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[1] We discuss chorus wave magnetic and electric field polarizations as functions on
angle of propagation relative to the ambient magnetic field B0. For the first time, it is
shown using a cold plasma approximation that the general whistler wave has circularly
polarized magnetic fields for oblique propagation. This theoretical result is verified by
observations. The electric field polarization plane is not orthogonal to the wave vector k and
is in general highly elliptically polarized. Both the magnetic and the electric polarizations
have important consequences for cyclotron resonant electron pitch angle scattering and
for electron energization, respectively. A special case of the whistler wave called the Gendrin
mode is discussed.
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1. Introduction

[2] Chorus is an electromagnetic wave in the whistler
frequency range wci < w < wce with unique sweeping
frequency‐time characteristics such that when played through
a loudspeaker the emission sounds like birds chirping, hence
the name. In the above, wci, w, and wce are the ion cyclotron,
wave, and electron cyclotron frequencies, respectively [Krall
and Trivelpiece, 1973; Stix, 1992]. Chorus is observed in the
outer region of the Earth’s magnetosphere outside the plas-
masphere [Tsurutani and Smith, 1974, 1977; Anderson and
Maeda, 1977; Koons and Roeder, 1990; Helliwell, 1995;
Meredith et al., 2001, 2003a]. Because of presumed damping
at w = wce/2, chorus is observed in two frequency bands,
one above and one below the gap at w ∼ wce/2 [Tsurutani
and Smith, 1974]. In the Earth’s nightside sector magneto-
sphere, chorus typically propagates almost parallel to the
local background magnetic field B0 (� < 20°), where � is
the angle between the wave vector k and B0 [Tsurutani and
Smith, 1977; Tsurutani et al., 2009]. However, observations
show that dayside chorus can also propagate at highly oblique
angles [Burton and Holzer, 1974; Goldstein and Tsurutani,
1984] especially at midlatitudes to high latitudes. Haque et
al. [2010] recently showed that both upper‐band and lower‐
band chorus can propagate at low angles (∼0°–20°) as well as
at high angles (∼50°–60°).
[3] It is the purpose of this paper to study the magnetic and

electric polarization properties of chorus at all frequencies
and at all angles of propagation. Although it is theoretically
well known that whistler mode waves propagating parallel to

B0 are circularly polarized in both magnetic and electric field
components [Stix, 1992], the properties of the waves for
oblique angles of propagation are less well known. Even
though general expressions for electromagnetic wave polar-
ization in anisotropic plasma are derived in many textbooks,
to our knowledge, a detailed analysis for oblique whistler
wave mode is lacking. Knowledge of the polarization prop-
erties is critical for theoretical calculations of resonant wave‐
particle interactions. In this paper we use a theoretical (cold
plasma) approach to identify the general whistler wave mode
properties, with particular emphasis on the electric and
magnetic field polarizations for obliquely propagating waves.

2. Wave Dispersion of the Whistler Mode

[4] We follow a general approach to study linear wave
properties in a cold plasma approximation. Hereafter, we use
the Gaussian (cgs) system of units and select a coordinate
system such that B0 is directed along the z axis and electro-
magnetic waves are assumed to propagate in the (xz) plane.
These features are shown in Figure 1. For linear waves, all
disturbances can be expressed by a series of plane waves
with a single frequency (harmonics) of the Fourier transform,
i.e., being proportional to exp[−i(wt − kr)], where k is the
wave vector and r is the radius vector of the wavefront
[Landau and Lifshitz, 1960]. Thus, the wave vector k in this
geometry is k = (k? 0 kk), where k? = k sin �, kk = k cos �
are the perpendicular and parallel component of the wave
vector k with respect to B0.
[5] In these coordinates the Hermitian tensor of dielectric

permittivity for cold magnetized plasma [Krall and
Trivelpiece, 1973; Sitenko and Malnev, 1995] takes the form
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where the components are defined by
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Here we have restricted the study to electron waves only and
simplified the expressions in (2) by limiting the frequency
range to wci < w < wce, and by assuming wce < wpe, wce < wpi.
In the above, wpi, wpe are the ion and electron plasma
frequencies.
[6] The general wave dispersion relation obtained with

Maxwell equations [Landau and Lifshitz, 1960; Krall and
Trivelpiece, 1973] is

!2

c2
"ij � k2 �ij þ ki kj

� �
Ej ¼ 0; i; j ¼ x; y; z; ð3Þ

where �̂ is the unity tensor and Ej are the wave electric field
components. This dispersion relation can be simplified for
electromagnetic waves in the wave range of wci � w � wce:

! ¼ !ce c2

!2
pe

kjjk
1þ k2a2e

; ae ¼ c

!pe
; ð4Þ

where ae is the electron inertial length.
[7] Assuming k2ae

2 � 1 in general equation (4), one
derives the well‐known dispersion relation under the standard
approximation of the low‐frequency whistler mode:

! ¼ !ce c
2 k2 cos �=!2

pe: ð5Þ

Below we will discuss physical background used in the cal-
culations. We will also justify why neither a nonlinear
approach nor a hot plasma approach were necessary for the
current study.

3. Theoretical Assumptions

[8] The theoretical approach used in this paper is based
on Fourier transformation into harmonic components. Our

results on the polarization properties of chorus are appli-
cable for linear or small‐amplitude plane waves. It is well
known that chorus wave emission consists of separate
“elements” rising or falling in frequency, which have fine
structure of “wave packets” or “subelements.” These fea-
tures were extensively studied by Santolik et al. [2003,
2004], Verkhoglyadova et al. [2009], and Tsurutani et al.
[2009]. Each subelement is a quasi‐monochromatic wave
modulated by a low‐frequency signal. We assume that our
linear approach is applicable within a single subelement for
a quasi‐periodic electromagnetic disturbance.
[9] Thermal effects can be neglected. The cold plasma

model is valid under the condition of (kre)
2 � 1, where re is

the electron gyroradius. For instance, (kre)
2 ≤ 0.001 if we

assume a case of k ≤ 1/ae or l ≥ 2p ae ∼20 km. Here we used

a smallness of the parameter �e
ae

� �2
� 1 for typical mag-

netospheric chorus conditions. The cold plasma model holds
also for the waves having up to 10 times shorter wave-
lengths, i.e., l ≥ 2 km. In the paper we assume a frequency
ratio, !pe

!ce
= 4.5. This falls within the estimates by Meredith

et al. [2003b] and Horne et al. [2003]. Under storm‐time
conditions, the frequency ratio wpe/wce can be reduced from
4.5 to ∼1.5 [Horne et al., 2005], which further justifies the
cold plasma model used.
[10] In this study we focus on electron effects only and

exclude ion terms in components of the dielectric per-
mittivity tensor for cold magnetized plasma (2). Thus, our
results hold for waves with frequencies above certain
limiting frequency range. For a sample chorus wave with
w ≈ 0.2 wce and typical magnetospheric !pe

!ce
= 4.5, a ratio of

ion to electron terms in "? is 0.025, which is in accord with
our approximations.

4. Polarization of the Whistler Mode

[11] The general wave polarization properties can be
derived by using formulae (1–3). We find the following
relationships between components Ej:

Ex ¼�i
!2 þ !2 � !2

ce

� �
k2a2e

!!ce
Ey ¼ i A1 Ey;

Ex ¼
!2
pe þ k2?c

2

k? kjjc2
Ez ¼ A2 Ez; ð6Þ

A1 ¼ 1 þ k2a2e sin
2 �

cos �
; A2 ¼ 1 þ k2a2e sin

2 �

k2a2e sin � cos �
:

The wave “polarization” is often defined in terms of the
electric field components, i.e., by (6) [see Stix, 1992]. How-
ever, we note that the magnetic component of electromag-
netic waves is as important as the electric field component. It
is the magnetic component of electromagnetic chorus waves
that is responsible for cyclotron resonant pitch angle scat-
tering of energetic electrons [Tsurutani and Lakhina, 1997].
The wave electric component is important for diffusive
mechanism of particle energization [Albert and Young,
2005]. In this paper we will discuss the polarization of both
electric and magnetic components. We will start with the
magnetic components Bj below.

Figure 1. Wave geometry and coordinate systems used to
study magnetic field polarization. The background magnetic
field B0 is directed along the z axis, and electromagnetic
waves are assumed to propagate in the (xz) plane. Here k
is the wave vector (see text for details).
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[12] Using Maxwell equations rE = � 1
c
@ B
@ t and rB = 0

and (6), it is easy to find the corresponding polarization
relations for a plane wave:

Bx ¼ � kjj
k?

Bz; Bx ¼ i
kjj

A1 kjj � k?
A2

� � By: ð7Þ

Below we consider several special cases of (7).

4.1. Parallel Propagation

[13] First, consider the simple case of a strictly parallel
propagating electromagnetic whistler mode wave (� = 0° and
k? = 0). Since equation (7) contains k? in denominator, we
need to use the general relationships (3) and (2) to determine
the polarization of the waves. In the case of parallel propa-
gation, the general equation (3) splits into electromagnetic
waves (Ez = 0) and electrostatic waves Ez ≠ 0, "k = 0 [see
Sitenko and Malnev, 1995]. We then use Maxwell’s equa-
tions to transform the wave electric field into wave magnetic
field. This is similar to the transformation of (6) into (7). For
the electromagnetic wave branch, we obtain Ex = iEy, Ez = 0,
and Bx = iBy, Bz = 0. Thus, parallel propagating electro-
magnetic whistler mode waves are circularly (right‐hand)
polarized in a plane orthogonal to the wave propagation
direction (k).

4.2. Oblique Propagation

[14] For off‐axis propagating electromagnetic whistler
mode waves, we can simplify relationship (7) by explicitly
introducing the angle � and using the whistler dispersion
equation (4) with (6). In this case,

Bx ¼ � 1

tan �
Bz; Bx ¼ i cos � By: ð8Þ

To determine the polarization, we perform a linear transfor-
mation of the coordinate system (xyz) by rotating it through
an angle y about y axis (see Figure 1). We search for a
coordinate system (x′yz′) in which a particular wave mode

will be circularly polarized. It is important to find if such
coordinate system is unique. FollowingKorn and Korn [1961,
equations 14.10–18b], we introduce a coordinate transforma-
tion of the wave magnetic field B′ = T̂ B with the matrix:

T̂ ¼

a 0 b

0 1 0

�b 0 a

0
BBBB@

1
CCCCA; a ¼ cosy ; b ¼ siny ð9Þ

Assuming right‐hand circular polarization of the wave in this
new coordinate system and using (9), we obtain from (8):

Bx
0 ¼ iBy

0 ¼ aBx þ bBz

By
0 ¼ By

Bz
0 ¼ 0 ¼ �bBx þ aBz

ð10Þ

The equations (10) with (8) are satisfied if y = −�, i.e., a
rotation of the coordinate system anticlockwise from the
direction of the background magnetic field. This is also the
unique solution of (10) given 0 ≤∣y∣< 90°. The z′ axis of this
new coordinate system coincides with the wave propagation
direction (see Figure 1). Note that the polarization plane (x′y)
is orthogonal to the wave vector (~k �~B ¼ 0), which is natural
for an electromagnetic wave as discussed in the textbook by
Landau and Lifshitz [1960]. The magnetic field polarization
plane is shown schematically in Figure 1.
[15] It should be noted that this (x′y) plane is not the

polarization plane for the wave electric field. The electric
field has a different plane, which will be discussed below.
From the wave geometry in Figure 2, we expect that we can
find a polarization plane for the wave electric field by
rotation about the y axis through a different angle c. In this
new coordinate system (x″yz″), wave electric field compo-
nents are given by

Ex
00 ¼ cEx þ dEz

Ey
0 0 ¼ Ey

Ez
0 0 ¼ 0 ¼ �dEx þ cEz

; c ¼ cos�; d ¼ sin�: ð11Þ

After using (6) and performing simple transformations, we
obtain

tan� ¼ Ez

Ex
¼ 1

A2
¼ k2a2e sin � cos �

1þ k2a2e sin
2 �

;

Ex
0 0 ¼ iA1 cþ d

A2

� �
Ey
0 0 ¼ i

sin �

sin�
k2a2eEy

00; Ez
0 0 ¼ 0: ð12Þ

The wave electric field components are elliptically polarized
in the direction orthogonal to the z″ axis. The polarization
plane (x″y) is shown schematically in Figure 2. If we assume
wave propagation at � = 30° relative to B0 and assuming (for
example) w/wce = 0.2, the corresponding c ≈ 7° gives an
ellipticity estimate: "E ¼ Ex

0 0j j
Ey
0 0j j � 0:2 sin�

sin� � 1:1. Thus, the wave

electric field is almost circularly polarized within an accuracy
of ∼10%. For the oblique chorus propagating at � = 50°
relative to B0 with w/wce = 0.2, the corresponding c ≈ 10°
gives an ellipticity estimate of "E ≈ 2. Thus, oblique chorus has
highly elliptically polarized electric field.

Figure 2. Wave geometry and coordinate systems used to
study the electric field polarizations. The background mag-
netic field B0 is directed along the z axis, and electromag-
netic waves are assumed to propagate in the (xz) plane.
Here k is the wave vector (see text for details).
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[16] We illustrate some of the wave properties for the
case of whistler mode lower‐band chorus waves with w/wce =
0.2 in Figure 3. Typical wave magnitude (Bw = 200 pT)
and the frequency ratio are taken from Geotail measure-
ments [Tsurutani et al., 2009; Verkhoglyadova et al., 2009].
Figures 3a and 3b show characteristic polarization plane
angle dependences on the propagation angle �. Figure 3e
shows the wave ellipticity. For small angles of the wave
propagation (� < 30°), the normal to the wave electric field
polarization plane makes a small angle to B0 (less than ∼8°,
Figure 3a). The ellipticity of the whistler wave electric field is

small as well (Figure 3e). At the same time, Figure 3b shows
that the angle between the normal to the electric field polar-
ization plane and the wave propagation direction (� + c) can
be quite large and is increasing for oblique whistlers (above
∼30°). There is a substantial elliptical electric field polariza-
tion for oblique whistlers ("E ≥ 1.5).

4.3. Wave Electric Field Magnitudes

[17] Whistler mode wave electric field measurements
were recently discussed in studies by Cattell et al. [2008]
and Santolik [2008]. From Maxwell’s equations and using

Figure 3. (a) Angle c between the normal to the electric field polarization plane (kE) and B0, (b) angle
c + � between normal to the electric field polarization plane (kE) and the wave propagation direction (k),
(c) field‐aligned wave electric field Ez, (d) total wave electric field, and (e) wave electric field ellipticity "E
dependences on the chorus wave propagation angle (�). Results are shown for a typical frequency ratio
!pe

!ce
= 4.5 and the frequency ratio !

!ce
= 0.2. A wave magnetic field amplitude of Bw = 200 pT is assumed

for estimates in panels Figures 3c and 3d.
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the general dispersion equation (4), we can easily estimate
the field‐aligned electric field component (∣Ez∣) as well as the
total electric field magnitude (∣E∣). These are given by the
following expressions:

Ezj j ¼ !ce

!pe
Bwj j sin � cos �ffiffiffi

2
p k3a3e

1þ k2a2e
;

Ej j ¼ !ce

!pe
Bwj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cos2 �þ sin2 � 1þ k2a2e

� �2
2

s
kae

1þ k2a2e
: ð13Þ

We assume !pe

!ce
= 4.5 as mentioned earlier. From Figures 3c

and 3d, we find that the maximum electric field is ∼6 mV/m
for small angles of propagation. Corresponding value for Ez

is ∼0.5 mV/m up to 30°. Thus, we estimate whistler wave
total electric field magnitudes between a few to tens of
mV/m. Our theoretical estimates of chorus electric fields
(based on assumed Bw and � values) are in agreement with
the observations of Santolik [2008]. Larger assumed Bw

values will lead to larger Ez and |E| values, of course.

4.4. Gendrin Mode: A Special Case of Whistlers

[18] Some of chorus in the low‐frequency band have been
theoretically [Gendrin, 1961;Dubinin et al., 2007], implicitly
[Lauben et al., 2002] and observationally [Tsurutani et al.,
2009; Verkhoglyadova, 2009; Haque et al., 2010] noted to
propagate at the so‐called Gendrin angle. This angle �G is
defined locally as cos�G = 2w/wce and corresponds to the
minimum value in wave refractive index parallel to the
magnetic field line [Gendrin, 1961; Dubinin et al., 2003].
The Gendrin angle can be quite large, ∼50°–60°
[Verkhoglyadova et al., 2009]. The upper limit for the
propagation angle � is the resonance angle, cos�r = w/wce

[Goldstein and Tsurutani, 1984], which is larger than
�G by definition and is typically above 70° for low‐band
(w < wce/2) chorus.
[19] On the basis of the general dispersion relation (4), we

note that both the wave phase velocity (Vph) and the com-
ponent of the phase velocity along B0 (Vphk = w/kk) attain
maximum values at k = 1/ae, and are given by

Vmax
phk ¼ !ceae

2
¼ Vgk; Vmax

ph ¼ !ceae cos �

2
ð14Þ

where Vgk = ∂w/∂kk is the component of the group velocity
along B0. This particular whistler mode, the Gendrin mode
[Gendrin, 1961] can be described as

! ¼ !G ¼ !ce cos �G=2; k ¼ 1=ae: ð15Þ

This mode exists only for w < 0.5wce (the lower band
range). It is clear from (15) that the Gendrin mode is non-
dispersive and the wave number k (or the wavelength) is a
constant of the medium. Further, the group velocity perpen-
dicular to B0, i.e., Vg? = ∂w/∂k?, vanishes for the Gendrin
mode, as can be verified from (4) and (15). Hence, the group
velocity of the Gendrin mode is directed along B0, and
according to (14), it is equal to the maximum of the parallel
phase velocity [see also Helliwell, 1995; Lauben et al., 2002;
Dubinin et al., 2007].
[20] Below we discuss wave properties of Gendrin mode

waves (15). From polarization study performed using the
same coordinate transformation approach (see Figure 1)

with y = −�G, it follows that the magnetic component of the
Gendrin mode is noted to be right‐hand circularly polarized
in a plane perpendicular to the wave propagation direction.
[21] The wave electric field is analyzed next. Following

(12), we find a polarization plane for the wave electric field
component that can be identified by the rotation angle c > 0
(see Figure 2):

tan� ¼ Ez

Ex
¼ sin �G cos �G

1þ sin2 �G
; Ex

0 0 ¼ i
sin �G
sin�

Ey
0 0; Ez

0 0 ¼ 0: ð16Þ

From the above, it is noted that ellipticity of the wave
electric field increases with increasing Gendrin angle.
[22] The maximum value of the angle cmax = arctan(1/

ffiffiffi
8

p
)

is ∼19.5° for �G* = arcsin(1/
ffiffiffi
3

p
) ≈ 35.3° and wG = wce/

ffiffiffi
6

p
≈

0.4 wce. It is interesting to note, that cmax coincides with the
value for a maximum of (a + �), where the angle a is
between k and the “ray direction” or the group velocity
direction [Storey, 1953]. This angular parameter defines ray
“bunching” around the direction of B0. For the Gendrin
mode, the group velocity is aligned with B0 and a = �G; thus,
sin(2�G*) = 2 sin (�G*) cos(�G*) =

ffiffiffi
8

p
/3 and a + �G = 2�G* =

arctan(
ffiffiffi
8

p
). We obtain that tan (a + �G*) tan (cmax) = 1 or

cmax = p/2 − 2�G*.
[23] We estimate the Gendrin mode electric field by

simplifying (13):

Ezj j ¼ !ce

!pe
Bwj j sin � cos �

2
ffiffiffi
2

p ; Ej j ¼ !ce

2!pe
Bwj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2 �

p
: ð17Þ

For the case of �G = 56° [Tsurutani et al., 2009], the
corresponding angle c is 15° and the ellipticity factor sin �G

sin�
is about 3. Thus, electric fields for oblique Gendrin modes
are highly elliptically polarized.
[24] The general results on Gendrin modes are summa-

rized in Figure 4. Figures 4a and 4b are the angle c between
the normal to the electric field polarization plane and B0 and
the angle � + c between the normal to the electric field
polarization plane and the wave propagation direction.
Figures 4c and 4d give the field‐aligned electric field and
the total electric field according to (17). Figure 4e shows the
Gendrin mode frequency as a function of the Gendrin angle.
Our estimate of the Gendrin mode electric field ∣Ez∣ gives
an upper limit of ∼2.5 mV/m at �G = 45°. The total electric
field ∣E∣ can reach ∼9.5 mV/m for large propagation angles.
It is noted that there is a lower limit of the Gendrin mode
wave frequency (the lower hybrid frequency) and corre-
spondingly an upper limit on the Gendrin angle.

5. Conclusions

5.1. Magnetic Components of Chorus Waves

[25] It has been theoretically demonstrated for the first
time that the wave magnetic field for oblique electromag-
netic waves of the whistler frequency range (4) is circularly
polarized. This result was obtained in the cold plasma
model. Thus, it is valid under the condition (kre)

2 � 1. The
polarization is right handed, and the polarization plane is
perpendicular to the wave propagation direction. It should
be noted that all studies employing the minimum variance
analysis (MVA) on magnetic data [Smith and Tsurutani,
1976] identify the plane perpendicular to the minimum
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variance (i.e., wave propagation) direction for the wave
polarization determination. Therefore, the MVA technique
applied to chorus wave polarization should always give
circular polarization for the magnetic component. This has
been observed by Goldstein and Tsurutani [1984] for a
considerable number of middle magnetospheric events and
more recently by Tsurutani et al. [2009] for a limited
number of dayside outer zone events.

5.2. Electric Component of Chorus Waves

[26] With the singular exception of a parallel propagating,
circularly polarized wave, chorus electric fields are ellipti-

cally polarized. The ellipticity is small for quasi‐parallel
propagating waves and increases with increasing off‐axis
propagation. Electric fields for oblique whistler waves are
highly elliptically polarized. An example was shown to
illustrate a case with an ellipticity of ∼3. The estimates of an
angle � + c, between normal to the electric field polarization
plane and the wave propagation direction, indicate that the
polarization planes for the wave magnetic and electric fields
are different, especially for obliquely propagating waves.

[27] Acknowledgments. Portions of this research were done at the
Jet Propulsion Laboratory, California Institute of Technology under con-

Figure 4. The Gendrin mode wave characteristics as functions of propagation angle (�G) for (a) angle c
between normal to the electric field polarization plane (kE) and B0, (b) angle c + � between normal to the
electric field polarization plane (kE) and thewave propagation direction (k), (c) field‐aligned electric fieldEz,
(d) total electric field E, (e) Gendrin mode frequencies wG. A wave magnetic field amplitude of Bw =
200 pT is assumed for estimates in panels Figures 4c and 4d. We use a typical frequency ratio of !pe

!ce
= 4.5.
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