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The effect of excess superthermal electrons is investigated on finite amplitude nonlinear ion-

acoustic waves in a magnetized auroral plasma. The plasma model consists of a cold ion fluid,

Boltzmann distribution of cool electrons, and kappa distributed hot electron species. The model

predicts the evolution of negative potential solitons and supersolitons at subsonic Mach numbers

region, whereas, in the case of Cairn’s nonthermal distribution model for the hot electron species

studied earlier, they can exist both in the subsonic and supersonic Mach number regimes. For the

dayside auroral parameters, the model generates the super-acoustic electric field amplitude, speed,

width, and pulse duration of about 18 mV/m, 25.4 km/s, 663 m, and 26 ms, respectively, which is in

the range of the Viking spacecraft measurements. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4933000]

I. INTRODUCTION

In the laboratory, space, and astrophysics plasmas, sev-

eral investigations have shown that the particle velocity dis-

tributions are not always at Maxwellian equilibrium.1–9 The

particles typically deviated because of having high energy

tails attributed to several different acceleration mecha-

nisms.10,11 These phenomena have been well-modeled using

different velocity distributions, such as Lorentzian j-distri-

bution,1 Tsallis q-nonextensive distribution12 and Cairn’s

nonthermal distribution.7 In general, Lorentzian j-distribu-

tion has been widely used to analyze and interpret the satel-

lite observations, particularly in the solar wind,13 the Earth’s

plasma sheet,14 Jupiter’s magnetosphere,15 and Saturn’s

magnetosphere,3,16 due to the spectral index j characteristics

of Maxwellian-like at lower velocities and power-law form

at higher speeds.

Motivated by the spacecraft observations in the auroral

region,17–20 nonlinear electrostatic structures with two-

temperature electron have been widely studied.21–29,31,32

Using Poisson equation, Saini and Kourakis33 investigated

the existence of arbitrary amplitude ion-acoustic solitary

waves in an unmagnetized three-component plasma consist-

ing of cold ions, electron beam, and excess superthermal hot

electrons. Baluku et al.30 explored the characteristics of dust

ion-acoustic solitons in a dusty plasma with kappa-

distributed electrons, using both the reductive perturbation

method and the Sagdeev pseudo-potential technique, for the

dusty plasma model composed of cold dust particles, adia-

batic fluid ions, and superthermal hot electrons. El-Tantawy

and Moslem34 presented the existence conditions for the

large amplitude ion-acoustic solitary waves and double

layers in an unmagnetized superthermal plasma consisting of

warm positive ions and j-distribution of hot electrons and

positrons. Jung and Hong35 derived the Korteweg-de Vries

(KdV) equation as a function of the spectral index j and

investigated the excess superthermal hot electron effects on

the propagation of the ion-acoustic solitary waves in general-

ized Lorentzian electron-ion plasmas. Singh et al.36 estab-

lished a two-component plasma model consisting of

adiabatic ion fluid and superthermal hot electrons to study

the effect of ion temperature on finite amplitude nonlinear

low frequency electrostatic structures in a magnetized auro-

ral plasma. In dusty particles, Alam et al.37 derived the

Burger equation to explore the effect of bi-kappa distributed

electrons on dust-ion-acoustic shock waves in unmagnetized

superthermal plasmas composed of inertial ions, kappa dis-

tributed electrons with two distinct temperatures, and nega-

tively charged immobile dust grains.

Recently, the generation of electrostatic supersoliton

structures in the auroral plasma has been the latest develop-

ment and an interesting topic in space and astrophysics

plasmas.38,42–45 Several plasma models have been explored

to show the existence of supersoliton structures in multi-

component plasmas, for example, for a plasma model com-

posed of cold positive and negative ions and nonthermal

hot electrons studied by Verheest et al.46 Verheest et al.47

studied the characteristics of ion-acoustic supersolitons in

an unmagnetized plasma consisting of a Boltzmann or

kappa velocity distributions model for both cold and hot

electron species and cold ions fluid. In a later paper,

Verheest et al.48 described the behaviors of electrostatic

supersolitons in dusty plasmas with stationary negative

dust, cold fluid protons, and nonthermal electrons. For the

first time, Rufai et al.49 reported the existence of electro-

static supersolitons in magnetized three-component nonther-

mal plasma using Viking satellite data. Recently, Rufai50

studied the evolution of nonlinear low frequency electro-

static soliton and supersoliton structures in a magnetized

two-ion nonthermal plasma.
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In this paper, the effect of an excess superthermal hot

electron population is investigated on finite amplitude low

frequency electrostatic structures in a magnetized auroral

plasma. The plasma model is composed of cold ions fluid,

Boltzmann cool electrons, and kappa velocity distribution

for the excess superthermal hot electrons. This is an exten-

sion of the earlier work of Sultana et al.51 by including

Maxwellian cool electrons as a second electron species. In

Section II, the governing model is formulated and the char-

acteristics of the localized nonlinear structures using the

Sagdeev pseudo-potential technique are presented.

Numerical results are discussed in Section III. The conclu-

sions are presented in Section IV.

II. LOW FREQUENCY WAVE MODEL

Obliquely propagating low frequency waves are consid-

ered in a three-component, homogeneous, collisionless, and

magnetized auroral plasma consisting of cold ion fluid (tem-

perature Ti is neglected), Boltzmann cool electrons (Nc, Tc),

and superthermal hot electron (Nh, Th) having kappa-

distribution. The auroral plasma is believed to be embedded

in a uniform external magnetic field B0 ¼ B0ẑ, where ẑ is the

unit vector along the z-axis and the nonlinear ion-acoustic

waves are propagating in the (x, z) plane obliquely to the

magnetic field. The dynamics of the cold ions is governed by

the following set of nonlinear fluid equations, namely, the

continuity and momentum equations:

@Ni

@t
þr NiVið Þ ¼ 0; (1)

@

@t
þ Vi:r

� �
Vi ¼ �

er/
mi
þ e

Vi � Bo

mic
; (2)

where Ni and Vi are the ions number density and the fluid ve-

locity, respectively, mi is the ion mass, e is the magnitude of

the electron charge, c is the speed of light in vacuum, t is

time, and / is the electrostatic potential.

The cool electron density is described by Boltzmann

distribution31,32

Nc ¼ Nc0 exp
e/
Tc

� �
; (3)

while a kappa-distribution function (j) for hot superthermal

electrons36,52 is adopted

Nh ¼ Nh0 1� e/

j� 3

2

� �
Th

2
64

3
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; (4)

where Nc0, Nh0 are the equilibrium densities of the cool and

hot electrons, respectively, and j is the spectral index deter-

mining the deviation from thermal equilibrium. The

Maxwell-Boltzmann equilibrium in Eq. (3) can be recovered

in the limit j!1; that is, for the very large values of j, the

superthermal energy distribution function tends to be a

Maxwellian distribution.

Normalizing requires appropriate scaling quantities. The

densities are normalized with respect to the total ion

equilibrium density Ni0¼Nc0þNh0¼N0, velocities by the

effective ion-acoustic speed cs¼ (Teff/mi)
1/2, distance by

effective ion Larmor radius, qi¼ cs/X, and time by the

inverse of ion gyro-frequency X�1, where X¼ eB0/mic and

potential / by Teff/e. Here, s¼Tc/Th is the cool to hot elec-

tron temperature ratio, f¼Nc0/N0 is the cool electron to total

electron density ratio, Teff¼Tc/(fþ (1� f)s) is an effective

electron temperature ac¼Teff/Tc, ah¼ Teff/Th, and

w ¼ e/=Tef f .

The above set of Eqs. (1)–(4) can be presented in nor-

malized form
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and

nc ¼ f expðacwÞ; (9)

nh ¼ 1� fð Þ 1� ahw

j� 3
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It requires defining the quasi-neutrality condition at

equilibrium for a low frequency domain, namely

ni ¼ nc þ nh ¼ feacw þ 1� fð Þ 1� ahw

j� 3

2

0
@

1
A
�jþ1=2

: (11)

The linear dispersion relation for the obliquely propagat-

ing low frequency electrostatic waves in a magnetized

plasma with Boltzmann cool electrons and superthermal hot

electron species and fluid ions can be obtained by solving the

continuity and momentuum equations. We assume perturba-

tions to varying as eiðkxþkz�xtÞ; kx ¼ k sin h and kz ¼ k cos h,

i.e., the wave vector k makes an angle h with the magnetic

field B0, and @
@t! �ix; @

@x! ikx;
@
@z! ikz. Then, from

Equations (5)–(11), we obtain a linear dispersion relation

(unnormalized) given by

x2 ¼ c2
s k2 2j� 3

2j� 1ð Þ � 2fac

� � 1� X2

x2
cos2h

1� X2

x2

� �
2
6664

3
7775: (12)

The above equation gives a dispersion relation for obliquely

propagating ion-cyclotron and ion-acoustic waves in a mag-

netized plasma. For low frequency domain (x� X cos h),

Equation (12) becomes

x
k
� cs cos h

2j� 3

2j� 1ð Þ � 2f ac

� �1=2

: (13)
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The above equation describes the obliquely propagating ion-

acoustic waves in a magnetized plasma. The properties of

the linear low frequency waves are displayed in Figure 1 for

different values of j. It is observed that effect of j is mar-

ginal on the frequency of the ion-acoustic waves. This dis-

persion relation (13) displayed the frequency of the fast

mode only since our plasma model contains a single ion spe-

cies. It is well-known that if plasma contains N numbers of

ion species, then the wave frequency is of N modes.39–41

In order to examine the nonlinear propagation of arbitrary

amplitude ion-acoustic waves, we solve the coupled equations

(5)–(11), using the trasformation n¼ (axþ cz�Mt)/M, where

M¼V/cs is the Mach number (V is the wave speed),

a ¼ sin h; c ¼ cos h; h is the angle between the direction of

wave propagation and the magnetic field. Then, applying

appropriate boundary conditions for solitary wave structures

(namely, ni ! 1, w ! 0, and dw/dn ! 0 at n !61), and

eliminating vx, vy, and vz, we obtain the following:

d

dn
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� �
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Eq. (15) can be reduced to an energy integral

1

2

dw
dn

� �2

þ V w;Mð Þ ¼ 0; (18)

where V (w, M) is the Sagdeev potential given by

V w;Mð Þ ¼ A w;Mð Þ þ B w;Mð Þ

1�M2n0i
n3

i

 !2
(19)

where

A w;Mð Þ ¼ �M4 1� nið Þ2

2n2
i

�M2 1� c2
� �

wþM2H wð Þ;

(20)

B w;Mð Þ ¼ � c2H2 wð Þ
2

�M2c2H wð Þ
ni
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At j ! 1, corresponding with the Boltzmann hot elec-

trons limit, the Sagdeev potential V (w, M) reduces to Eq. (19)

of Rufai et al.31 Then, to examine the evolution of nonlinear

low frequency soliton and supersoliton structures, the Sagdeev

potential V (w, M) must satisfy the following conditions:

Vðw;MÞ ¼ 0; dVðw;MÞ=dðwÞ ¼ 0; d2Vðw;MÞ=dðwÞ2 < 0 at

w¼ 0; V (w, M)¼ 0 at w¼wm, and V (w, M)< 0 for

0 < jwj < jwmj, where wm is the maximum amplitude of the

solitons. It must be noted that the additional requirement for a

double layer (dl) solution is dV (w, M)/dw¼ 0 at w¼wm.

Then, the supersoliton solution exists when there is an accessi-

ble root of the Sagdeev potential beyond the double layer (dl),

that is, V (w, M)¼ 0 for w>wdl.

The analysis of the second derivative of the Sagdeev

potential V (w, M), which has to be negative at the origin,

namely, d2V (w, M)/d(w)2< 0 at w¼ 0, leads to

d2V w;Mð Þ
dw2

����
w¼0

¼ M2 �M2
0

M2 �M2
1

< 0; (22)

where the critical Mach number is

M0 ¼ c
j� 3

2

j� 1

2

� �
� fac

0
BB@

1
CCA

1=2

(23)

It must be pointed out here that the critical Mach number,

M0, given by Eq. (23) becomes identical to the root given by

Eq. (13) when written in non-dimensional units. Further, for

j!1, Equation (23) reduces to a critical Mach number for

ion-acoustic mode in two-Maxwellian plasmas.31 The upper

Mach number limit is given by

M1 ¼
j� 3

2

j� 1

2

� �
� f ac

0
BB@

1
CCA

1=2

; (24)

since facþ (1� f)ah¼ 1. For c ¼ cos h � 1, further analysis

of Eq. (22) shows that with M1�M0, the inequality (22) is

satisfied when M0<M<M1. Thus, we obtain a condition,FIG. 1. Dispersion relation: x against k for s¼ 0.04, h¼ 15, f¼ 0.1.
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(25)

which provides the allowed values of Mach number M of fi-

nite amplitude ion-acoustic waves for fixed values of an

angle of propagation h (cos h ¼ c), electron density f, super-

thermal hot electron j, cool electron temperature ac, and hot

electron temperature ah. It is important to mention that for

the case of f¼ 0, the ion-acoustic waves condition given by

Eq. (25) above reduces to Eq. (30) of a magnetized two-

component plasma composed of kappa distributed electrons

and an inertial ion fluid as reported by Sultana et al.51 On the

other hand, condition (25) reduces to the existence condition

of the magnetized plasma model consisting of cold ion fluid

and Boltzmann distributed electrons studied by Choi et al.53

at f ! 1. In the case of Boltzmann distributed hot electron

species (j ! 1), the existence condition given by Eq. (25)

goes back to Eq. (24) of a magnetized cold ion plasma with

two distinct groups of Boltzmann electrons derived by Rufai

et al.31

III. NUMERICAL RESULTS

Figure 2 shows the Mach number ranges (for

c ¼ cos h 6¼ 1) that support the existence of finite amplitude

nonlinear low frequency electrostatic solitons and supersoli-

tons in auroral plasma. The curves in (a) show the variation of

M against j for s¼ 0.04, f¼ 0.1, and h¼ 15�, while the graph

plotted in (b) shows the variation of M against f for j¼ 3 and

5, for the fixed parameters h¼ 15� and s¼ 0.04. The numeri-

cal computation values corresponding to the critical and upper

Mach number, (M0 and M1) obtained from Equations (23) and

(24) above. From the chosen parameters, it is important to

point out that the ion-acoustic soliton and supersoliton solu-

tions can exist only in the subsonic Mach number regime

(M< 1). Whereas, in the case of nonthermal electron,49 the

nonlinear solutions were obtained both in the subsonic

(M< 1) and supersonic Mach numbers regime (M> 1).

In Figure 3, the curve shows the variation of the Sagdeev

potential V (w, M) with the normalized electrostatic potential

w for different values of the Mach number M. Other fixed pa-

rameters are: cool electron number density, f¼ 0.1; angle of

propagation, h¼ 15�; cool to hot electron temperature ratio,

s¼ 0.04; and the spectral index, j¼ 5. The negative potential

ion-acoustic soliton amplitude w increases with increasing

Mach number M. As shown in Figure 3, the critical Mach

number, M0¼ 0.93, and soliton solutions are not found

beyond M> 0.962. In contrast, for the case of nonthermal

electron,49 the soliton structures are found to be possible for

subsonic and supersonic Mach numbers.

Figure 4 shows the normalized electrostatic potential w
against n, which has been obtained through numerical intega-

tion of Eq. (19) for the parameters s¼ 0.04, f¼ 0.1, h¼ 15�,
and M¼ 0.95 for different values of j (superthermal elec-

trons). It clearly shows that as the spectral index j increases,

the soliton amplitude, as well as its width, decreases.

Figure 5 shows the variation of Sagdeev potential V (w, M)

with real electrostatic potential w for different values for

cool electron number density ratio f and for Mach number

M¼ 0.95 and other parameters of Figure 3. Further

FIG. 2. Variation of critical Mach number, M0, and upper Mach number,

M1, of nonlinear ion-acoustic structures (a) with superthermal hot electron

contribution j for s¼ 0.04, f¼ 0.1, and h¼ 15�, (b) with electron density ra-

tio f for h¼ 15� and s¼ 0.04.

FIG. 3. Sagdeev potential, V (w, M), vs. normalized electrostatic potential

w, for s¼ 0.04, f¼ 0.1, j¼ 5, and h¼ 15�.
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numerical computations show that the soliton structures are

not possible beyond f> 0.22. It is interesting to note that as

the cool electron density ratio f increases, the ion-acoustic

solitary wave amplitude decreases.

In contrast, for the spectral index j> 5, the soliton char-

acteristics change, such that the amplitude and width of non-

linear ion-acoustic soliton increases with increase in f as

shown in Figure 6. The fixed plasma parameters are, j¼ 10,

s¼ 0.04, h¼ 15�, and M¼ 0.98. This may be attributed to

the fact that as the spectral index j increases, the hot elec-

trons density distribution function gets more energetic and

move towards Boltzmann equilibrium. It shows that the

lower values of the spectral index j represent the velocity

distributions with massive superthermal components.47,51

The curves plotted in Figure 7 show that the ion-acoustic

soliton amplitude increases with the increase in the cool to hot

electron temperature ratio s. The chosen parameters are, Mach

number M¼ 0.90, the spectral index j¼ 3, cool electron den-

sity f¼ 0.1 and angle of propagation h¼ 15�, for the variation

of Sagdeev potential V (w, M) vs. potential w. It is interesting

to note that a supersoliton structure appears at

s¼ 0.0528390102. For s> 0.0528390102, there is no superso-

liton solutions. The corresponding electrostatic potential pro-

files of the soliton and supersoliton structures are plotted in

Figure 8.

Figure 9 displays the variation of Sagdeev potential

V (w, M) versus the real potential w for a different angle of

propagation h. Other fixed parameters are, f¼ 0.1, s¼ 0.04,

j¼ 10, and M¼ 0.98. The curves show that as the angle of

propagation h increases (the wave obliqueness c ¼ cos h
decreases), the ion-acoustic wave amplitude increases.

Interestingly, we note that at h¼ 34.5023�, a supersoliton

structure appears. Figure 10 shows the corresponding soli-

tons and supersoliton electrostatic potential profiles. It must

be pointed out that for the case of nonthermal electron,49 the

supersoliton solution appears at higher values of angle of

propagation, h¼ 39.7302� for the same set of plasma param-

eters. For fixed value of angle of propagation, h¼ 34.8� and

other parameters of Figure 9. The Sagdeev potential V (w, M)

profiles plotted in Figure 11 show that a supersoliton solution

is accessible for the Mach number M¼ 0.976487. For

M¼ 0.99, no soliton/supersoliton solutions can be found.

FIG. 4. Normalized electrostatic potential w vs. n, for s¼ 0.04, f¼ 0.1,

h¼ 15�, and M¼ 0.95.

FIG. 5. Sagdeev potential, V (w, M), vs. normalized electrostatic potential,

w, for s¼ 0.04, M¼ 0.95, j¼ 5, and h¼ 15�.

FIG. 6. Normalized electrostatic potential w vs. n, for s¼ 0.04, M¼ 0.98,

j¼ 10, and h¼ 15�.

FIG. 7. Sagdeev potential, V (w, M), vs normalized electrostatic potential,

w, for f¼ 0.1, M¼ 0.90, j¼ 3, and h¼ 15�.
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Table I shows the unnormalized values of the soliton ve-

locity V, electric field E, soliton width W, and pulse duration

s*¼W/V for various values of spectral index j, and the

Mach number range M, respectively. Using the dayside auro-

ral region parameters,26 nc ¼ 0:2 cm�3; nh ¼ 1:8 cm�3

Tc¼ 1 eV, Th¼ 26 eV, gives Teff� 7 eV. It is seen from

Table I that for increasing j, the critical Mach number Mo,

the soliton velocity, and electric field amplitude tend to

increase, but with the soliton width and pulse duration

decrease. In addition, at the upper Mach number range M1,

only the soliton velocity increases with M1 and j, but the

maximum electric field, width and pulse duration decrease.

IV. CONCLUSION

In this paper, a detailed investigation was presented of

nonlinear propagation of finite amplitude ion-acoustic soli-

tons and supersolitons in a magnetized auroral plasma of

cold ions fluid, Boltzmann distributed electron, and excess

superthermal hot electron with a kappa velocity distribution.

The negative potential low frequency structures are found to

exist only in the subsonic Mach numbers regime (M< 1).

Whereas, in the absence of Boltzmann electrons, the nonlin-

ear electrostatic structures in two-component plasma have

the upper limit at 1.51 Furthermore, for the case of the Cairns

nonthermal distribution model for the hot electron species

studied by Rufai et al.,49 the ion-acoustic soliton and super-

soliton structures can exist in both subsonic and supersonic

Mach numbers regime. The inclusion of the second

Boltzmann electrons allowed the existence of the negative

potential soliton and supersoliton structures. In the wave

obliqueness region, the nonlinear structure appears at the

maximum angle of propagation, h¼ 34.5023�, which is

much lower than in the case of the two Boltzmann distribu-

tion electrons model31 and Boltzmann and nonthermal distri-

butions model,49 due to the presence of the excess

superthermal electrons.

The Viking spacecraft missions in the auroral region of

the Earth’s magnetosphere have reported26 the observations

of nonlinear low frequency electrostatic fluctuations as fol-

lows: electric field amplitude of less than 100 mV/m, width

of about 100 m, pulse duration of about 20 ms and velocities

in the range of about 10–50 km/s. The present study is

FIG. 8. Normalized electrostatic potential w vs n, for figure 6 parameters.

FIG. 9. Sagdeev potential, V (w, M), vs. normalized electrostatic potential,

w, for f¼ 0.1, M¼ 0.98, j¼ 10, and s¼ 0.04.

FIG. 10. Normalized electrostatic potential w vs. n, for Figure 8 parameters.

FIG. 11. Sagdeev potential, V (w, M), vs. normalized electrostatic potential

w, for h¼ 34.8�, j¼ 10, f¼ 0.1, and s¼ 0.04.
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applied to the observed parameters in the auroral region,

namely, nc¼ 0.2 cm3, nh¼ 1.8 cm3, Tc¼ 1 eV, and

Th¼ 26 eV, which gives Teff� 7 eV. The supersoliton electric

field amplitude, width, pulse duration, and velocity for

M¼ 0.98, h¼ 34.5023�, and j¼ 10 come out to be 17.8 mV/

m, 663 m, 26.1 ms, and 25.38 km/s, respectively. The present

theoretical results agree with the spacecraft measurements.
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