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Abstract The developed analytic model for toroidal oscillations under infinitely conducting ionosphere
(“Rigid-end”) has been extended to “Free-end” case when the conjugate ionospheres are infinitely resistive.
The present direct analytic model (DAM) is the only analytic model that provides the field line structures
of electric and magnetic field oscillations associated with the “Free-end” toroidal wave for generalized
plasma distribution characterized by the power law 𝜌 = 𝜌o(ro∕r)m, where m is the density index and r is the
geocentric distance to the position of interest on the field line. This is important because different regions in
the magnetosphere are characterized by different m. Significant improvement over standard WKB solution
and an excellent agreement with the numerical exact solution (NES) affirms validity and advancement of
DAM. In addition, we estimate the equatorial ion number density (assuming H+ atom as the only species)
using DAM, NES, and standard WKB for Rigid-end as well as Free-end case and illustrate their respective
implications in computing ion number density. It is seen that WKB method overestimates the equatorial
ion density under Rigid-end condition and underestimates the same under Free-end condition. The density
estimates through DAM are far more accurate than those computed through WKB. The earlier analytic
estimates of ion number density were restricted to m = 6, whereas DAM can account for generalized m
while reproducing the density for m = 6 as envisaged by earlier models.

1. Introduction

Many experimental as well as remote sensing techniques are being developed to probe the Earth’s magne-
tosphere. In the last few years ultralow frequency (ULF) waves observed in space are used to estimate ion
density in different regions of the magnetosphere, and this technique is termed as magnetospheric seismol-
ogy [Guglielmi, 1974; Baransky et al., 1985; Guglielmi, 1989; Fedorov et al., 1990; Denton et al., 2001, 2004; Chi
and Russell, 2005; Berube et al., 2006; Takahashi and Denton, 2007]. The success of the techniques lies in the
precise identification of field line frequency and use of appropriate theoretical model incorporating suitable
boundary conditions. These ULF oscillations, otherwise termed as geomagnetic pulsations, are small ampli-
tude (few tenths of nT to 100 nT) long period (10 s–1000 s) magnetic field fluctuations observed in ground
and space. These oscillations are consequences of Alfvén waves standing on geomagnetic field lines [Dungey,
1954]. Under cold plasma approximation, these oscillations can be categorized to shear Alfvén mode and
fast compressional mode [Dungey, 1968]. The former deals with transverse magnetic field perturbation and
energy is guided along field line. The fast mode, on the other hand, has a component along the ambient field
and energy moves in the direction of the wave vector, which can make any angle with the ambient field. The
background nonuniform magnetic field couples the two modes and has been discussed in different magnetic
field geometries by different authors [Lanzerotti and Southwood, 1979; Leonovich, 2001; Waters et al., 2013].
The coupled equation has not been solved in dipole magnetic field geometry. However, the extreme limit of
azimuthal wave number k𝜙 decouples the mode to toroidal (k𝜙 ∼ 0) or poloidal (k𝜙 ∼ ∞) oscillation along
with the compressional mode [Orr, 1973]. The toroidal and poloidal modes are characterized by azimuthal
and meridional magnetic field perturbation, respectively, and often the poloidal mode gets transformed to
toroidal in the Earth’s magnetosphere [Leonovich and Mazur, 1993; Mann and Wright, 1995; Klimushkin et al.,
2004; Mager and Klimushkin, 2006, 2007]. The time scale of this transformation depends on the azimuthal wave
number associated with the wave. Theoretical aspects of these oscillations have been discussed by many pre-
vious authors [Radoski, 1967; Cummings et al., 1969; McClay, 1970; Orr and Mathew, 1971; Southwood, 1974;
Krylov and Fedorov, 1976; Newton et al., 1978; Allan and Knox, 1979a; Krylov et al., 1979, 1980; Krylov and Lifshitz,
1984; Sinha and Rajaram, 1997; Ozeke and Mann, 2005]. There are many observations of these oscillations
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[Cummings et al., 1969; Engebretson et al., 1986; Anderson et al., 1990; Sinha et al., 2005; Bochev and Sinha, 2010;
Liu et al., 2013; Takahashi et al., 2013].

The reflection at the ionosphere plays a crucial role in generating standing wave modes of different wave-
lengths. This reflection is decided by the balance between the ionospheric Pedersen conductance ΣN,S

P and
the conductance of Alfvén wave at the conjugate point ΣA. The superscripts N and S represent the northern
and southern conjugate points, respectively, and the wave conductance ΣA = 1∕𝜇0Vc

A, where Vc
A is the Alfvén

velocity at the conjugate point. The type of the standing wave formed on the field line depends on the sign of
the reflection coefficient at the conjugate points. The reflection coefficient at the ionosphere can be computed

by RN,S = ΣA−Σ
N,S
P

ΣA+Σ
N,S
P

given by Scholer [1970]. Similar sign of R at the conjugate points gives rise to half-wave modes,

whereas a change in sign of the R generates a quarter-wave mode. According to Hughes and Southwood [1976],
the half waves are further classified into two types described as follows. (1) The ionosphere is infinitely con-
ducting at both hemispheres (i.e., ΣN,S

P >ΣA a typical condition for a half-wave), the electric field as well as
the wave displacement must vanish at the foot of the field lines at the conjugate ionospheres leading to the
“Rigid-end mode.” The reflection coefficient RN,S must follow the relation RN,S < 0 at both conjugate points.
(2) The ionospheric conductivity is vanishingly small at both hemispheres (i.e., ΣN,S

P <ΣA condition favorable
for local midnight during equinoxes: again a typical condition for a half-wave), the magnetic field vanishes at
the foot of the field lines at the conjugate ionospheres, whereas the electric field and wave displacement still
have a finite value leading to a “Free-end mode.” In this case, RN,S >0 at both conjugate points. The Rigid-end
and Free-end conditions of half-wave mimic the local noon and midnight during equinoxes, respectively.
There exists another special standing Alfvén wave, termed as quarter wave, formed under extremely asym-
metric ionospheric boundary condition at the conjugate points [Allan and Knox, 1979a, 1979b]. These waves
are dominant around dawn and dusk MLT hours during solstices. The spatial and temporal characteristics of
these waves in comparison to half waves are thoroughly discussed very recently by Bulusu et al. [2014].

It is to be noted that the terms half and quarter waves mentioned above represent the relation of wavelength
of oscillation to the scale size of the system for the fundamental. When the scale size of the system is half of
the wavelength of standing wave, it is termed as half-wave, and when the scale of the system is one fourth of
the wavelength, it is termed as quarter wave.

The first analytic picture of the toroidal oscillations was presented by Warner and Orr [1979]. They used the
Mead and Fairfield [1975] model of the magnetosphere and computed the time of flight between the two con-
jugate ionospheres by using the WKB method. The fundamental period obtained using WKB method showed
large departure as regard to the time period of the wave. This departure was attributed to the breaking
down of WKB method for the fundamental as the wavelength of oscillation is comparable to the scale size
of the system [Singer et al., 1981]. This implies that for higher harmonics, the departure in WKB frequency
from the numerical exact frequency should be negligibly small. However, Sinha and Rajaram [1997] showed
that the departure in the frequency got saturated with increasing harmonic number and did not vanish even
for the harmonic as large as 20. They attributed this discrepancy to the inability of the WKB method in han-
dling the singularities at the turning points (colatitude 𝜃 ∼ 0 and 𝜃 ∼ 𝜋). They could obtain a natural and
self-consistent analytic solution for Rigid-end toroidal eigenmodes in the dipole field geometry by ensuring
that the solution was well behaved at the turning points.

All the previous work mentioned so far assumed the ionosphere to be infinitely conducting. The problem of
the Free-end modes was first envisaged by Newton et al. [1978]. Thereafter, characteristics of these modes
were studied by various authors in different field geometries [Allan and Knox, 1979a, 1979b; Allan, 1983;
Southwood and Kivelson, 1990; Sinha and Rajaram, 2003; Ozeke and Mann, 2005]. The analytic formalism pre-
scribed by Allan and Knox [1979a, 1979b] and Ozeke and Mann [2005] were restricted only to the density
variation of 1∕r6 along the field line. It is important to get an analytic solution for Rigid-end as well as Free-end
for different density variations as different magnetospheric regions follow different density variations along
the field line [Carpenter and Smith, 1964; Newbury et al., 1989; Gallagher et al., 2000; Goldstein et al., 2001]. The
analytic solution for Rigid-end was put forth by Sinha and Rajaram [1997] for generalized density distribution
in the dipole field geometry. They discussed the importance of analytic solution over WKB solution. Here we
reproduce the analytic solution for Rigid-end and extend the model to get an analytic solution for Free-end
toroidal oscillations. The Free-end solution along with the Rigid-end solution can provide the estimation of
ion number densities for ULFs observed in any local time sector.
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Conventionally, the estimation of the ion number densities are carried out under the assumption of infinitely
conducting ionospheric boundary conditions, i.e., Rigid-end condition [Denton et al., 2001, 2004; Takahashi
and Denton, 2007; Min et al., 2013]. This will cause an error in the estimation as an assumption of infinitely high
conducting ionosphere is appropriate for the events during daytime only. Estimates of such errors are dis-
cussed by Ozeke and Mann [2005]. They addressed the departure in the densities obtained from Rigid-end and
Free-end cases for the same observed frequency and showed the errors that can occur in numerical, analytic,
and WKB method. However, their analytic model could account only for a density variation of 1∕r6 type along
the field line. For density variation other than 1∕r6 along the field line, the WKB approach was suggested. How-
ever, as mentioned earlier, Sinha and Rajaram [1997] showed that the WKB frequencies depart significantly
from the exact frequencies especially for lower harmonics which are mostly observed and are used for density
estimation. This implies that ion number density obtained from WKB method would also depart significantly
from that estimated through exact solution. This aspect is addressed in this paper in detail along with the
development of an analytic model for Free-end half-wave in dipole field for generalized plasma distribution.
For the sake of completion we also discuss the analytic Rigid-end solution in context with the conventional
estimation of ion number density. The paper is organized as mentioned in the following paragraph.

Section 2 describes the general theoretical background of analytic model of toroidal half waves. In section 2.1
we reproduce the direct analytic model (DAM) for the Rigid-end given by Sinha and Rajaram [1997] and extend
it for Free-end toroidal mode. In section 2.3, we present the numerical exact solution (NES) for the Rigid-end
and Free-end so as to compare the results with corresponding analytic solutions. Validity of assumptions is
examined in section 3. The temporal and spatial characteristics of the toroidal eigenmodes for Rigid-end and
Free-end are discussed in section 4. The importance of boundary condition in estimating ion number densi-
ties along with a comparative account of different methods (DAM, NES, and WKB) are illustrated in section 5.
Conclusions are included in section 6.

2. Theoretical Background

In generalized curvilinear orthogonal coordinate system, Singer et al. [1981] described the long-period trans-
verse waves in cold, infinitely conducting, and stationary magnetized plasma in a single exact linear wave
equation as

𝜇o𝜌
𝜕2

𝜕t2

(
𝜉𝛼

h𝛼

)
= 1

h2
𝛼

−→
Bo.

−→∇
[

h𝛼2
−→
Bo.

−→∇
(
𝜉𝛼

h𝛼

)]
(1)

where 𝜇o is the magnetic permeability in vacuum, 𝜌 is plasma mass density, 𝜉𝛼 is the plasma displacement
perpendicular to the field line,

−→
Bo is the ambient magnetic field direction; the parameter 𝛼 determines the

mode of oscillation, and its direction−→
𝛼 signifies the plasma displacement. The parameter h𝛼 is the scale factor

for the normal separation between the field lines in the direction of −→𝛼 and is determined by the magnetic
field geometry. The associated electric and magnetic field structures can be obtained using the following
equations.

b𝛼 = h𝛼Bo
d

dS

(
𝜉𝛼

h𝛼

)
(2)

E𝛽 = 𝜔𝜉𝛼Bo (3)

where (
−→
B0∕B0,

−→
𝛼 ,

−→
𝛽 ) form the right-handed orthogonal system.

The versatility of the above equation is seen from its applicability to both dipolar and nondipolar magnetic
field geometry, and this equation can be solved for uncoupled toroidal and poloidal oscillations in general.
If s denotes the distance along the field line from the equator, 𝜙 denotes the longitude, and 𝜈 denotes the

meridional distance then (ŝ, �̂�, �̂�) form a right-handed orthogonal system where ŝ =
−−→
▽s|▽s| , �̂� =

−−−→
▽𝜙|▽𝜙| , and

�̂� = ŝ × �̂�. For toroidal oscillation 𝛼 and 𝛽 correspond respectively to 𝜙 and 𝜈, whereas for poloidal oscillation
they respectively correspond to 𝜈 and 𝜙.

For infinitely conducting ionospheric boundaries (Rigid-end), analytic as well as numerical solutions to
equation (1) for toroidal oscillations were developed by Sinha and Rajaram [1997] in the dipole field geom-
etry. In the present study, we extend the analysis to examine the spatial and temporal characteristics of
toroidal oscillations for insulating ionospheres (Free-end) by making the necessary changes in the ionospheric
boundary conditions. The solution for Rigid-end is also reproduced for the sake of comparison.
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2.1. Direct Analytic Method (DAM) for Toroidal Oscillations
We solve equation (1) under the following assumptions.

1. The background magnetic field is dipolar;
2. Perturbed quantities vary as exp[i𝜔𝜏];
3. Density variation is governed by the power law 𝜌 = 𝜌o(ro∕r)m,

where m is the density index and 𝜌o is proton mass density at ro, the geocentric distance to equatorial crossing
point of the field line considered, and r is the geocentric distance to the position of interest on the field line.

With the assumption that the background magnetic field is dipolar, the parameters h𝛼 , B0, and equato-
rial magnetic field Beq are given by the following expressions: h𝛼 = L sin3 𝜃 for the toroidal mode, B0 =
Beq

√
1 + 3 cos3 𝜃∕ sin6 𝜃, and Beq = 0.311 × 10−4∕L3 Tesla. Here L = 1∕ sin2 𝜃c (suffix c indicates the value at

the conjugate point and 𝜃)is the colatitude and is the geocentric distance (in Earth radius, RE), of the point
where the field line crosses the equator.

Sinha and Rajaram [1997] discussed how the turning points (𝜃 ∼ 0 or 𝜋) affect the solution for Rigid-end case.
Adopting the identical formalism as in Sinha and Rajaram [1997], the mode equation (1) can be written as

𝜖2 d2X
dv2

+ Φ(v)X = 0 (4)

where 𝜖 = 1∕L2, X = 𝜉𝛼

RE h𝛼
, S = s

RE
, dv

dS
= Beq

h2
𝛼

B
, Ω = 𝜔RE

VAeq
,Φ(v) = Ω2 sin2r 𝜃, r = 6 − m, and VAeq = Beq

𝜇0𝜌0
. VAeq is

the Alfvén velocity at the equator and X is the normalized displacement along the field line. The independent
variable v in equation (4) can be explicitly written as v = 1±cos 𝜃

L
, where the minus and plus signs denote

the Northern and Southern Hemispheres, respectively. It should be noted that equation (4) becomes singular
when Φ(v) = 0, i.e., at 𝜃 = 0, 𝜋. The singularity is handled mathematically by using the methodology of
Langer [1949].

By making the transformations X = a(v)Z, a(v) ≠ 0, 𝜁 = 𝜁 (v), a(v) = (d𝜁∕dv)−1∕2, and 𝜁 r(d𝜁∕dv)2 = Φ(v),
equation (4) takes the form [

d2

d𝜁2
+ 𝜁 r

𝜖2
+ a3 d2a(v)

dv2

]
Z = 0 (5)

If we neglect the last term in equation (5) (justified in section 3), it gets transformed to the standard
Bessel equation

d2u
d𝜂2

+ 1
𝜂

du
d𝜂

+
[

1 − 𝜈2

𝜂2

]
u = 0 (6)

where 𝜂 = (2∕𝜖)𝜁 r+2∕2∕(r + 2), Z =
√
𝜁u, and 𝜈 = 1∕(r + 2). Equation (6) is solved in two hemispheres, and

it is ensured that the solution is analytically continuous by matching the solution and its derivative at the
equator. It should be noted that 𝜂 = 𝜔LRE

VAeq
∫ 𝜃

0 sin7−m 𝜃 for the Northern Hemisphere, and 𝜂 = 𝜔LRE

VAeq
∫ 𝜋

𝜃
sin7−m 𝜃

for the Southern Hemisphere. Thus, the solution of equation (4) in terms of normalized displacement X can
be written as

X =
√

1
2L𝜈

√
VAeq

𝜔LRE

𝜂1∕2

sin3−m∕2 𝜃

[
J𝜈(𝜂) + KJ−𝜈(𝜂)

]
(7)

where, J𝜈(𝜂) and J−𝜈(𝜂) are Bessel functions of the first kind in the variable 𝜂 and of order 𝜈 and−𝜈, respectively.
The arbitrary constant K in equation (7) is determined by using appropriate boundary conditions relevant
either to “Rigid-end” or to “Free-end” modes. Thus, the field line structures of toroidal half-wave modes are
obtained in a complete analytic form for a generalized plasma distribution in a dipolar field geometry. We call
this method as DAM (Direct Analytic Method).

2.2. Ideal Boundary Conditions (Rigid-End and Free-End Cases)
To determine arbitrary constant K of solution (7), Rigid-end (Free-end) boundary condition, we impose X = 0
(dX∕dS=0). Thus, the solution for Rigid-end and Free-end can be explicitly written by putting the appropriate
value of K in equation (7), i.e.,

K = −[J𝜈(𝜂)∕J−𝜈(𝜂)]𝜃=𝜃c
(8)
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for Rigid-end and

K =
⎡⎢⎢⎢⎣

[(
3−m∕2

L tan 𝜃Ω(d𝜂∕d𝜃)
− 1

2𝜂

)
J𝜈(𝜂) − J

′

𝜈
(𝜂)

]
[

J′−𝜈(𝜂) −
(

3−m∕2
L tan 𝜃Ω(d𝜂∕d𝜃)

− 1
2𝜂

)
J−𝜈(𝜂)

]⎤⎥⎥⎥⎦
𝜃=𝜃c

(9)

for Free-end.

Analytic continuation of X and dX
dS

at the equator ensures that either the solution or its derivative vanishes
at the equator, which is a natural condition for even and odd harmonics, respectively, for the Rigid-end
condition. However, for the Free-end case the solution should vanish for odd harmonics at the equator,
whereas vanishing derivative at the equator is the natural condition for even harmonics. Thus, using the above
condition on the solution along with its derivative, the eigenfrequencies are determined in a natural and
self-consistent way.

2.3. Numerical Exact Solution (NES) for Toroidal Oscillations
The mode equation (1) is solved numerically using second-order Runge-Kutta method and the exact fre-
quency is obtained by shooting method using the appropriate boundary conditions that either the eigenfunc-
tion X (for Rigid-end case) or its derivative dX

dS
(for Free-end case) must vanish at the ionosphere. Even and odd

harmonics are decided by imposing the condition at the equator. For Rigid-end case the solution (its deriva-
tive) vanishes at the equator for even (odd) harmonics. The equatorial condition is reversed for Free-end case.
Once the frequency is determined, the solution and its derivative could be obtained by solving the normalized
equation. This method of numerical solution is referred as Numerical Exact Solution (NES).

3. Validity of Neglecting the Last Term in Equation (5)
3.1. On Analytic Grounds
In order to understand the importance of each term of equation (5), the variation of each term with respect
to L and m was examined. It is seen that the first term varies as L2 and is independent of density index m. The
second term varies as L2(3r+4)∕(r+2). For extreme values of m as 0 and 6, the L dependence of the second term is,
respectively, L5∕2 and L4. However, the dependence of the third term on L and m is very different. For density
indices between m = 0 and m = 5, the third term (a3 d2

dv2 a(v)) varies as L−2(r−2)∕(r+2) with respect to L. For m = 6
this term vanishes. For m = 0–5, the ratio of the first term to the third term is proportional to L4r∕(r+2) and the
ratio of the second term to the third term is proportional to L4(2r+1)∕(r+2). This shows the significant dominance
of the first two terms over the third term. It should be noted that for L > 1, the third term can be neglected.
However, with increasing L, the third term becomes increasingly insignificant. Depending on the variation of
each term with respect to L and m of equation (5), and considering the ratios between the terms, it is justified
to neglect the third term on physical grounds.

3.2. On Numerical Grounds
Neglecting the last term in equation (5) is tantamount to adding (− 𝜖2

a
d2a
dv2 X) in the left-hand side of equation (4)

resulting into

𝜖2 d2X
dv2

+ vrΨ(v)X − 𝜖2

a
d2a
dv2

X = 0 (10)

Equation (10) was exactly solved for X using the second-order Runge-Kutta method for both the Rigid-end
and Free-end cases. Results thus obtained were compared with the numerical exact solution of equation (4)
as explained in section 2.3. The comparison has been shown in Figure 1, where index 1 represents the solution
of equation (10), i.e., after neglecting the last term in equation (5), and the index 2 represents the solution of
equation (4), i.e., considering all terms. In terms of physical quantities, normalized plasma displacement (X) is
proportional to the electric field associated to the toroidal oscillations, whereas Y(= h2

𝛼
B dX

dS
) is proportional to

the magnetic field associated with these oscillations. Figures 1 (top left) and 1 (top right) denote the field line
structure of X and Y , respectively for Rigid-end case and Figures 1 (bottom left) and 1 (bottom right) denote
these parameters for Free-end case.

The analysis was performed for different values of density index, and as expected the departure was maximum
for m = 0 when the effect of singularity is maximum as is evident from the term Φ(v). Even for the worst case
of m = 0, the maximum departure in X for Rigid-end and Free-end cases was, respectively, 3% and 2%. The
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Figure 1. The plots of X (related to electric field) and Y (related to the derivative of X , associated with magnetic field) for
m = 0 as a function of colatitude of 𝜃 for (top row) Rigid-end and (bottom row) Free-end. Index 1 represents the solution
of equation (10) and index 2 represents the solution of equation (4).

maximum departure in Y for Rigid-end and Free-end cases was found to be 2% and 8%, respectively. These
small departures in X and Y computed through equations (10) and (4) justifies neglecting the last term in
square bracket of equation (5).

4. Results and Discussions
4.1. Temporal Behavior for Idealized Ionospheric Conductivity
This section discusses the temporal characteristics of toroidal oscillations in the extreme limits of ionospheric
conductivities. The eigenperiods and eigenfrequencies are computed for equatorial proton density of 1/cm3.
The fundamental and second harmonic frequencies are estimated for a range of density indices from m = 0−4
at L = 6.6 using three discussed methods, i.e., WKB, DAM, and NES. 𝜔WKB denotes the frequency obtained by
WKB method, whereas 𝜔R

D and 𝜔F
D denote the frequencies obtained through DAM for Rigid-end and Free-end

cases, respectively. 𝜔R
E and 𝜔F

E are the frequencies for Rigid-end and Free-end cases, respectively, using NES
method. The percentage departure in frequencies obtained using DAM from that obtained using NES are
shown in Table 1. It is seen that as the density index m increases, the percentage departure in frequency com-

puted using DAM from the exact frequency

[
(𝜔R

D−𝜔
R
E )

𝜔R
E

× 100

]
and

[
(𝜔F

D−𝜔
F
E )

𝜔F
E

× 100

]
, respectively, for Rigid-end

and Free-end, decreases for both fundamental and the second harmonic. The maximum departure is only
16.5% and 7% for fundamental Rigid-end and Free-end, respectively, for the worst case of m = 0 when the
effect of singularity on the solution is maximum. Also, the frequencies estimated using DAM and NES for
higher values of density indices are in good agreement for both Rigid-end and Free-end cases.

This is a remarkable improvement over the formal WKB frequency, which departs 60% and 26% respec-

tively for fundamental Rigid-end and Free-end, from the exact frequency (shown as
[
(𝜔WKB−𝜔R

E )
𝜔R

E

× 100
]

and[ (𝜔F
E−𝜔WKB)
𝜔WKB

× 100
]

) for m = 0 (Table 2). It is important to note that the WKB frequency, computed using time
of flight, does not distinguish between Rigid-end and Free-end.

Figure 2a represents the fundamental frequency obtained analytically (using DAM) for Rigid-end and Free-end
along with WKB frequency for density index m = 0 at L = 6.6. Emphasis has been given to L = 6.6,
because this corresponds to the geostationary satellite, though this analysis holds good for any value of L.
It can be seen that the frequency for Rigid-end is smaller compared to WKB and that for Free-end is greater
than the WKB frequency. This feature is predominant specially in case of the fundamental. As the harmonic
number is increased, the frequency obtained from all the three approaches converges. This result is on the
expected line, as WKB solution breaks down mainly for the fundamental and the lower harmonics where the
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Table 1. Percentage Departure of Toroidal Frequencies
Estimated Using Direct Analytic Method (DAM) From Cor-
responding Numerical Exact Solution (NES) for Rigid-End
and Free-End Cases at L = 6.6

Density Harmonic % Departure of

Index Number 𝜔D From 𝜔E

m HN
(𝜔R

D−𝜔
R
E )

𝜔R
E

× 100
(𝜔F

D−𝜔
F
E )

𝜔F
E

× 100

6 1 0 0

6 2 0 0

5 1 2.1 0.9

5 2 0.28 0.2

4 1 6 3

4 2 0.3 0.33

3 1 8 4

3 2 1 1

2 1 11.5 6

2 2 1.5 1.5

1 1 14 6.5

1 2 2 1.6

0 1 16.5 7

0 2 2.5 2

wavelength of oscillations is comparable to the
scale size of the system. In addition, the WKB
method does not distinguish between Rigid-end
and Free-end conditions. It should be noted that in
the present study we take the typical value of den-
sity as 1/cm3 and thus the estimated frequencies
fall in the Pc4 range for the geostationary height. If
we take the realistic value of proton number den-
sity, i.e., in the range 5–10/cm3, (cf. Figure 5), the
frequency falls in the range of Pc5 pulsations which
are prevalent at geostationary height [Takahashi
et al., 2002; Takahashi and Denton, 2007]. The
importance of using correct plasma density to
reproduce the observed frequency has been
emphasized by earlier works [Sinha et al., 2005;
Engebretson et al., 1986].

Figure 2b shows the variation of fundamental
period with density index m at L=6.6. It was seen
that for m = 0, the departure in fundamental
period obtained analytically for the Rigid-end and
Free-end from that obtained using WKB are 37%
and 35%, respectively. For m = 6 (i.e., when plasma
density varies as 1∕r6), fundamental eigenperiod
estimated from WKB matches with that obtained for
both Rigid-end and Free-end. The periods gradually

converge with increasing m and coincide for m = 6. This is understandable because for this value of m, the
singularity in the termΦ(v) = Ω2 sin12−2m 𝜃 disappears reducing the problem to that of vibration on a uniform
string. As m decreases, the effect of singularity starts affecting the solution and, hence, the estimated period
using DAM for Rigid-end and Free-end depart significantly from corresponding WKB period. The present DAM
method is an improvement over the formal WKB method in the sense that the singularity is handled properly.

Table 2. Percentage Departure of Toroidal Frequencies Esti-
mated Using WKB Method From Corresponding Numerical
Exact Solution for Rigid-End and Free-End Cases at L = 6.6

Density Harmonic % Departure of

Index Number 𝜔WKB From 𝜔E

m HN
(𝜔WKB−𝜔R

E )
𝜔R

E

× 100
(𝜔F

E−𝜔WKB)
𝜔WKB

× 100

6 1 0 0

6 2 0 0

5 1 12.8 12.3

5 2 4.8 6.5

4 1 25 18

4 2 10 10

3 1 35 22

3 2 13 12.5

2 1 45 24

2 2 17 14

1 1 53 25

1 2 19 14.6

0 1 60 26

0 2 21 15

Figure 2c depicts the change in the funda-
mental eigenperiod over a range of magnetic
shells (L=4−9) for a typical density index m=4.
Physically, as the L value is increased, the length
of the field line increases and, hence, is the
increase in the fundamental period (time for the
wave to travel from one conjugate ionosphere
to another and back). This is clearly evident from
Figure 2c.

4.2. Field Line Structures in the Extreme
Limits of Ionospheric Conductivity
The field line structures of electric and mag-
netic fields associated with the fundamental of
toroidal mode for both Rigid-end and Free-end
cases are shown in Figure 3, whereas the struc-
tures for second harmonic have been shown
in Figure 4. Although these structures can be
obtained for all values of density index m = 0−6,
the results presented here are for typical values
of m = 4 and L = 6.6.
4.2.1. Fundamental Mode Structure for
Rigid-End and Free-End Cases
Field line structures of electric and magnetic
fields along the field lines depend on the iono-
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Figure 2. Temporal characteristics of toroidal field line oscillations. Frequencies (Periods) for Rigid-end and Free-end
conditions are estimated through DAM and are compared with those computed through WKB. The equatorial proton
number density is considered as 1/cm3. (a) Variation of fundamental frequency with harmonic number for L = 6.6 and
density index m = 0. (b) Variation of fundamental period with density index m for L = 6.6. (c) Variation of fundamental
period with L value for typical density index m = 4.

spheric conductivities at the conjugate points as well as on the harmonic number. For the Rigid-end, the
ionosphere is infinitely conducting at conjugate ionospheres. This makes the field displacement negligible at
the foot of the field line and thus the electric field sees a node at the conjugate points (Figure 3a). However,
the finite current flowing at the conjugate ionospheres result in the antinodes of magnetic field (Figure 3c).
In addition, the electric field has an antinode for the fundamental and all the odd harmonics at the
equator, whereas the magnetic field is characterized by a node at this point for the Rigid-end. The com-
puted electric and magnetic field variations by DAM match very well with the earlier numerical results of
Cummings et al. [1969].

For the Free-end, the ionospheric conductivity is negligibly small and thus the current flowing at the con-
jugate points will be small, resulting in the node formation for the magnetic field at the conjugate points
and formation of antinode for the electric field at those points. Figures 3b and 3d show the fundamental
electric and magnetic fields, respectively, for Free-end. It is seen that at the equator, the Free-end fundamental
and all the odd harmonics of magnetic field result in the formation of antinodes, whereas the corresponding
electric field variations show nodes at the equator. In these plots, BSurface and ESurface represent, respec-
tively, the magnetic and electric field fluctuations at the foot of the field line in the ionosphere and T is the
wave period.

In this figure, results from DAM and NES are put together for comparison. It can be seen that the solutions
obtained from DAM match very well (departure is 2.5% for the fundamental at the equator).
4.2.2. Second Harmonic Spatial Structure for Both Rigid-End and Free-End
The second harmonic and all even harmonics of electric field show a node at the equator along with the
nodes at the conjugate points for Rigid-end, and the magnetic field has antinodes at the equator and at both
the conjugate points (Figures 4a and 4c). However, the even harmonics of Free-end electric field result in
the formation of antinodes at the equator along with the antinodes at the conjugate points (Figure 4b). The
second harmonic and all even harmonics of Free-end magnetic field result in the formation of nodes at the
equator along with the nodes at the conjugate points (Figure 4d).
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Figure 3. Latitudinal structures of fundamental electric and magnetic fields in Rigid-end and Free-end cases for m = 4
and equatorial density is the same as in Figure 2. Shown is the fundamental electric field along the field line for
(a) Rigid-end and (b) Free-end. Similarly, also shown is the fundamental magnetic field along the field line for
(c) Rigid-end and (d) Free-end. The magnitude of electric field or magnetic field at any point can be obtained by multi-
plying with the indicated factor. ESurface and BSurface represent the value of electric and magnetic fields, respectively, at
the conjugate points. T is the wave period.

At a particular latitude, the electric field fluctuation in mV/m can be obtained by multiplying with the factor
(BSurface[100∕T]), where T is the wave period for the Rigid-end. However, for the Free-end, the variation of
electric field is presented as the fluctuation in the electric field for 1 mV/m electric field variation at the foot
of the field line. The variation of the magnetic field in case of Rigid-end is presented as the fluctuation in the
magnetic field for 1 nT magnetic field variation at the foot of the field line. At a particular latitude the magnetic
field fluctuation for Free-end in nT can be obtained by multiplying the ordinate with ESurface[100∕T].

A comparative study as depicted by Figure 4 shows that there is no departure in the electric and magnetic
fields for second and higher harmonics when computed by DAM and NES methods. It is seen that the depar-
ture in fundamental frequency of 3% between DAM and NES (refer the estimates for m = 4 from Table 1) leads
to a departure of only 2.5% in the magnetic fields for Free-end (Figure 3d). On the other hand, the depar-
ture in frequency of 0.33% (Table 1) for second harmonic does not reflect any departure in the field-aligned
structures of electric and magnetic fields (Figure 4). This puts our analytic model (DAM) on a firmer ground.
However, unlike the spatial structures of electric and magnetic fields, the equatorial ion number density is
very sensitive even to the slightest change in frequency. The methods for identification of frequencies with
minimum error and estimation in equatorial ion number is discussed by Denton et al. [2001] and Takahashi
and Denton [2007]. The use of appropriate boundary condition while estimating the equatorial ion number
density is also equally important and is discussed in the following section.

5. Equatorial Ion Number Density Through DAM, NES, and WKB Methods

It is of paramount importance to estimate the ion number densities in different magnetospheric regions in
order to probe the Earth’s magnetosphere. Magnetospheric seismology is one of the remote sensing tech-
niques developed to estimate the ion number densities using the pulsation frequencies observed by different
magnetic and electric field measurements in space [Takahashi and Denton, 2007]. Using our theoretical model,
we compute ion number densities at different L shells.
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Figure 4. Same as Figure 3 but for second harmonic.

For this purpose, we used the frequencies observed by Menk et al. [1999] and Takahashi et al. [2002, 2004].
The observed frequencies cover all MLT sectors for L values ranging from 3 to 9. However, we consider only
those events which lie in 0800–1600 MLT hours believing that Rigid-end condition is relevant to this range of
MLT only. We pick up pulsation frequencies during quiet geomagnetic conditions (kP = 0− 20) as the present
model best describes the field line characteristics during quiet geomagnetic conditions. It should be
noted that the model has the potential to account for disturbed geomagnetic conditions as well [Sinha and
Rajaram, 2003].

For any reported frequency fobserved, corresponding to a particular L shell, the equatorial ion number density
(n0) (assuming protons as the only ion species) was computed using our model. Theoretical estimates of fre-
quencies fmodel were computed for a range of n0 such that |fmodel − fobserved| < 𝛿f , where 𝛿f is the error in the
frequency estimate. In our analysis, 𝛿f is considered as 0.01. The resulting error in density 𝛿n can be estimated
as

(
𝜕n
𝜕f

)
fobserved

𝛿f . This technique is applied to each of the methods DAM, NES, and WKB to obtain the analytic,

numerical, and WKB estimates of n0 assuming both Rigid-end and Free-end conditions.

5.1. Variation With Respect to L shell
Figure 5 shows the estimates of equatorial ion densities obtained using all three methods discussed above
under Rigid-end and Free-end boundary conditions. For the estimated n0, the superscripts R and F refer to
estimates under Rigid-end and Free-end boundary conditions, respectively, and the subscripts DAM, NES, and
WKB denote the respective methods employed. In all figures, frequencies are considered for L shells rang-
ing between 3 and 9 and densities are estimated for indices m = 0–5 as all the estimates are concurrent for
m = 6. The following inferences can be drawn from this figure. (a) The estimates of n0 using Free-end (n0F

NES
or n0F

DAM) lie above WKB estimates (n0WKB) and that for Rigid-end (n0R
NES or n0R

DAM) lie below it. (b) The analytic
estimates of densities for both Rigid-end and Free-end (n0R

DAM, n0F
DAM) are slightly higher than corresponding

numerical estimates of densities (n0R
NES, n0F

NES). (c) The departure in density estimates reduces with increasing
density index m and for m = 6, the density computed from all these methods become equal (not shown here).
(d) Irrespective of the method used, a consistent sudden decrease of plasma density is evident for all density
indices between L shells 5 and 6. This marks the location of plasmapause across which the cold, dense plasma
of plasmasphere shows a sudden decrease in the number density (shown as vertical grey area). The back-
ground for the pulsation events used in this study were quiet (kp = 0–2). Under such conditions, the location
of plasmapause lies between L = 5 and 6 during day and night conditions [Moldwin et al., 2002; O’Brien and
Moldwin, 2003]. Therefore, under quiet geomagnetic conditions the location of plasmapause from our model
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Figure 5. Variation of equatorial ion number density estimated using NES, DAM, and WKB with density indices under
Rigid-end and Free-end boundary conditions for L shells ranging from 3 to 9. The parameter n0 denotes the equatorial
ion number density. Both n0 and L are expressed in log scale. Superscripts R and F represent the Rigid-end and Free-end
conditions. Subscripts DAM, NES, and WKB denote the respective methods used in computing the ion number densities.
Each panel denotes the variation of n0 with L, for a given density variation. Vertical grey area denotes the location
of plasmapause.

is consistent with earlier observational results. This emphasizes that the observed pulsations can be used in
the developed theoretical model to estimate the magnetospheric plasma density.

5.2. Variation With Respect to Density Index m
The variation of equatorial ion number density (n0) with density indices m from all the three methods, viz.,
DAM, NES, and WKB are shown in Figure 6. The panels of Figure 6 depict this variation for different L shells
between 3 and 9. A remarkable feature to be noted here is that for a given L value, the equatorial ion number
density decreases linearly with density index m. Also, for a given m, the said density is lower for higher L values,
which is also evident from Figure 5. For a particular L and m, number density evaluated through DAM shows
better agreement with that computed through NES, whereas the number density computed using WKB shows
large departure for the same L and m values.

5.3. Day-Night Comparison
Since pulsation events can occur in different MLT sectors, thus, the ionospheric conditions used need to be
incorporated accordingly. For example, for events during daytime, Rigid-end, and for the events at night,
Free-end, boundary conditions should be used. Irrespective of occurrence time of pulsations, it is customary
to use Rigid-end conditions while estimating the equatorial ion number densities [Menk et al., 1999; Denton
et al., 2001, 2004; Takahashi and Denton, 2007; Menk and Waters, 2013]. In order to address the departure in
densities using two extreme ionospheric conditions, we examine the ratios of equatorial ion number densities
obtained from Rigid-end and Free-end conditions.

Figure 7 presents the comparison of the equatorial ion densities obtained using the three methods discussed
above under Rigid-end and Free-end boundary conditions. The parameters have the same meaning as in
Figure 5. The ratio of equatorial ion number density computed from NES under Free-end condition (n0F

NES) to
that computed under Rigid-end condition (n0R

NES) is shown in Figure 7a. The same using DAM has been shown
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Figure 6. Variation of equatorial ion number density with density indices estimated using NES, DAM, and WKB under
Rigid-end and Free-end boundary conditions for L shells 3 to 9. The parameters have the same meaning as in Figure 5.

in Figure 7b. It is clearly evident that the use of Free-end boundary condition instead of Rigid-end condition
overestimates the equatorial ion number density if the event occurs during daytime. This ratio increases with
L and decreases with m. The ratio shows identical features using DAM as well (Figure 7b). In fact, this ratio
could be as large as 4 (Figure 7) which emphasizes the importance of ionospheric boundary condition.

Figure 7. Day-night asymmetry in variation of ratio of equatorial ion number density estimated for L shells ranging
between 3 and 9 and for range of density indices m = 0–6 using NES and DAM, respectively. The parameters have the
same meaning as in Figure 5.
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Table 3. Departure in Density Estimates Obtained Using Free-End From
That Obtained Using Rigid-End for Density Indices m = 0–6 and Typical
L Shells Using NES and DAM

L Density NES DAM

(RE) Index (m) (n0F
NES

− n0R
NES

)(/cm3) (n0F
DAM

− n0R
DAM

)(/cm3)

6 0 0

5 231 238

4 514 520

3.2 3 822.5 853

2 1146.5 1212

1 1478 1579

0 1809 1962

6 0 0

5 2.01 2.0

4 4.3 4.4

7 3 6.8 7.06

2 9.2 9.8

1 11.7 12.6

0 14.22 15.5

6 0 0

5 1.11 1.13

4 2.4 2.5

8 3 3.8 4.0

2 5.2 5.5

1 6.6 7.09

0 7.94 8.7

6 0 0

5 1.1 1.1

4 2.4 2.45

9 3 3.7 3.85

2 5.0 5.3

1 6.33 6.85

0 7.67 8.41

The departure in density estimates under Free-end and Rigid-end cases is shown in Table-3 which presents
difference of densities (n0F

NES − n0R
NES), estimated using NES and (n0F

DAM − n0R
DAM), estimated using DAM for

different L shells and range of density indices m = 0–6. It can be clearly seen that for m = 6, there is no departure
between densities estimated using Free-end or Rigid-end condition for any L shell. However, with decreasing
m, the departure of density estimates increase and is maximum for m = 0. In addition, this departure is more
for lower L shells. This shows that suitable boundary condition is very important for correct estimation of
densities and becomes highly crucial for lower L shells. Density departure between Rigid-end and Free-end
cases are in good agreement for both methods, i.e., NES and DAM.

Ozeke and Mann [2005] have addressed the effect of various ionospheric conditions and estimated the error
if appropriate boundary conditions are not used. Their numerical estimates could address these errors for all
density indices (m = 0–6). However, the analytic estimates were restricted only to 1∕r6 type density variation.
They suggested WKB method as possible analytic model that can be used to compute the densities for m
other than 6. From Table 2, it is clearly evident that WKB frequencies show significant departure as compared
to the NES frequencies for all m values apart form 6. Moreover, the WKB approach, based on time of flight
computation, does not distinguish between Rigid-end and Free-end boundary conditions and hence cannot

BULUSU ET AL. TOROIDAL HALF WAVES 13



Journal of Geophysical Research: Space Physics 10.1002/2014JA020797

account for day-night asymmetry. This discrepancy in frequency is bound to be reflected in the estimates of
magnetospheric plasma density as well.

Interestingly, the ratio of density from all these methods is 1 for a density index m = 6. This is because for
density variation of 1∕r6 (m = 6), the term Φ(v) is only Ω2 and equation (4) reduces to simple harmonic
type whose solutions are straightforward and identical as obtained through DAM, NES, and WKB under both
Rigid-end and Free-end cases. This means that for regions of the magnetosphere where plasma density fol-
lows a 1∕r6-type variation along the field line, the equatorial ion number density can be estimated using any
of the methods, viz., NES, DAM, and WKB under Rigid-end or Free-end boundary condition. Different regions
of magnetosphere are characterized by different density profiles along the field line. Hence, there is a need
for a suitable model that can estimate the plasma density with minimum error. The estimates of ion number
density from DAM is very close to that estimated through NES for all the density indices under Rigid-end con-
dition. This ratio is maximum for m = 0 (∼1.4 times for Rigid-end and∼1.15 times for Free-end at typical L = 6).
While using WKB approach, these ratios are, respectively, 2.6 and 0.63 for Rigid-end and Free-end for the same
L shell. Thus, DAM shows remarkable improvement over earlier analytic model [Ozeke and Mann, 2005] which
were valid only for 1∕r6-type density distribution. This is tantamount to saying that the application of suitable
boundary condition relevant to different MLT conditions while estimating equatorial ion number density is
very crucial. To demonstrate the implication of boundary condition in computing the normal modes, it has
been shown that for dawn and dusk MLT sectors, where the ionospheric conductivities are highly asymmetric,
quarter wave modes are generated [Allan and Knox, 1979a; Bulusu et al., 2014].

Although the illustration presented here is for events during daytime MLT hours, the analysis is applicable
for night MLT hours as well. A similar contrast of densities would be observed between the Free-end (events
occurring during night MLT hours) and Rigid-end (events during MLT hours) boundaries. Therefore, applica-
tion of suitable boundary condition is essential while computing the ion densities. Once n0 is known, the ion
number density in any region of magnetosphere and at any point along the field line can be realized using
the appropriate density profile characterized by m value.

In this paper, we have developed a comprehensive model that accounts for toroidal oscillations during both
Rigid-end (day) and Free-end (night) conditions. For this purpose, analytic (DAM), numerical (NES), and WKB
(WKB) methods are worked out in the background dipole magnetic field geometry. It has been seen that DAM
provides better agreement over WKB when compared to corresponding NES model. However, there are cer-
tain limitations in the developed model. First and foremost, the solutions are obtained for idealistic boundary
conditions (Rigid end: infinitely conducting ionosphere; Free-end: vanishingly small ionospheric conductiv-
ity). Idealistic ionospheric condition cannot account for the damping at the conjugate point. The rates of
damping are different for day and night hours. Newton et al. [1978] have demonstrated that the damping dur-
ing nighttime is 50 times more as compared to that during daytime. That is why continuous pulsations are
observed predominantly in the dayside. Thus, care must be taken in applying this model while estimating
magnetospheric plasma densities.

Second, the applicability of the developed model for observations in the nightside auroral latitudes is of criti-
cal importance. During nighttime, the particle precipitation at auroral latitudes (L > 6) is significant. This leads
to pronounced ionospheric conductivity at these latitudes. Thus, at high and auroral latitudes the Rigid-end
condition is more applicable instead of the Free-end, even during nighttime.

The assumption of dipole magnetic field, as considered in the present model, may not be valid at higher L
shells (L ∼8–9). Takahashi et al. [2013] suggested a method as to how one can account for nondipole ambient
field using the actual measurement. A better estimate of the mode frequency can be obtained by multiplying
the theoretically estimated frequency with the magnetic field ratio (∼ BObs∕BDipole) and obtain a corrected
frequency a priori. Here BObs is the observed magnetic field and BDipole denotes the dipole magnetic field at
the equator. While computing plasma densities, this factor must be taken into account.

In order to compute plasma density using pulsations, the frequencies need to be identified with least error. An
observed quasi-monochromatic oscillation need not be due to a resonance mechanism. In order to categorize
a particular pulsation event as a resonant oscillation, it is important to investigate the amplitude and phase
variation of the observed frequency with latitude. Baransky et al. [1985] have illustrated the methodology
to identify the resonant frequency at a particular latitude. A resonance signature of pulsation frequency is
characterized by the amplitude maximum and phase reversal around the resonant latitude.
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Irrespective of the limitations as discussed above, the present model provides qualitative results like day to
night contrast in toroidal oscillation frequencies and corresponding signatures in the field parameters asso-
ciated with the mode. We have demonstrated the applicability of the developed model to obtain the plasma
density in the region where the pulsations are observed. The model gives a handle to experimentalists while
evaluating and interpreting plasma densities in different ionospheric boundary conditions.

6. Concluding Remarks

In this paper, we give a comparative account of our model DAM with respect to standard WKB as well as exact
NES solutions for Rigid-end and Free-end cases of half-wave toroidal oscillations. The study brings out that
the mode frequency using DAM shows a remarkable improvement over standard WKB method. At geosta-
tionary height (L = 6.6), for the worst case of density index (i.e., m = 0, when the effect of singularity is max-
imum on the solution), the percentage departure of the DAM frequency from NES frequency for Rigid-end
case is less than 17% and that from WKB is 60%. These departures of mode frequency for Free-end case are
respectively 7% and 26% (cf. Tables 1 and 2). Proper handling of singularity at turning points is the key to this
marked improvement. However, for higher harmonics, it is seen that frequencies obtained from DAM match
very well with those obtained from NES method. Although in the Free-end case, the DAM frequency is off by
7% from NES frequency for the fundamental for m = 0 at L = 6.6, we note that the field-aligned structures
obtained using DAM match quite well with the corresponding numerical exact solution (not shown in this
paper). Though the spatial characteristics are shown only for a typical case of m = 4 at L = 6.6 (Figures 3
and 4), the electric and magnetic fields associated with toroidal half waves can be realized for any L shell and
generalized plasma density variation characterized by m value.

More importantly, we address the technique for estimating the equatorial ion number density using observed
frequencies in all the three methods (DAM, NES, and WKB) for the two idealistic boundary conditions, viz.,
Rigid-end and Free-end cases. This is important as the pulsation events can be observed in any MLT sectors
characterized by different field-aligned density profile and ionospheric boundary conditions. The detailed
analysis from all these methods clearly shows that the estimates of ion number density using DAM is more
reliable as compared to WKB solution when compared to corresponding ion umber density obtained using
NES. Earlier analytic models for computing the equatorial ion number density were restricted only to 1∕r6-type
density variation along the field line. The present study provides a working analytic model (DAM) to estimate
the ion number density in different magnetospheric regions using observed ULFs in that region.
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