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Abstract 

In an ao)-type geodynamo, the toroidal magnetic field generated from the poloidal field through ,differential 
rotation can be sufficiently strong to make the Lorentz force comparable in strength with the Coriolis force. Thus 
the fluid flow at the top of the core should contain some information about the toroidal magnetic field. The 
magnetostrophic approximation is used in the momentum equation for fluid motion to relate the fluctuating part of 
the axisymmetric poloidal motion of the fluid with the radial gradient, ~B/Or, of the steady part of the axisymmetric 
toroidal field at the core-mantle boundary (CMB). The former can be determined from a geomagne, tic secular 
variation model using Braginsky's (Soy. Phys. JETP, 20: 1462-1471, 1965a) theory of the hydromagnetic dynamo. A 
geomagnetic secular acceleration model is then used to estimate OB/Or at the CMB. The truncation level N for the 
geomagnetic field model is varied from three to six and consistent values of OB/Or are only obtained for a range of 
colatitudes 0 between 135 ° and 180 °. It is seen that lOB~Or I increases from zero at 0 = 180 ° and attains a maximum 
near 0 ~ 145 ° for N = 3 and N = 4, and OB/Or is negative throughout this range of 0 in all cases. The average value 
of OB/Or over this range of 0 is found to be around - 4  × 10 - 6  T m -1. 

1. Introduction 

Geomagnetic observations carried out over the 
last three centuries have provided time-depend- 
ent maps of the magnetic field at the core-man-  
tle boundary (CMB) for this period (Bloxham and 
Jackson, 1992). These maps are based on the 
assumption that the mantle is an insulator. Bar- 
ring the possibility of large conductivities in the 
middle and deeper parts of the mantle, where 
there are no reliable estimates of the conductivity 
at present, the source-free mantle approximation 
is considered to be adequate for the downward 
continuation of the magnetic field to the CMB 
(Benton and Whaler, 1983). Models of the secu- 
lar variation of the magnetic field at the CMB 

have been used to estimate fluid flow near the 
top of the core assuming the core to be a perfect 
electrical conductor (Voorhies and Backus, 1985; 
Backus and Le Mou61, 1986; Lloyd and Gubbins, 
1990; Benton and Celaya, 1991; Bloxham and 
Jackson, 1991). The core surface flow may have a 
small time-dependent part (Voorhies, 1993). 

Dynamics of the fluid motion in the core is 
governed by pressure gradients, Coriolis, Lorentz 
and viscous forces and a buoyancy force which 
drives the convection (see, e.g. Gubbins and 
Roberts, 1987). In an aw-dynamo model, the 
toroidal field generated from a poloidal field 
through differential rotation can be sufficiently 
strong to make the Lorentz force comparable 
with the Coriolis force. Hence the fluid flow at 
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the top of the core can contain some information 
about the toroidal magnetic field. In this paper, 
Braginsky's (1965a) theory of the hydromagnetic 
dynamo is used together with the relevant mo- 
mentum equation for fluid motion to show that 
the fluid motion can have a fluctuating axisym- 
metric component which can be related to the 
radial gradient of the steady part of the axisym- 
metric toroidal magnetic field near the CMB. 
Geomagnetic secular variation and secular accel- 
eration models are then used to estimate this 
radial gradient for a certain range of colatitudes. 
Although Benton and Muth (1979) used a magne- 
tostrophic vorticity balance in the momentum 
equation to estimate the radial gradient of the 
zonal magnetic field at some isolated points at 
the top of the Earth's core using geomagnetic 
field models, their assumptions required these 
points to be close to the geographic equator. In 
the present work, on the other hand, the assump- 
tions made do not hold near the geographic 
equator, and estimates can be obtained only in 
the high-latitude regions. 

2. Dynamo model 

A steady self-consistent spherical hydromag- 
netic dynamo based on Braginsky's (1965b) nearly 
axisymmetric approximation has been studied by 
Fearn and Proctor (1987). These workers have 
split the equations governing the dynamo into 
axisymmetric and non-axisymmetric parts and 
computed the mean e.m.f, owing to the non- 
axisymmetric field and fluid flow by considering 
non- axisymmetric perturbations which can grow 
on a basic axisymmetric state. Then they pro- 
ceeded in an iterative scheme to find a self-con- 
sistent steady axisymmetric magnetic field which 
can be maintained by the computed mean e.m.f. 
Temporal variations of the axisymmetric fields 
obviously cannot be  treated through this ap- 
proach. Information available about the Earth's 
magnetic field comprises not only the spatial 
structure of the poloidal part of the field outside 
the core but also its temporal variations. An 
attempt was made by Bhattacharyya (1992) to use 
the secular variation of the axisymmetric poloidal 
magnetic field on the CMB to estimate the az- 

imuthal component E~ of the mean e.m.f, gener- 
ated by asymmetric fluid flow. However, so far 
there has been no effort to compare this with a 
theoretical computation of E~ because of the 
complexity of the problem. In the present paper, 
information about the temporal variation of the 
poloidal field at the CMB is used to determine 
the vertical gradient of the steady part of the 
axisymmetric toroidal field at the top of the core 
on the basis of Braginsky's (1965a) theory of the 
hydromagnetic dynamo generalized to the non- 
stationary case together with the equations gov- 
erning the fluid flow. 

In this theory, the non-axisymmetric part u' of 
the fluid velocity in the core is represented by a 
superposition of waves propagating in the ~b-di- 
rection and the axially symmetric velocity itself is 
assumed to consist of a slowly varying (O/Ot = 
• /ro 2, where ~/ is magnetic diffusivity and r 0 is 
core radius) part and a rapidly oscillating part fi, 
which was termed 'oscillations' by Braginsky 
(1965a). Thus the total fluid velocity is written as 

Uto t = V¢~ "b Up -'[- U -[- U' (1) 
where U~ + Up is the slowly varying axisymmetric 
part. It is assumed that fi = u ' ~  UR~n 1/2 and 
Up-~ URm 1 with R m as the magnetic Reynolds 
number defined by R m = UMro//~, where U M is a 
characteristic value of U. The magnetic field is 
also similarly represented: 

Bto t = B ~  + Bp + 1] + B' (2) 
Both u' and B' have vanishing azimuthal averages 
as defined by Moffatt (1978). Likewise, time aver- 
ages of fi and B as defined by Braginsky (1965a) 
are also zero. Then, subtraction from the original 
induction equation 
0 

-~Bto t = V X (Uto t X Btot) + 3~V2Btot (3) 

of the doubly averaged (over 4~ and time) induc- 
tion equation yields an equation for the short- 
term evolution of B + B'. The axially symmetric 
part of this resultant equation describes the short 
time scale variation of B. Ignoring any slow 
changes in B, the secular variation in Bp can then 
be described by the equation °.,([ 

0t = V X  g + G - + a x g e + U  e 

Xfip- 'qV X g l ) "  (4) 
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where the mean e.m.f, values I~ and (] are given 
by 

E, = ( f i x  B') e' - ( ( f i x  B ' ) )  (5) 

= h x P, - (fi X P,Y (6) 

In Eqs. (5) and (6), ( )4 denotes an azimuthal 
average, ( ) t  denotes averaging over 'fast' time, 
which is equivalent to averaging over the phases 
of the waves and oscillations, and ( ( ) )  denotes a 
double average over both ~b and time (Braginsky, 
1965a). The e.m.f. 1~ is responsible for giving rise 
to oscillations in the field owing to the presence 
of waves. In his theory, Braginsky neglected the 
term proportional to Up and the diffusion term 
involving r/ in Eq. (4). 

At the top of the core, B = 0 a n d / ~  = 0 if the 
mantle is assumed to be an insulator. Also, if the 
CMB is assumed to be a free-slip, spherical 
boundary, U r = fir = U'r = 0. Under these circum- 
stances, Braginsky found that only oscillations of 
the field of order Rm 3/2 can pass to the outside 
of the fluid core, and expressing Be in terms of a 
vector potential zt4~ 

[~e = V X (A4~) (7) 

he determined that at the top of the core 

0,4 
- x e,,] ( 8 )  

However, a consideration of the momentum 
equations governing fi and U e below shows that 
the contribution to OBe/Ot  of the term propor- 
tional to U e at the CMB cannot be neglected. 
Retaining this term, the short-term variation in 
Bp at the CMB is determined by 

aA 
8t - [hPX BP + UpX Be]~ (9) 

As discussed in the Introduction, the magnetic 
field strength can be large enough to produce a 
Lorentz force of strength comparable with that of 
the Coriolis force. From the earlier estimates of 
fluid flow at the CMB (Bloxham and Jackson, 
1991) it seems reasonable to assume that flow 
speeds are generally very small compared with 
rotational speeds ([U to t [ << 12rsin0). Under these 

conditions, the magnetostrophic approximation 
should be valid, wherein viscous and inertial 
forces are neglected in the momentum equation 
for fluid flow. In addition, the usual Boussinesq 
approximation is made so that the fluid density in 
the outer core is taken to be a constant P0 except 
in the buoyancy force. Then in a reference frame 
rotating with the mantle the momentum equation 
is given by 

1 
2p01} X Uto t = - V p  + - - ( ~ 7  X Btot) X Bto t + p g  /z 

( 1 0 )  

where [l = g 2  and g = - g L  The local density p 
is given as a function of temperature by the 
equation of state: 

p =P0[1 - a ( T -  To) ] (11) 

where T o is some reference temperature and a is 
the thermal expansion coefficient. Variation in 
temperature itself is governed by the heat con- 
duction equation (see, e.g. Oubbins and Roberts, 
1987). In general, this whole system of equations 
along with the continuity equation for an incom- 
pressible fluid, 

~7" Uto t = 0 (12) 

and the induction Eq. (3) have to be solved sub- 
ject to the boundary conditions that the mantle is 
a perfect electrical insulator and thermal conduc- 
tor. Eq. (12) ensures that 

v.u~,=o, v.f~p=o V.u'=O (13) 

just as 

V ' B  e =  0, V.[~p= 0, V . B ' =  0 (14) 

The fluctuating axisymmetric part of Eq. (10) is of 
the form 

2p011 × fi 

1 
= - [ ( v  ( v  x 

/.z 

+ ( V X B )  X f i - ( ( V x B )  x B Y  

+ < ( V X  B') X B') '~ -  <<(VX g')  X B ' ) ) ]  

- p o a T g  (15) 
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where g = B4; + Bp, /~ and 7 ~ are the fluctuating 
axisymmetric parts of the pressure and tempera- 
ture, respectively, so that 4;" V/~ = 0, To leading 
order in Rm ~/2, the azimuthal component of Eq. 
(15) then yields 

2 o 0 a ~ a ,  = [ ( v  × B4; )×  Bp] "4; (16) 

where (s, 4~, z) denote cylindrical coordinates. 
On the CMB (r = r o) with B = 0 everywhere (16) 
reduces to 

1 0 B .  
fi, = - -  B ~  ( 1 7 )  

2p0~/x Or 

Also at the CMB, ~ = 0, which implies that 

fi~ = - fistan0 (18) 

According to Braginsky's kinematic theory 
(1965a), in which ~ and u' are assumed to be 
approximately U R m  1/2, at the CMB /~r = 
RTn3/ZBM, where BM is a characteristic value of 
the axisymmetric, toroidal field B in the fluid 
core.  Eq. (17), on the other hand, indicates that 
at the CMB, ( tpa 'Rml/Zu M unless OB/Or>> 
BM/r  o. In terms of the Elsasser number A = 
B2~r/pol2, which is usually considered as a mea- 
sure of the ratio between magnetic and Coriolis 
forces, Eq. (17)yields 

A [ 0B ~ r o _ 
~s.~ -~(  ~ ) ~ M t m 5 / 2 U  M (19) 

For the Earth's core, if A = 20 (Gubbins and 
Roberts, 1987), B M = 50 G and BM/r  o = 0.01 G 
km-~. As the Lorentz force acting on the fluid 
involves spatial derivatives of the magnetic field, 
the Elsasser number alone may not be adequate 
to describe the strength of the Lorentz force 
vis-a-vis the Coriolis force. From Eq. (19) it is 
seen that the dimensionless quantity (OB/Or) 
( ro /B  M) also plays a role in determining the 
strength of the Lorentz force acting on the fluid. 
With R m = 200, a value of OB/Or ~-40 G k in  -1  

yields fi~ = Rml/2um, which is consistent with 
Braginsky's assumption regarding ft. However, 
this argument will have some consequences for 
the magnitude of U e as well which need to be 
examined. 

The azimuthal component of the steady ax- 
isymmetric part of Eq. (10) yields 

2pofZtzUs 

= { (v  x x B p +  ( (V  x 

+ <<(V x B') x B'>>}. 4; (20) 
At the CMB, this simplifies to 

2p0 f~U,  

OB ,0/~49 ~, \t 1 0 
-- or 'Br  -}- ( - ~ r  D r /  -}- ( (  rosin~ O0 

1 O 
(sinOB'49)B' o + - -  -~r (rB'6)B'r)) (21) 

r o 

With OB49/Or and OB'49/Or= RTnl/2OB/Or, if on 
the CMB B r and B' r = Rm3/2BM, then the last 
two terms on the right-hand side of Eq. (21) may 
be neglected in comparison with the first term, 
yielding 

1 0B 
U s --- Br (22) 

2p012/~ Or 

On the basis of the reasoning which was applied 
to Eq. (18) earlier, it is seen that Us can be large 
enough to violate Braginsky's assumption regard- 
ing Up. Hence there is need to reexamine the 
terms dependent on Up which were neglected by 
Braginsky in arriving at Eq. (8). One of these is 
the term (U x Be)" 4; which has been restored in 
Eq. (9). It is also necessary to consider the possi- 
ble contribution to B' owing to Up, which was 
neglected by Braginsky and which can contribute 
to OB~/Ot through /~49. At the CMB, with u' r = 0, 
/~49 is given by 

Ed) ( ( U o B r ) ) -  ' ' 49 = ' ' (uoB r) (23) 

The equation satisfied by u' is not considered 
here; it is simply assumed that u '= Rml/2UM . 
Retaining the terms involving Up in the equation 
for waves B~,, one obtains the following up to first 
order in Rml/2: 

Ol~tr U OU r A t U 0 O]~tr B 
- -B '  - = '" (24) 

- - +  s r r 80 S Ot ~ r  Br + - -  - -  --Ur' 

where 8/~'~/0~b = B'r as defined by Braginsky. At 
t h e C M B w i t h  B 0 a s a l s o  ' - 0 ,  B'~ (1) 0 i s a  
possible solution of Eq. (24), w h e r e  Brr (1)= 
Rml/2BM . Then /~2), which is of order  
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Rml/2BMUM, vanishes at the CMB. Likewise, it 
can be seen that at the CMB, B'r (2) = RmlBM also 
satisfies an equation identical to Eq. (24) which 
has a solution B'r (2) = 0. As a consequence of this 
and f i r = 0  on the CMB, /~1 and G~ do not 
contribute to OBr/Ot to order P,m 3/2. 

The diffusion term on the right-hand side of 
Eq. (4) is neglected, as the oscillations are sup- 
posed to take place on a much shorter time scale 
than the diffusion time approximately rg/~7. In 
the present paper, some dynamical effects at the 
CMB have been added to the kinematic theory of 
Braginsky (1965a), but a proper study of the full 
scale dynamics has not been made in that the 
wave equations in the fluid which would give the 
space-time variation of u' also in a consistent 
manner have not been included. Such an ap- 
proach has been outlined by Tough and Roberts 
(1968) in their treatment of the nearly symmetric 
hydromagnetic dynamo with a given non-axisym- 
metric body force. In their study, therefore, the 
time evolution of the body force itself has not 
been included, unlike the work of Fearn and 
Proctor (1987). In the present study, only some 
arguments have been put forward in the previous 
paragraph to demonstrate that the dynamical ef- 
fects that have been added are not inconsistent, 
under the assumed conditions, with the derived 
form of the oscillations of the field OBr/Ot ob- 
tained from Eq. (9). At the CMB, with U r = ~r = O, 
Eq. (9) yields the following for the short-term 
temporal evolution of/3r:  

Ot r0sin0 00 ( a z B r  or- vz l~r )  (25) 

It can be seen from Eqs. (17), (18) and (22) 
that the term proportional to U z = - U ,  tan0 in 
Eq. (25) makes a contribution which is identical 
to that of the term proportional to ~ .  It is also 
clear that the variations in /3r on a short time 
scale (much less than rg/~7) contain information 
about 8B/Or. 

3. E s t i m a t i o n  o f  t h e  r a d i a l  g r a d i e n t  o f  B a t  r = r 0 

A geomagnetic field model based on the usual 
spherical harmonic representation is used to ex- 

tract  ((tzB r q - G J ~ r )  at the CMB from Eq. (25). 
The radial component of the total main field, as 
described in Eq. (2), at the CMB is expressed as 

9r+g+B'r 
N ~ ( a )  n+2 

= ~[~ (n  + 1) - -  [gm(t)cosm4) 
n=l m=0 r0 

+h~n(t)sinmqb] Pff(cos0) (26) 

where N is the truncation level, a is the radius of 
the Earth; gin, hn m are Gauss coefficients and pm 
are the Schmidt quasi-normalized associated Leg- 
endre functions. The axisymmetric part of Eq. 
(26) yields at the CMB 

9r-}-J~r = E ( n - ~ l )  - -  g ° ( t ) P . ( c o s O )  
n = 1 ro 

(27) 

As B r is the steady part of the axisymmetric field, 
the time derivative of Eq, (27) gives for the secu- 
lar variation in /3r at the CMB 

0/~r N { a ~n+2 
0t = E ( n + l ) [ ~ o )  g°(t)P.(cosO) (28) 

n=l 

where gO is the first derivative with respect to 
time of the Gauss coefficient gO. To determine 
(fizBr+ U~/~ r) from Eq. (25), this is also ex- 
panded in terms of Legendre polynomials: 

o o  

UzBr + UzBr = ~7~ E,(t)P,(cosO) (29) 
n=0 

On the CMB, at 0 = 0 and 0 = rr, fiz = fir = 0 and 
U z = U r = 0. Using either of these conditions, E 0 
is determined to be 

2 ( a )  3 _ 
E o = ~ r  ° ro gO (30) 

and for n # 0, E .  is given by 

E n  - (2n + 3) n+l 

(2n--- 1) . -1  

As a result of truncation of the series; expansion 
for the poloidal field at n =N, all E .  = 0 for 
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n > N + 1. According to Eqs. (17), (18) and (22), 
((tzBr + UzB ~) can be written as 

1 0B 
fi~B r + U~B~ Br:BrtanO (32) 

pof~t~ Or 

Hence, once the left-hand side is known, OB/Or 
can be estimated if B~ and /~r can be separated 
in Eq. (27). To justify use of the expression given 
in Eq. (17) for us, based on a magnetostrophic 
balance, it has been assumed that at the CMB, 
OB/Or >> BM/r o. However, the left-hand side of 
Eq. (32) is determined entirely from the observed 
short-period fluctuations of the main field. 
Therefore,  validity of the above assumption can 
be tested only after OB/Or has been estimated 
using Eq. (32). 

In principle, an average over a time period 
much larger than the time scale of fluctuation of 
/~r would yield B~ because (/3r)t = 0. In practice, 
the coefficients g°(t)  are not available for a 
sufficiently long time period. To partly mitigate 
the problem, Eq. (32) is differentiated with re- 
spect to time and use is made of (29) to obtain 

1 0B 0/~ r N+ 1 
- - -  ~t BrtanO = E E . ( t ) e . ( cosO)  

p012/z Or n=0 

(33) 

It can be seen from expressions (30) and (31) for 
the E~ values that /~n values can be computed 
from secular acceleration models of the geomag- 
netic field which give values of go for a particular 
epoch. Hence,  the radial gradient of the toroidal 
field at the CMB can be estimated from the 
relationship 

0B N + 1 . ~ /~ r  

Or - P°~Iz ~-" E ~ ( t ) P n ( c ° s O ) / - ~  BrtanO 
n=O 

(34) 

where ~l~r/Ot is given by Eq. (28). The secular 
acceleration model of Langel et al. (1982) for 
epoch 1980, which gives values of g0 up to n = 6, 

n 

is used. The secular variation model coefficients 
for epoch 1980 are taken from Langel and Estes 
(1985). An estimate, albeit an approximate one, is 
also required for Br. For  this, averages of spheri- 
cal harmonic coefficients for different epochs ex- 

tending from 1550 to 1990, based on selected 
models listed by Barraclough (1978) and Langel 
(1992), are used to construct B r. This problem 
was also addressed by Bloxham et al. (1989), who 
wanted to determine a stationary field pattern. 
They found that time-averaging over an interval 
of 265 years was not sufficient to remove all the 
t ime-dependent features. The estimate for B r 
used in the present study also includes a part of 
/3r and it is not possible to quantify the error 
owing to this in the estimate of OB/Or. Hence the 
results presented here must be considered as a 
preliminary estimate to be compared with esti- 
mates obtained through other methods (Benton 
and Muth, 1979; Stix and Roberts, 1984). 

There are other constraints in estimating OB/Or 
from Eq. (34). An examination of this equation 
shows that OB/Or becomes infinite at those lati- 
tudes where either B r or OBr/Ot vanishes. Thus 
for a dipole field, it would not be possible to 
determine OB/Or in the equatorial region using 
Eq. (34). These infinities of OB/Or are unphysical 
and occur because at these latitudes the ne- 
glected contributions are more important. At 0 = 
0 and 0 = 7r, even with non-vanishing B~ and 
OBr/Ot, both the numerator  and denominator are 
zero. However, an application of L'Hospital 's rule 
to the right-hand side of Eq. (34) shows that 
OB/Or ] r=r o = 0 at 0 = 0 and 0 = ~-. According to 
Eqs. (17), (18) and (22), ~zBr = UzB r. Hence Eq. 
(29) can be used to estimate ~z itself: 

N + I  
1 (t z = y ~_, En( t )Pn(cosO)/B r (35) 

n = 0  

Once again, fiz can become infinite at those 
latitudes where Br vanishes, which is in the 
neighbourhood of the equator. This unphysical 
behaviour is again a result of breaking down of 
assumptions, and OB/Or cannot be estimated in 
such regions where uz becomes abnormally large. 
It will be recollected that in the momentum equa- 
tion, inertial forces were neglected in comparison 
with Coriolis and other forces. An estimation of 
the acceleration Ofiz/Ot using (35) shows that 
I(OfiJOt)/21~fis[ <~ 10 -1 for all colatitudes ex- 

cept for a narrow band of + 5 ° around the equa- 
tor. At 0 = 0 and zr, because both the numerator  
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and denominator vanish, L'Hospital 's rule is ap- 
plied to determine the ratio. If O@/Ot = OfiJat, 
the smallness of this ratio justifies making the 
above assumption in the momentum equation 
except in the equatorial region. Truncation levels 
of N = 3, 4, 5 and 6 have been used to estimate 
(t~, 8fi~/~t and aB/~r at the CMB, keeping the 
various limitations listed above in mind. 

4. Results and discussion 

fiz and 8fiz/at computed from Eq. (35) are 
shown as functions of colatitude 0 in Figs. 1 and 
2, and the dependence of ~13~/~t on 0 as given by 
Eq. (28) is depicted in Fig. 3 for truncation levels 
N = 3, 4, 5 and 6. For the secular variation and 
secular acceleration models used, fiz and afiz/at 
show more or less the same pattern of variation 
with 0 for different truncation levels. The steep 
rise in I tiz I and [afiz/~t I in the neighbourhood 
of 0 = 90 ° is due to B r approaching a value of 
zero in this region, and is unphysical, as ex- 
plained in the preceding section. The plots of 
al3r/at vs. 0, on the other hand, show a lot of 
variation for N =  6 as compared with N =  3, 4 
and 5. The plots of 813r/at for N = 4 and 5 are 
identical because gO = 0 for the secular variation 

"c 
>.. 

v 

2.50 -- 
N=3 . . . .  N=4 

- - - - - N = 5  . . . .  N=6 

1,25 

-1.25 

-2-50 
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\\\\ 

, 

90 ° 180 ° 
e 

Fig. 1. fiz computed from secular variation model for epoch 
1980 as a function of colatitude for N = 3, 4, 5 and 6. 
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Fig. 2. aft z / a t  computed from secular acceleration model for 
epoch 1980 as a function of colatitude for N = 3, 4, 5 and 6. 

model (Langel and Estes, 1985) used in the pre- 
sent calculation. For N =  3, 4 and 5, 8Br/at 
changes sign in the neighbourhood of 0 = 40 ° and 
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Fig. 3. Secular var ia t ion o f  the axisymmetr ic radial  f ie ld at the 
core-mantle boundary, aBr/St , for epoch 1980 as a function 
of colatitude for N = 3, 4, 5 and 6. The curves for N = 4 and 
N = 5 overlap because ~o = 0 for the secular variation model 
used. 
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Fig. 4. Radial  gradient  of  the steady, axisymmetric toroidal 
field B at the CMB, ~B/~r, in the colatitude range 135°~< 0 ~< 
180 ° . 

0 = 120 °, and B r itself changes sign near 0 = 90 °. 
As a result of this kind of behaviour, there is a 
great deal of variation in the values of aB/Or 
computed for the northern hemisphere using dif- 
ferent values of N. As has been mentioned be- 
fore, values of OB/ar computed using expression 
(34) are unreliable for those latitudes where B r ~- 
0 or OBr/Ot = O. Thus Eq. (34) provides more 
reliable estimate for OB/Or in the region 135 ° ~< 0 
~< 180 °, than elsewhere, at least for N = 3, 4 and 
5. In arriving at these estimates, the following 
values have been used for Po, D and/~:  P0 = 104 
kgm -3, ~ = 7 x 10 -5 rads -1 and ~ = 4~- × 10 -7 
Hm-1.  In Fig. 4, values of OB/Or are plotted as a 
function of 0 in this range, for N = 3, 4, 5 and 6. 
For N = 6, OBr/Ot again changes sign in the vicin- 
ity of 0 = 170 ° , hence there is a break in the 
graph near this value of 0. Otherwise, over this 
range of latitudes in the southern hemisphere, 
OB/Or is consistently negative and differs in mag- 
nitude by at most a factor of about two for the 
different truncation levels. Averages of the plot- 
ted values of OB/Or are - 3 5 ,  - 4 9 ,  - 4 1  and 
- 2 9  G km -1 (10 -7 T m -1) for N = 3, 4, 5 and 6, 
respectively. 

A method suggested by Benton and Muth 
(1979) for estimating the radial gradient of the 
zonal magnetic field at a few isolated points close 
to 0 = 90 ° at the top of the Earth's core, using 
models of the main field and its secular variation, 

yielded lOB~Or[ = 10 .6  T m -1 (10 G klTl-1). It 
is expected that OB/Or would depend on latitude 
and hence the present results are expected to 
differ from those of Benton and Muth (1979); 
however, it is worth noting that both results are 
of the same order of magnitude. On the other 
hand, the present results are almost two orders of 
magnitude larger than OB/Or estimated at r = r 0, 
0 = 45 ° by Stix and Roberts (1984), and also have 
the opposite sign, as those workers predicted a 
positive sign for OB/Or in the southern hemi- 
sphere. As far as the second point is concerned, it 
should be noted that Stix and Roberts (1984) 
obtained the same sign for OB/Or throughout one 
hemisphere because they considered the follow- 
ing simple 0 dependence of the toroidal field: 

Bq~ = ~r X (TcP); T c = Tc2(r)P2(O ) (36) 

The toroidal field may well have a more compli- 
cated dependence on 0 than that entailed by Eq. 
(36), in which case there could be changes in the 
signature of ~B/~r within a hemisphere. As such, 
fluid flow on the CMB (approximately 10 km 
year - t  ) obtained from inversion of geomagnetic 
secular variations at the CMB, when used directly 
in a magnetostrophic balance equation, would 
yield lOB~Or[= 10 -6 T m -1. The problem in 
doing that is the non-uniqueness of the flow 
derived from such an inversion (Bloxham and 
Jackson, 1991). To resolve the non-uniqueness of 
the flow, the fluid motion at the CMB has been 
assumed to be either steady (Voorhies and 
Backus, 1985), or geostrophic (Backus and Le 
Mou61, 1986), or toroidal (Lloyd and Gubbins, 
1990). Benton and Celaya (1991) have considered 
the time dependence of the geomagnetic field to 
be described by a low-degree even polynomial. 
One advantage of the present study is that the 
fluid motion is allowed to have a t ime-dependent 
component and the analysis itself is based on the 
magnetostrophic approximation. The inadequa- 
cies of the present approach have been discussed 
in the previous section. It is clear that the approx- 
imations made in arriving at the results given 
here fail in many instances, so that OB/Or can be 
estimated for a severely limited range of 0. It is 
also not clear at present that the temporal varia- 
tions of the geomagnetic field can be distinctly 
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separated into short- and long-period fluctua- 
tions. As a result of all these uncertainities asso- 
ciated with the present results, it can only be 
stated that the estimates of OB/Or presented 
here indicate that the toroidal field near the 
CMB can be very large compared with the 
poloidal field at the CMB. The magnetostrophic 
approximation used in the present work is also 
thus justified. 

With the assumption of a strong w effect tak- 
ing place in the core and differential rotation 
dependent  on 0 as well as r, Matsushima and 
Honkura (1992) used geomagnetic field data to 
obtain a distribution for the axisymmetric toroidal 
field in which strong toroidal magnetic fields were 
present near the CMB. However, they have also 
stated that the method they have used for esti- 
mating differential rotation and the above distri- 
bution for the toroidal magnetic field may not be 
valid, in which case, using a different method, 
they concluded that the o) effect is not as effec- 
tive as they had presumed and strong axisymmet- 
ric toroidal fields are not generated. The distribu- 
tion of zonal toroidal magnetic field which Mat- 
sushima and Honkura (1992) obtained in their 
re-examination of fluid motion in the core is 
different from that obtained by Hollerbach and 
Jones (1993), who modelled the effect of the 
Earth's inner core on the geodynamo. These last 
researchers found the entire dynamo process and 
hence the axisymmetric azimuthal magnetic field 
also to be confined to the region outside the 
inner-core tangent cylinder. On the CMB, this 
cylinder has a radius about the poles of around 
20 ° . In this context, it is perhaps worth pointing 
out that in Fig. 4, lOB/Or I can be seen to gradu- 
ally increase from a value of zero at the south 
pole to a maximum near 145 ° for N = 3 and 4, 
which is definitely outside the inner-core tangent 
cylinder. 

On the basis of preliminary estimates of OB/Or 
presented here, it appears that a proper  treat- 
ment of the problem based on the present ap- 
proach may provide a better  link between geo- 
magnetic data and the geodynamo. This calls for 
an investigation into the growth of non-axisym- 
metric waves and resultant axisymmetric oscilla- 
tions when the basic state is perturbed, as was 

done by Fearn and Proctor (1987), who, however, 
considered only a steady axisymmetric state. The 
problem can be linearized in the manner of those 
researchers to obtain the most unstable waves, 
and an iterative scheme can be followed to arrive 
at the final configuration of the steady part of the 
axisymmetric fields. In their study, Fearn and 
Proctor (1987) had to prescribe the mean toroidal 
field strength, the mean toroidal flow and the 
mean poloidal flow. By including some more of 
the dynamics as suggested here, it should be 
possible to obtain some more information from 
the equations themselves. Alternatively, the for- 
malism developed by Tough and Roberts (1968) 
can be extended to include temporal variation of 
the body force itself through the evolution of the 
temperature T in Eq. (11) as given by the heat 
conduction equation. An attempt can then be 
made to solve the closed set of equations govern- 
ing the geodynamo, by separating the axisymmet- 
ric and non-axisymmetric parts. 
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