-acoustic soliton existence regions in Figure 9

are identical to those shown in Figure 2, however, a closer

comparison of the figures particularly at the larger values of

nci0=n0 where negative potential solitons occur which are

limited by negative double layers, it will become evident

that the admissible soliton Mach number ranges are narrower

when the hot electrons are treated as Boltzmann as opposed

to retaining inertia for the hot electrons. Because the upper

(negative double layer) limits are so close to the Mcrit values,

this justifies why the negative double layer amplitudes

(� � � � �, region IV) in the region of high cool ion concen-

trations in Figure 9 are also smaller than those shown for in-

ertial hot electrons in Figure 2 if one compares the negative

double layers for the same cool ion concentrations. Another

noticeable difference if one compares Figure 9 with Figure 2

is that the cross-over from positive polarity to negative

FIG. 8. Existence regions of slow ion-acoustic solitons shown as a function

of the cool to hot ion temperature ratio. The fixed parameters are same as in

Figure 3 except nci0=n0 ¼ 0:3. The lower Mach number limit (–), and upper

Mach number limits for which positive double layers (� � �, region I) occur,

and upper Mach number values beyond which the hot (cf. Eq. (7)) (- -,

region II) and cool (cf. Eq. (6)) (� � �, region III) ion number densities

become complex valued and the corresponding positive double layer ampli-

tudes (� � �, region I), and maximum potentials (- -, region II) and (� � �,

region III) are shown.

FIG. 9. Existence regions of slow ion-acoustic solitons shown as a function

of the normalized cool ion number density for Boltzmann hot electrons. The

fixed parameters are same as in Figure 2. The lower (–) and upper Mach

number limits beyond which the cool ion (cf. Eq. (6)) (� � �, region I) and hot

ion (cf. Eq. (7)) (- -, region II) number densities become complex valued,

and Mach number values for which positive (� � �, region III) and negative

(� � � � �, region IV) double layers occur and the corresponding maximum

values of the potentials (� � �, region I) and (- -, region III) and positive

(� � �, region III) and negative (� � � � �, region IV) double layer ampli-

tudes are shown.
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polarity structures occurs at a larger value for the cool ion

density, viz., nci0=n0 ¼ 0:57 than the value nci0=n0 ¼ 0:505

found for the case of inertial hot electrons for the same value

nce0=n0 ¼ 0:1 for the cool electron concentration.

A comparison of the fast ion-acoustic soliton existence

regions shown in Figure 7 reveals that there are no qualita-

tive changes for Boltzmann and inertial hot electrons. Fast

ion-acoustic solitons are again found to be limited only by

the constraint that the number density of the hot ions (7) has

to remain real valued, which is consistent with what we

found when the hot electrons are inertial in the model

(Figure 7). Figure 7 clearly shows that the admissible ion-

acoustic soliton Mach number ranges are much wider, conse-

quently, the maximum permitted values of the potential

beyond which the hot ion number density (7) is no longer

real valued, viz., Umax=hot are much higher when hot electron

inertia is retained as opposed to neglecting it in the theoreti-

cal model. If one considers the results for electron-acoustic

solitons for previously studied models with three10 or two28

electron components, then the effect of including the inertia

for two electron components in the model was found to allow

for positive polarity electron-acoustic structures to be possi-

ble. In a similar vein, we expect that negative polarity ion-

acoustic solitons will not be possible if the hot ions are

treated as Boltzmann in the two-ion model, although we did

not investigate this in this study. This will only allow for the

possibility of a single ion-acoustic mode, the hot ion number

density restriction will be removed, the possibility of a polar-

ity switch for ion-acoustic solitons will be eliminated, and

consequently, the occurrence of double layers will not be

supported. If there are two inertial species in the model (elec-

trons9,28 or ions34), earlier studies9,28,34 and this study have

shown that double layers (DLS) are possible in adjacent

regions of parameter space which lie on either side of where

the polarity switch in the supported soliton structures occurs.

Certainly, if the inertia of the cool and hot electrons is

neglected in the theoretical model, then a polarity switch is

very likely for ion-acoustic solitons17 although we are not

including this possibility for the purpose of this discussion.

We should, however, point out that caution should be exer-

cised in considering the hot ions to be Boltzmann distributed

on ion time scales, since this approximation will only be a

good one if the cool ions are very much more massive than

the hot ions in the model, consequently, this may be better

suited to dusty plasma models.

V. CONCLUSIONS

The existence of large amplitude slow and fast ion-

acoustic solitons has been investigated for a model with cool

ions, hot ions, cool electrons, and hot electrons using the

Sagdeev pseudo-potential formalism. This model is applica-

ble to the multispecies plasma found in the plasma sheet

boundary layer29 of the Earth’s magnetosphere. In the study

by Lakhina et al.,12 it was established that two ion-acoustic

modes having different phase speeds are supported when the

model with only one11 species of ion was extended to

include two species of inertial ions, viz., cool and hot. The

purpose of this study was to broaden the scope of the

findings in Ref. 12 by focusing on why upper Mach number

limitations arise for slow and fast ion-acoustic solitons.

Furthermore, the parameters which were chosen in this study

do not assume the hot ions to be much hotter than the hot

electrons which will result in reduced Landau damping of

the linear wave modes, and this will consequently favour the

plasma evolving to a nonlinear state quickly enough, such

that solitons and double layers are supported. Treating the

cool and hot electrons as adiabatic fluids in our study rather

than as isothermal and inertialess species (Boltzmann distrib-

uted) is justified in situations where the hot ions are either

much hotter29 or have the same temperature as the cool elec-

trons such that there is no wide separation between the ther-

mal speeds of both species. We find that initially, retaining

inertia and pressure for all species, in the order of increasing

concentrations of the cool ions, viz., nci0=n0, slow ion-

acoustic solitons having positive polarity are limited by the

cool and then the hot ion number density becoming complex

valued, followed by the region where the positive polarity

slow ion-acoustic solitons are limited by positive double

layers. The largest cool ion concentrations induce a polarity

switch in slow ion-acoustic solitons such that negative poten-

tial structures become possible and these are limited by

negative double layers. The higher phase speed (fast) ion-

acoustic solitons in the study were found to have only posi-

tive polarity and these are limited only by the constraint that

the number density of the hot ions should remain real valued.

Both polarities were found for fast ion-acoustic solitons in a

negative-ion plasma with Boltzmann cool and hot elec-

trons.33 The admissible negative potential slow ion-acoustic

Mach number ranges at the higher cool ion concentrations

were found to be narrower, consequently the negative double

layers limiting the existence regions of negative slow ion-

acoustic solitons have reduced amplitudes for the model with

Boltzmann hot electrons as compared to the nonlinear struc-

tures obtained if the hot electrons are treated as inertial. The

other effect of neglecting as opposed to retaining inertial

effects of the hot electrons is that the cross over from posi-

tive to negative potential slow ion-acoustic solitons occurs at

a higher value of the cool ion number density than for the

model with inertial hot electrons. The effect of neglecting as

opposed to retaining inertial effects of the hot electrons on

the existence regions of fast ion-acoustic solitons is that not

only is there a shift in the admissible Mach number ranges to

lower values but also these Mach number ranges which sup-

port fast ion-acoustic solitons are narrower for hot electrons

which are Boltzmann distributed than for inertial hot

electrons.
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