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Using the Sagdeev pseudopotential technique, the existence of large amplitude ion-acoustic

solitons is investigated for a plasma composed of ions, and hot and cool electrons. Not only are all

species treated as adiabatic fluids but the model for which inertial effects of the hot electrons is

neglected whilst retaining inertia and pressure for the ions and cool electrons has also been

considered. The focus of this investigation has been on identifying the admissible Mach number

ranges for large amplitude nonlinear ion-acoustic soliton structures. The lower Mach number limit

yields a minimum velocity for the existence of ion-acoustic solitons. The upper Mach number limit

for positive potential solitons is found to coincide with the limiting value of the potential (positive)

beyond which the ion number density ceases to be real valued, and ion-acoustic solitons can no

longer exist. Small amplitude solitons having negative potentials are found to be supported when

the temperature of the cool electrons is negligible. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4737895]

I. INTRODUCTION

Nonlinear solitary wave structures having the form of

travelling bipolar pulses in the magnetic field-aligned compo-

nent of the electric field have been observed in different

regions of the terrestial magnetosphere such as the mid-

altitude auroral zone,1 polar magnetosphere,2 bow shock,3

plasma sheet boundary layer,4 and more recently in the day-

side magnetosheath.5 The short durations of the periods of the

observed pulses indicate that these structures are related to

electron dynamics. The relevance of the observed nonlinear

waveforms to the high frequency portion of the spectrum of

broadband electrostatic noise (BEN) has been pointed

out.1,2,4,5 On the other hand, nonlinear structures, such as soli-

tary waves and weak double layers having negative potentials,

observed in the auroral acceleration region by S3-3 (Ref. 6)

and Viking,7,8 were found to be fluctuations associated with

ion dynamics. In view of these observations, there have been

several attempts to reconcile the occurrence of these nonlinear

wave structures with suitable theoretical models.

There are numerous reports on nonlinear studies on ion-

acoustic solitons and double layers. Large and small ampli-

tude ion-acoustic double layers have been investigated by

Baboolal et al.9 for a plasma composed of hot and cool Boltz-

mann electrons, and two species of warm fluid ions (both pos-

itive). Existence domains of arbitrary amplitude ion-acoustic

solitons and double layers have been presented in Baboolal

et al.10 not only for the model of Baboolal et al.9 where both

ions are positive but also for a negative-ion plasma where

one of the ion species is negatively charged. Both negative

and positive potential soliton solutions were found in Ref. 10.

It was found that if both ion species have positive polarity,

negative double layers were found to limit the existence do-

main of negative potential ion-acoustic solitons,10 however

this was found not to be the case if one of the ion species is

negatively charged. Both large amplitude and small ampli-

tude ion-acoustic double layers have been investigated by

Bharuthram and Shukla11 for a model composed of cool ions,

and hot and cool electrons where both electron species are

Boltzmann distributed. Although the existence of large ampli-

tude ion-acoustic solitons was not investigated in Ref. 11, we

know from Ref. 10 that the large amplitude negative potential

ion-acoustic double layers found in Ref. 11 mark the end of

the Mach number regimes supporting large amplitude nega-

tive potential ion-acoustic solitons.

Large amplitude ion-acoustic solitons were investigated

for a plasma composed of cool ions, hot ions, and electrons

by Hellberg and Verheest12 using the fluid-dynamic

paradigm13–15 where thermal effects of the cool ion species

and inertial effects of the electrons and the hot ions were

neglected. Only positive potential ion-acoustic solitons were

found to be supported for which the admissible Mach num-

ber ranges are presented. For small concentrations of the

cool ions, the upper Mach number limit was imposed by the

cool ions (cool ion number density becomes infinite),

whereas for higher cool ion concentrations, the hot ions (hot

ion number density goes to zero) were found to be responsi-

ble for the upper limit for the value c ¼ 2 for the polytropic

indices of the electrons and the hot ions, provided that the ra-

tio of the temperatures of the hot ions to the electrons is not

very large. For the value c ¼ 1 (Boltzmann limit) for the

polytropic indices of the electrons and the hot ions, only the

cool ions were found to be responsible for the upper Mach

number limit.
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In a more recent investigation by Verheest and Hell-

berg,16 the Sagdeev potential formalism was adopted to

investigate the existence of large amplitude ion-acoustic soli-

tons in a two-ion plasma where pressure and inertia is

retained for both ions species, where the cool (smaller ther-

mal speed) positive ions are supersonic (speed of the nonlin-

ear structure exceeds the thermal speed of the cool ions),

whereas the negative hot (larger thermal speed) ions are sub-

sonic (the thermal speed of the hot ions exceeds the speed of

the nonlinear structure). The focus of the study was on

obtaining the permitted velocity ranges for which ion-

acoustic solitons occur. Consistent with the polarity of the

supersonic ion species, only positive potential solitons were

found, where the restriction on the maximum attainable

potential (positive) of the nonlinear structures was found to

be imposed by the existence of a limiting value of the posi-

tive potential beyond which the number density of the cool

ions ceases to be real valued.

The existence of arbitrary amplitude ion-acoustic and

electron-acoustic solitons has been investigated by Lakhina

et al.17 for a plasma composed of ions and cool and hot elec-

trons, where all species are assumed to be adiabatic fluids.

The critical values of the Mach number for ion-acoustic and

electron-acoustic solitons were obtained. Only positive poten-

tial ion-acoustic solitons were found, however electron-

acoustic solitons having either negative or positive polarity

were found to be possible. Although, the existence of an

upper limit on the permissible Mach numbers for large ampli-

tude ion-acoustic and electron-acoustic solitons was men-

tioned in Ref. 17, the upper Mach number limits where the

existence domains of ion-acoustic and electron-acoustic soli-

tons terminate were not calculated. Furthermore, the physical

mechanism for the existence of upper limiting values of the

Mach number for ion-acoustic and electron-acoustic solitons

was not discussed in Ref. 17.

Here, we focus on understanding why upper Mach num-

ber limits exist for solitons and we explicitly determine these

upper limits for large amplitude ion-acoustic and electron-

acoustic solitons but for much broader regions in parameter

space than those investigated in Ref. 17. Taking both the

lower and upper Mach number limits into consideration, we

present the Mach number ranges, which support the exis-

tence of ion-acoustic and electron-acoustic solitons. Our

findings based on the model of Lakhina et al.17 which

assumes finite inertia for the hot electrons are compared with

the results we have obtained using the model of Mace

et al.18 We recall that inertial effects of the hot electrons are

not considered in the model of Ref. 18, wherein the existence

of only electron-acoustic solitons is discussed. So as not to

overload this paper, we have divided our findings into two

parts, viz, Part I and Part II. In the first part of our study

which is titled “Existence domains of arbitrary amplitude

nonlinear structures in two-electron temperature space plas-

mas: I. Low-frequency ion-acoustic solitons” (hereafter cited

as I), we present our results pertaining to large amplitude

ion-acoustic solitons. In the second part of our study entitled

“Existence domains of arbitrary amplitude nonlinear struc-

tures in two-electron temperature space plasmas: II. High-

frequency electron-acoustic solitons” (hereafter cited as II),

we discuss our findings pertaining to large amplitude

electron-acoustic solitons.

The outline of the paper is as follows. In Sec. II, we

present details of the theory for the three-component model

composed of ions, cool electrons, and hot electrons, for

which inertia and pressure are included for all species.17 The

model which does not take into consideration inertial effects

of the hot electrons18 is discussed in Sec. III. Existence

domains of large amplitude ion-acoustic solitons are pre-

sented and discussed in Sec. IV. Finally, a summary of our

findings and conclusions appears in Sec. V.

II. MODEL AND GOVERNING EQUATIONS TAKING
INTO CONSIDERATION INERTIAL EFFECTS OF THE
HOT ELECTRONS

We consider an unmagnetized plasma composed of

ions, cool electrons, and hot electrons. Including inertia and

pressure for all three plasma species, the continuity, momen-

tum, and pressure equations for all three species are given in

Ref. 17 as

@nj

@t
þ @ðnjvjÞ

@x
¼ 0; (1)

@vj

@t
þ vj

@vj

@x
¼ �Zj

lj

@U
@x
� 1

ljnj

@Pj

@x
; (2)

@Pj

@t
þ vj

@Pj

@x
þ 3Pj

@vj

@x
¼ 0; (3)

and

@2U
@x2
¼ nce þ nhe � ni; (4)

where nj; vj; Tj; Pj ¼ njTj denotes, respectively, the normal-

ized number density, fluid velocity, temperature, and pres-

sure of species j where j¼ i, ce and he, respectively, denotes

the ions, cool electrons, and hot electrons. Furthermore, U
is the normalized wave potential, lce ¼ lhe ¼ le ¼ me=mi,

where mj denotes the mass of species j, li¼1;Zce¼Zhe¼�1

for the cool (or hot) electrons, and Zi¼1. All densities are

normalized with respect to the total equilibrium electron

(or ion) number density, viz, ni0¼nce0þnhe0, velocities

are normalized with respect to the ion thermal speed

Ci¼ðTi=miÞ1=2
, time with respect to the inverse ion plasma

frequency x�1
pi ¼ðmi=4pni0e2Þ1=2

, lengths with respect to the

ion Debye length kdi¼ðTi=4pni0e2Þ1=2
, potential with respect

to Ti=e, and thermal pressures with respect to ni0Ti. Assum-

ing an adiabatic fluid response of all species, the same value

for the polytropic index, viz, c¼3, has been used for all

species.

We transform the set of Eqs. (1)–(4) to a frame moving

with the wave through the co-moving co-ordinate

n ¼ x�Mt, where M (¼ V=Ci) denotes the speed of the non-

linear wave structures, normalized with respect to the ion

thermal speed, simply known as the Mach number. Follow-

ing the mathematical procedure in Mendoza-Briceño et al.,19

we solve for the densities for the different species. We make

072320-2 Maharaj et al. Phys. Plasmas 19, 072320 (2012)
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use of the boundary conditions for localized nonlinear wave

solutions given by

U! 0;
dU
dn
! 0; ni ! 1; nce ! n0

ce; nhe ! n0
he;

Pi ! 1; Pce ! n0
ceTce; Phe ! n0

heThe as j n j! 61;
(5)

where n0
j ¼ nj0=ni0 such that n0

ce þ n0
he ¼ n0

i ¼ 1.

For the number densities of the ions, cool and hot elec-

trons, we have obtained the expressions given by

ni ¼
1ffiffiffi
6
p
�
ðM2 þ 3� 2UÞ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2 þ 3� 2UÞ2 � 12M2

q �1=2

;

(6)

nce ¼
n0

ceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Tce=le

p �
½M2þð3Tce=leÞþ ð2U=leÞ�

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½M2þð3Tce=leÞþ ð2U=leÞ�2�ð12M2Tce=leÞ

q �1=2

;

(7)

and

nhe ¼
n0

heffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6The=le

p �
½M2þð3The=leÞþ ð2U=leÞ�

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½M2þð3The=leÞþ ð2U=leÞ�2�ð12M2The=leÞ

q �1=2

:

(8)

Rewriting the expressions for the densities (6)–(8) in the

form nj ¼ nj0ð
ffiffiffi
a
p
þ

ffiffiffi
b
p
Þ as in Ghosh et al.,20 the new forms

of the expressions for the number densities, respectively, for

the ions, and cool and hot electrons, are given by

ni ¼
1

2
ffiffiffi
3
p
�
½ðM þ

ffiffiffi
3
p
Þ2 � 2U�1=2

6½ðM �
ffiffiffi
3
p
Þ2 � 2U�1=2

�
(9)

nce ¼
n0

ce

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tce=le

p �
½ðM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tce=le

p
Þ2 þ ð2U=leÞ�1=2

6½ðM �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tce=le

p
Þ2 þ ð2U=leÞ�1=2

�
(10)

and

nhe ¼
n0

he

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3The=le

p �
½ðM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3The=le

p
Þ2 þ ð2U=leÞ�1=2

6½ðM �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3The=le

p
Þ2 þ ð2U=leÞ�1=2

�
: (11)

The advantage of expressing the densities in the forms

indicated in Eqs. (9)–(11) is that it is very much easier to

integrate these expressions to obtain the expression for the

Sagdeev potential given later as Eq. (13). Secondly, the

consistent choice of the lower “minus” sign in each of

Eqs. (9)–(11) yields the correct solution for the densities in

that the boundary values stipulated in Eq. (5) are recovered

in the limits n! 61. Thirdly, using the form of the Sag-

deev potential given later as Eq. (13) which was obtained

using the density expressions (9)–(11) makes calculation of

the second and third derivatives of VðUÞ (given later as Eqs.

(16) and (17)) very much simpler than using the expression

(6) for the Sagdeev potential in Ref. 17 to calculate these.

Choosing the lower sign (minus or “�”) in each of the

expressions for the densities given by Eqs. (9)–(11) and sub-

stituting these in Poisson’s equation, ultimately, yields the

energy integral like form,

1

2

dU
dn

� �2

þ VðU;MÞ ¼ 0; (12)

whereupon our expression for the Sagdeev potential reads

VðU;MÞ ¼ 1

6
ffiffiffi
3
p
�
ðM þ

ffiffiffi
3
p
Þ3 �

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM þ

ffiffiffi
3
p
Þ2 � 2U

q 
3
�
� 1

6
ffiffiffi
3
p
�
ðM �

ffiffiffi
3
p
Þ3 �

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM �

ffiffiffi
3
p
Þ2 � 2U

q 
3
�

þ n0
ce

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tce=le

p le ðM þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tce=le

p
Þ3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tce=le

p
Þ2 þ 2U

le

s !3
8<
:

9=
;

� n0
ce

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tce=le

p le ðM �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tce=le

p
Þ3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tce=le

p
Þ2 þ 2U

le

s !3
8<
:

9=
;

þ n0
he

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3The=le

p le ðM þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3The=le

p
Þ3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3The=le

p
Þ2 þ 2U

le

s !3
8<
:

9=
;

� n0
he

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3The=le

p le ðM �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3The=le

p
Þ3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3The=le

p
Þ2 þ 2U

le

s !3
8<
:

9=
;: (13)
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This expression for the Sagdeev potential (13) differs from

the expression (6) in Ref. 17 because in obtaining Eq. (13),

we have used the expressions (9)–(11) with the correct

choice of sign for the number densities of the different spe-

cies rather than using Eqs. (6)–(8) as was the case in Ref. 17.

The requirements for soliton solutions to be supported

by Eq. (12) are (i) VðUÞ ¼ dVðUÞ=dU ¼ 0 at U ¼ 0,

(ii) ðd2VðUÞ=dU2ÞU¼0 < 0 (the origin is an unstable fixed

point), (iii) VðUÞ ¼ 0 at U ¼ UnegativeðpositiveÞ where U
¼ UnegativeðpositiveÞ is a negative (positive) root of VðUÞ ¼ 0

such that VðUÞ < 0 for Unegative < U < 0 for negative poten-

tial solitons and 0 < U < Upositive, for positive potential soli-

tons, (iv) ðd3VðUÞ=dU3ÞU¼0 < 0 for negative potential

solitons and ðd3VðUÞ=dU3ÞU¼0 > 0 for positive potential

solitons. In addition, a negative (positive) potential soliton

solution requires that (v) ðdVðUÞ=dUÞU¼Unegative
< 0 for nega-

tive potential solitons and ðdVðUÞ=dUÞU¼Upositive
> 0 for posi-

tive potential solitons which ensures that a pseudo particle

experiences a force in the direction of increasing negative

(decreasing positive) values of U for negative (positive)

potential solitons, so that it is reflected and returns to the ori-

gin (U ¼ 0). The requirements for a double layer solution is

that in addition to the conditions (i)–(iii) for solitons, the

requirement (vi) ðd2VðUÞ=dU2Þ < 0 must be satisfied at U
¼ Unegative (or U ¼ UpositiveÞ for a negative (positive) poten-

tial double layer.

Although we mention here the small amplitude soliton

results, since these are quite useful in describing solutions for

solitons of arbitrary amplitude but which are not too large, we

must bear in mind that only single polarity soliton structures

are predicted by the small amplitude Korteweg-de Vries (KdV)

approach and is not reliable when the coexistence of opposite

polarity solitons occurs. In the limit of small amplitude, one

may Taylor expand VðUÞ to third order to obtain

VðUÞ � C2U
2 þ C3U

3 (14)

for which the small amplitude solution can be written as

U ¼ � C2

C3

� �
sech2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�C2

2
n2

r !
; (15)

where C2 ¼ 1
2

�
d2VðUÞ

dU2

�
U¼0

and C3 ¼ 1
6

�
d3VðUÞ

dU3

�
U¼0

, where the

second and third derivatives of the unapproximated form of

the Sagdeev potential (13) are, respectively, given by

d2VðUÞ
dU2

� �
U¼0

¼ 1

½M2 � 3� þ
n0

ce

le½M2 � ð3Tce=leÞ�

þ n0
he

le½M2 � ð3The=leÞ�
(16)

and

d3VðUÞ
dU3

� �
U¼0

¼ 3½M2 þ 1�
½M2 � 3�3

� 3n0
ce½M2 þ ðTce=leÞ�

l2
e ½M2 � ð3Tce=leÞ�3

� 3n0
he½M2 þ ðThe=leÞ�

l2
e ½M2 � ð3The=leÞ�3

: (17)

The expression (16) is identical with that given in Ref. 17.

The root(s) of Eq. (16) correspond to the critical values of the

Mach number, Mcrit, which is (are) the minimum allowed val-

ues of the Mach number which have to be exceeded in order

for soliton solutions to be supported by the model. In order to

determine the critical values of M, we solve Eq. (16) numeri-

cally. For the parameter regions investigated in this paper,

two positive roots have been obtained of which the higher

value of Mcrit has been identified as an electron-acoustic

mode and the smaller value of Mcrit as an ion-acoustic

mode.17 Thus, the solution of Eq. (16) corresponding to the

smaller (higher) value of Mcrit provides a lower bound on the

permitted Mach number range for which large amplitude ion-

acoustic (electron-acoustic) solitons are supported. The exis-

tence of a minimum value of the Mach number guarantees

that the speed of nonlinear wave structures must exceed the

acoustic speed of the corresponding linear wave mode.

We have also included the expression for the third deriv-

ative of VðUÞ evaluated at U ¼ 0 given as Eq. (17). The sign

of C3ðMÞ evaluated at M ¼ Mcrit dictates what the polarity of

the solitons should be in the limit of small amplitude. It is

clear from the small amplitude solution (15) that since we

must have C2 < 0 for solitons, the sign of C3ðMcritÞ deter-

mines the polarity of solitons having small amplitudes, stated

as condition (iv) for solitons given earlier.

Plots of the Sagdeev potential given by Eq. (13) for val-

ues of the Mach number which exceed the lower Mach num-

ber limit indicate that the amplitudes of large amplitude

solitons having positive (negative) potentials increase with

increasing values of M. However, this will not continue

indefinitely, since a value of M will be reached such that the

maximum (or minimum) allowable value of the potential for

a positive (negative) potential soliton is attained, such that a

soliton will no longer occur for a larger value of M. The

question which arises is what limits the occurrence of soli-

tons from the side of high Mach numbers. The focus of the

discussion which follows is on how upper Mach number lim-

its on the permitted soliton ranges arise.

For positive values of the potential ðU > 0Þ, the realiza-

tion that there is a limit on U is clearly apparent from the

expression for the number density of the ions given by Eq.

(9) but choosing the lower “minus” sign, which reveals that

there exists a maximum value of the potential (positive), viz,

Umax ¼ ðM �
ffiffiffi
3
p
Þ2=2 such that the number density of the

ions (9) ceases to be real when U > Umax. The limitation on

the permitted positive potentials ðU > 0Þ of positive poten-

tial solitons is, therefore, imposed by the requirement that

the ion number density (9) must be real valued. For increas-

ing values of M, positive potential solitons become stronger

(increasing amplitudes), but this will not continue indefi-

nitely since the upper limiting value of M which coincides

with the limiting value U ¼ Umax will eventually be reached.

For values of M for which U exceeds Umax, Eq. (9) becomes

complex valued and a positive root of VðUÞ which is crucial

for a positive potential soliton solution will cease to exist rul-

ing out the possibility of positive potential solitons. Hence, it

is clear that the upper Mach number limit imposed by the ion

number density having to be real valued applies to large am-

plitude positive potential ion-acoustic solitons found later.
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The situation is more complicated when we consider

amplitude restrictions associated with negative potential soli-

ton structures because these will be limited by density con-

straints imposed by negatively charged plasma constituents

and there are two electron species, for which, inertial effects

have been included for both. For a small enough value of the

negative potential, either the hot or cool electrons could be

responsible for the upper limit, since the restriction on the

amplitude of the negative potential structures could be

imposed by either the cool or hot electron number density

becoming complex valued. The number density of the cool

electrons given by Eq. (10) with the lower “minus” sign will

cease to be real valued if U < Umin=cool where the limiting

value of the potential imposed by the cool electron species is

given by Umin=cool ¼ �leðM �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tce=le

p
Þ2=2. Similarly, the

hot electron number density with the choice of the lower

“minus” sign in Eq. (11) will not be real valued if U
< Umin=hot where the limiting value of the potential imposed

by the hot electron species is given by Umin=hot

¼ �leðM �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3The=le

p
Þ2=2. For values of the Mach number

exceeding Mcrit, negative potential solitons will become

stronger (increasing amplitudes) with increasing values of M
that exceed the critical value Mcrit which is the lower limit.

This will not continue indefinitely, since the upper limit on

M will eventually be reached, which could coincide with ei-

ther Umin=cool (or Umin=hot). For a value of M which exceeds

the upper Mach number limit such that U < Umin=cool (or

U < Umin=hot), the number density of the cool electrons (or

hot electrons) becomes complex valued such that a negative

root of VðUÞ will not occur and a negative potential soliton

solution is no longer possible. In order to ascertain which of

the aforementioned scenarios is applicable, whether the cool

or hot electrons will be responsible for limiting the existence

of negative potential soliton structures, one has to turn to nu-

merical considerations of VðUÞ given by Eq. (13). The

restrictions pertaining to the number densities of the cool

and hot electrons having to remain real valued can limit the

occurrence of large amplitude negative potential solitons and

it will be seen later that these restrictions will apply to large

amplitude electron-acoustic solitons for which existence

domains are discussed in detail in II.

The existence of upper Mach number limits for solitons

are not only restricted to density considerations of the

charged particle constituents. It is also well known that dou-

ble layers for which dVðUÞ=dU ¼ 0 coincides with a positive

(negative) root of VðUÞ for positive potential (negative poten-

tial) double layers can also limit the existence domains of

solitons.9–11 It is not obvious from the form of VðUÞ whether

a double layer will or will not occur. We have to rely on nu-

merical considerations of VðUÞ in order to establish whether

double layer solutions are possible. In our investigations,

although double layers were not found to limit the occurrence

of ion-acoustic solitons, both negative and positive potential

double layers have been found to limit the existence domains

of negative and positive potential electron-acoustic solitons

in certain regions of parameter space as discussed in II.

III. MODEL WITH BOLTZMANN HOT ELECTRONS

In this section, we consider the model of Mace et al.18

where the inertia (and pressure) of the ions and cool elec-

trons is retained but inertia of the hot electrons is not taken

into consideration. The Eqs. (1)–(3) are all still valid for the

ions and the cool electrons except that the number density of

the hot electrons, which are assumed to be Boltzmann dis-

tributed, is now given by the normalized expression

nhe ¼ n0
heexp

U
The

� �
: (18)

Substituting the same expressions (9) for the number

density of the ions and Eq. (10) for the number density of the

cool electrons (having chosen the lower “minus” sign in both

of Eqs. (9) and (10)) but now using the expression (18) for

Boltzmann hot electrons in Eq. (4) yields for the Sagdeev

potential the expression given by

VðU;MÞ ¼ 1

6
ffiffiffi
3
p
�
ðM þ

ffiffiffi
3
p
Þ3 �

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM þ

ffiffiffi
3
p
Þ2 � 2U

q 
3
�
� 1

6
ffiffiffi
3
p
�
ðM �

ffiffiffi
3
p
Þ3 �

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM �

ffiffiffi
3
p
Þ2 � 2U

q 
3
�

þ n0
ce

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tce=le

p le ðM þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tce=le

p
Þ3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tce=le

p
Þ2 þ 2U

le

s !3
8<
:

9=
;

� n0
ce

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tce=le

p le ðM �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tce=le

p
Þ3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tce=le

p
Þ2 þ 2U

le

s !3
8<
:

9=
;þ n0

heThe 1� exp
U

The

� � �
: (19)

The second and third derivatives of VðUÞ given by Eq. (19)

evaluated at U ¼ 0 is, now, respectively given by

d2VðUÞ
dU2

� �
U¼0

¼ 1

½M2 � 3� þ
n0

ce

le½M2 � ð3Tce=leÞ�
� n0

he

The

(20)

and

d3VðUÞ
dU3

� �
U¼0

¼ 3½M2 þ 1�
½M2 � 3�3

� 3n0
ce½M2 þ ðTce=leÞ�

l2
e ½M2 � ð3Tce=leÞ�3

� n0
he

T2
he

:

(21)
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The restrictions on the attainable amplitudes of positive

and negative potential soliton structures, respectively,

imposed by the constraint that the number density of the ions

and the cool electrons must remain real valued as discussed

in Sec. II still apply, however, a layer of complexity is

removed when the hot electrons are Boltzmann distributed,

since now there are no restrictions on the amplitudes of nega-

tive potential solitons imposed by the hot electrons, since the

number density of the hot electrons (18) can never become

complex valued due to the exponential dependence of the

number density of the hot electrons on the potential.

IV. NUMERICAL RESULTS AND DISCUSSION

We initially investigate the existence of large amplitude

ion-acoustic solitons, which are supported by the model of

Sec. II for which inertia and pressure is included for all spe-

cies.17 The Mach number ranges supporting the existence of

large amplitude ion-acoustic solitons are indicated as a func-

tion of nce0=ni0 in Figure 1, starting at nce0=ni0 ¼ 0:05 and

terminating at nce0=ni0 ¼ 1:0, where, nce0=ni0 is the cool

electron number density expressed as a fraction of the ion or

total electron number density given by ni0 ¼ nce0 þ nhe0. We

recall that nce0; nhe0, and ni0, respectively, denote the equilib-

rium number densities of the cool electrons, hot electrons,

and ions. The lower curve (—) for the critical Mach number,

Mcritðnce0=ni0Þ, is obtained by solving Eq. (16) and choosing

the smaller of the two positive roots. Following the ideas in

Ref. 16, the upper Mach number limiting curve denoted by

(� � �) in Figure 1 is generated by solving VðUmaxÞ ¼ 0 for M
as a limiting case for the requirement that VðUÞ > 0 for

U > Umax. We recall from the discussion in Sec. II that

Umax ¼ ðM �
ffiffiffi
3
p
Þ2=2 is the maximum permitted value of

the potential (positive) such that the ion number density

given by Eq. (9) will become complex valued for U > Umax.

It becomes clear from the figure that for any fixed value of

nce0=ni0, the choice of value for the Mach number for which

a large amplitude ion-acoustic soliton occurs is restricted

and must lie within the allowed ranges depicted in Figure 1.

The existence of lower and upper limiting values of the

Mach number restrict the choice of the permitted value of M
for which large amplitude ion-acoustic solitons are possible.

This becomes clearly apparent from plots of the Sagdeev

potential (13) in Figure 2 for nce0=ni0 ¼ 0:3 and the other

fixed parameters indicated for Figure 1. The curve (–)

denotes a plot of VðUÞ given by Eq. (13) corresponding to

the critical value of the Mach number, viz, Mcrit ¼ 1:75897

for nce0=ni0 ¼ 0:3. This lower limiting value of M coincides

with the point corresponding to nce0=ni0 ¼ 0:3 on the lower

limiting Mach number curve denoted by (–) in Figure 1. A

valid ion-acoustic soliton solution requires that this critical

value of the Mach number (M¼ 1.75897) must be exceeded,

so that VðUÞ not only has a local maximum at the origin but

there must also exist a positive root of VðUÞ, viz, Upositive

such that VðU ¼ UpositiveÞ ¼ 0 and ðdVðUÞ=dUÞU¼Upositive
> 0

at the position of the root. The latter requirement guarantees

that when the pseudo-particle leaves the origin (U ¼ 0),

there is a force acting on it so that it can return to the origin

(U ¼ 0) as is necessary for a soliton solution but not for a

double layer. The behaviour of VðUÞ as demonstrated by the

curve denoted by (� � �) for M¼ 1.765 in Figure 2 satisfies all

the requirements for a soliton solution. For a higher value of

the Mach number, viz, M¼ 1.767, we observe that the ampli-

tude of the nonlinear ion-acoustic soliton structure increases

as can be inferred from the higher positive root of VðUÞ for

M¼ 1.767 denoted by (- -) in Figure 2 in comparison with

the positive root of VðUÞ for M¼ 1.765 (� � �). We observe in

0.2 0.4 0.6 0.8 1.0
 n ce0  /n  i0

1.75

1.80

1.85

1.90

1.95

 M
 

FIG. 1. Existence domains of ion-acoustic solitons shown as a function of

the normalized cool electron number density where the curve (–) denotes

Mcritðnce0=ni0Þ and (� � �) denotes the maximum allowed value of the Mach

number corresponding to the ion number density given by the expression (9)

(with the choice of the lower “minus” sign) being real valued. The fixed pa-

rameters are le ¼ 1=1836; Tce=Ti ¼ 0:01; and The=Ti ¼ 5.

FIG. 2. Sagdeev potential profiles for M¼ 1.75897 (–), M¼ 1.765 (� � �),
M¼ 1.767 (– –), 1.76825 (� � �), and 1.769 (� � � � �). The fixed parameters

are le ¼ 1=1836; Tce=Ti ¼ 0:01; The=Ti ¼ 5; and nce0=ni0 ¼ 0:3.
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Figure 2 that for increasing values of the Mach number

which exceed the value Mcrit, ion-acoustic solitons are seen

to become stronger (increasingly larger values of Upositive).

This will not continue indefinitely, since the upper Mach

number limit will eventually be reached for which the upper

limiting curve of the Sagdeev potential denoted by (� � �) in

Figure 2 corresponding to the value M¼ 1.76825 is obtained.

This upper limiting value of M, viz, M¼ 1.76825 coincides

precisely with the limiting value of U, viz, Umax

¼ ðM �
ffiffiffi
3
p
Þ2=2, for which Eq. (9) is real valued. It is impor-

tant to note that the behaviour of the limiting curve of VðUÞ
for M¼ 1.76825 does not satisfy the requirement (iii) for a

positive potential soliton solution stipulated in Sec. II, viz,

ðdVðUÞ=dUÞU¼Upositive
> 0. This upper limiting value of the

Mach number (M¼ 1.76825), which lies on the upper Mach

number limiting curve denoted by (� � �) in Figure 1 corre-

sponding to the fixed value nce0=ni0 ¼ 0:3, does not yield an

ion-acoustic soliton solution. A value for M which exceeds

the upper Mach number limit such that U > Umax does not

yield an ion-acoustic soliton solution as clearly demonstrated

by the behaviour of the curve denoted by (� � � � �) corre-

sponding to the value M¼ 1.769 in Figure 2, since VðUÞ no

longer has a positive root. For the parameters considered

here, only positive potential ion-acoustic solitons are found

to be possible. This is found to be consistent with the predic-

tions of the theory of small amplitude solitons, since for the

parameters of Figures 1 and 2, the sign of C3ðMcritÞ, Eq. (17)

is found to be positive predicting positive polarities for

solitons in the limit of small amplitude as is evident from

Eq. (15).

One can appreciate the usefulness of a figure such as

Figure 1 which depicts existence domains of large amplitude

ion-acoustic solitons, since the Mach numbers ranges which

support the existence of ion-acoustic solitons can quickly be

ascertained for any choice of the value of nce0=ni0 chosen

from the wide range of values depicted in Figure 1. In gener-

ating Figure 1, we have relied on physical insight as to why

upper Mach number limits exist for ion-acoustic solitons

rather than having to resort to producing a very large number

of plots of Sagdeev potential profiles similar to Figure 2 for

each value of nce0=ni0 in order to be able to identify the upper

limits of the Mach number ranges supporting the occurrence

of large amplitude ion-acoustic solitons.

Fixing the concentration of the cool electrons, viz,

nce0=ni0 ¼ 0:3, but varying The=Ti, the Mach number ranges

for which the existence of large amplitude ion-acoustic soli-

tons is supported are shown in Figure 3. For each value of

The=Ti, the lower Mach number and upper Mach number lim-

its, respectively, coincide with points on the lower and upper

limiting curves denoted by (–) and (� � �) in Figure 3. We

observe a rapid increase in the lower and upper Mach num-

ber limits with increasing values of The=Ti starting from

The=Ti ¼ 0:1 to The=Ti ¼ 2, but the lower and upper Mach

number limits appear to be insensitive to changes in The=Ti

beyond the value of The=Ti ¼ 2. Although we have depicted

existence domains of ion-acoustic solitons starting from very

small values of the temperature ratio The=Ti ¼ 0:1 < 1, we

must bear in mind that linear ion-acoustic waves are strongly

damped unless Te=Ti � 1 in plasmas composed of ions and

a single electron species, so one must exercise caution when

discussing the existence of nonlinear ion-acoustic structures

if the temperature ratio The=Ti is not very much greater than

unity, especially when there are no beams present, since Lan-

dau damping rates of linear ion-acoustic waves are large, rul-

ing out the possibility that ion-acoustic solitons will occur.

Our investigations up to this point reveal that ion-

acoustic solitons having only positive potentials can be sup-

ported. Our curiosity led us to wonder whether negative

potential ion-acoustic soliton structures are at all possible for

the model of Sec. II for which inertia has been included for

all species. Our findings reveal that negative potential ion-

acoustic solitons are possible when the pressure of the cool

electrons is so negligible to the extent where this species can

be regarded as cold (Tec ¼ 0). These are depicted in Figure

4. The negative polarities of the solitons which occur for

1:73077 < M � 1:732050807 in Figure 4 are consistent with

the negative sign of C3ðMcritÞ for small amplitude solitons,

which is obtained using the expressions (16) and (17). All

the conditions (i) to (v) stipulated in Sec. II are satisfied for

M values in the range 1:73077 < M � 1:732050807, which

confirms that the nonlinear structures shown in Figure 4 are

indeed solitons. Going to higher values of the Mach number

which exceed M¼ 1.732050807, our findings reveal that

some of the conditions (i) to (v) stipulated in Sec. II are vio-

lated including the condition (ii) for a soliton, since the sec-

ond derivative of VðUÞ is positive valued, proving that

VðU;MÞ has a local minimum rather than a local maximum

at U ¼ 0. Based on these observations, our results confirm

that the existence of solitons terminates at the value

M¼ 1.732050807 (last curve denoted by (– –) in Figure 4)

and are not possible for values of M, which exceed the value

2 4 6 8 10
 The/Ti

1.750

1.755

1.760

1.765

 M
 

FIG. 3. Existence domains of ion-acoustic solitons shown as a function of

the normalized hot electron temperature The=Ti where the curve (–) denotes

McritðThe=TiÞ and (� � �) denotes the maximum allowed value of the Mach

number corresponding to the ion number density given by the expression (9)

(with the choice of the lower “minus” sign) being real valued. The fixed pa-

rameters are le ¼ 1=1836; nce0=ni0 ¼ 0:3; and Tce=Ti ¼ 0:01.
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M¼ 1.732050807. The change in shape of VðUÞ which

favours the existence of solitons (1:73077 < M
� 1:732050807 in Figure 4) to a shape that is atypical for

solitons (not shown in Figure 4) is observed to be quite sud-

den and occurs when M exceeds 1.732050807 for the param-

eters mentioned for Figure 4. A very rough calculation

indicates that the minimum permitted value of the negative

potential corresponding to the number density of the cool

electrons (10) (with the choice of the lower “–” sign) being

real valued is �� 2:66� 10�4. This limit is not relevant

for the negative potential ion-acoustic solitons shown in Fig-

ure 4, since solitons cease to exist long before this limit can

be reached.

We do not include our results for the model of Sec. III

for which the hot electrons are Boltzmann distributed. When

inertial effects of the hot electrons is not taken into consider-

ation, the lower and upper Mach number limits for ion-

acoustic solitons are only very slightly reduced to the extent

that the figure depicting existence domains of positive poten-

tial ion-acoustic solitons using the model of Sec. III having

Boltzmann hot electrons would appear identical to Figure 1,

which, we recall, was generated using the model of Sec. II

which includes inertial effects of the hot electrons. Consider-

ing negative potential ion-acoustic solitons, the results for

the model of Sec. III having Boltzmann distributed hot elec-

trons appears identical to the Sagdeev potential profiles

depicted in Figure 4, since the effect of neglecting inertia of

the hot electrons is only to reduce the values of the lower

and upper Mach number limits but only very slightly. There

are no significant differences in our results for large ampli-

tude ion-acoustic solitons if either the model of Sec. II or the

model of Sec. III is chosen. The differences in our findings

arising from including hot electron inertia as opposed to

neglecting hot electron inertia are found to be substantially

more significant for large amplitude electron-acoustic soli-

tons and qualitative differences are observed as discussed in

our companion paper II.

V. CONCLUSIONS

The existence of large amplitude ion-acoustic solitons

has been investigated for a three-component plasma com-

posed of ions, cool electrons, and hot electrons, not only for

the model of Lakhina et al.,17 for which, inertia and pressure

has been retained for all species, but the effect of a neglect

of inertial effects of the hot electrons in accord with the

model of Mace et al.18 has also been investigated. We recall

that in Ref. 17, the focus was mainly on identifying the lower

limits in Mach number space, which must be exceeded for

low-frequency ion-acoustic and high-frequency electron-

acoustic solitons to be supported. Focusing here only on the

low-frequency ion-acoustic soliton structures, we have sig-

nificantly extended the scope of the findings in Ref. 17 by

not only determining the upper limits of the Mach number

ranges supporting the existence of large amplitude ion-

acoustic solitons in different regions of parameter space

where they occur, but we also provide reasons as to why

these upper Mach number limits exist for ion-acoustic soli-

tons. Taking both the lower and upper Mach number limits

for large amplitude ion-acoustic solitons into consideration,

we have presented the permitted Mach number ranges sup-

porting the existence of large amplitude ion-acoustic solitons

for much broader regions in parameter space than those

investigated in Ref. 17. Consistent with the findings of

Lakhina et al.,17 only positive potential ion-acoustic solitons

are found to be supported in regions of parameter space

where the cool electrons are not cold but assumed to have fi-

nite but small pressure. Our findings indicate that the upper

Mach number limits for large amplitude ion-acoustic solitons

having positive potential coincide with the maximum permit-

ted values of the potential (positive) imposed by the number

density of the ions having to be real valued. For values of the

Mach number which exceed the upper limit, a positive root

of the Sagdeev potential is no longer possible ruling out the

possibility for positive potential solitons.

Surprising for us, having widened the scope of the study

in Ref. 17 to also include parameter regions where the pres-

sure of the cool electrons is so negligible that this species

can be regarded as cold (Tce ¼ 0:0), our findings reveal that

negative potential ion-acoustic solitons are possible. These

are found to have much smaller amplitudes than the positive

potential ion-acoustic solutions found earlier and the upper

Mach number limit for these negative potential ion-acoustic

soliton structures is not imposed by the constraint relating to

the number density of the cool electrons having to remain

real valued, but arises because the Sagdeev potential VðUÞ
no longer has the shape which is in accord with the require-

ments for a soliton when the Mach number exceeds the upper

limit.

It is interesting to point out that the existence regions of

the ion-acoustic solitons having positive or negative poten-

tials found for the parameters considered here is not

FIG. 4. Sagdeev potential profiles for M¼ 1.73077 (—), M¼ 1.731 (� � �),
M¼ 1.7315 (- -), 1.7317 (� � �), 1.7319 (� � � � �), and M¼ 1.732050807

(– –). The fixed parameters are le ¼ 1=1836; nce0=ni0 ¼ 0:3; Tce=Ti

¼ 0:0001; and The=Ti ¼ 5.
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significantly altered when the inertia of the hot electrons is

neglected as in the model of Mace et al.18 This may be due to

the fact that on the time scale of ion-acoustic solitons, there is

enough time for the temperature of the hot electrons to become

equalized to Th to establish the Boltzmann equilibrium.
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