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Abstract. Homogeneous Indian Monsoon region rainfall for the epoch 1871-1990 has been
analysed using Singular Spectral Analysis. It is shown that the HIM time series is simple in
structure with only the annual oscillation and its first two harmonics accounting for almost
the entire variability. Longer period oscillations related to lunar tidal forcing, solar activity
and gquasibiennial variation are conspicuously absent. It is also shown that the singular
spectral decomposition is closely similar to complex demodulation and thus provides
variations in the signals which evolve only slowly with time. As the rainfall series is marked
by several jerky changes, predictability of HIM rainfall through the principal components
derived from SSA appears impossible.
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1. Imtroduction

This investigation is an outcome of two interesting communications in the special

issue on ‘Climate and global warming’ of the Proceedings of the Indian Academy of
Sciences (Subramaniam Moten 1993 and Parthasarathy et al 1993). To study the
multiple time scales in rainfall variability in Malaysia, Subramaniam Moten utilized
the technique of Singular Spectral Analysis (SSA) and determined the different modes
of oscillation in the rainfall series in peninsular Malaysia. Parthasarathy et al (1993)
prepared a spatially coherent monsoon rainfall series using fourteen sub-divisions
covering north-western and central parts of India (about 55% of the total area of the
country). In view of their similar rainfall characteristics and associations with
regional/global parameters, the area-weighted mean values constitute the monthly
and seasonal Homogeneous Indian Monsoon (HIM) rainfall for a long period covering
the epoch 1871-1990. In their statistical analysis, Parthasarathy et al (1993) found
the HIM series to be free from persistence, that the recent three decades is marked
by high variability and that it has a significant quasibiennial oscillation (QBO). They
have also listed the monthly, seasonal and annual rainfall of the HIM region for
1871—-1990 “for the benefit of further research”.

It is now our effort to use the advantages of SSA in the study of HIM rainfall in .

India to isolate dominant principal components and see if the rainfall can be predicted
with reasonable certainty using these signals.

2. Singular spectral analysis: Formulation and advantages

Vautard and Ghill (1989) have highlighted how SSA provides quantitative and
qualitative information about the deterministic and stochastic parts in a time series.
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Their development was a modification of the originally proposed application of SSA
to the problems of dynamical systems theory by Broomhead and King (1986), which
showed that the statistical dimension S of the system is dependent on the length of
the state vectors (M). In fact, the term ‘Statistical Dimension’ was introduced by

Vautard and Ghill (1989).
We begin with a finite time series y(t) of length N

yit) = y(Kt,) k=1,2,...N (1)

where ¢, is the sampling interval.
This series after normalisation using the mean (Y) and standard deviation (oy)

yields_ the series

X(:):M t=1,2,...N (2)

%y

The sampled time series is then embedded in an M-dimensional space by taking as
state vectors the consecutive sequences

[ X5 X 5
‘ Xz X3 XM+1
._-XN—M+1 . i

The matrix so derived is known as Trajectory Matrix. _
For different choices of M, we can have different trajectory matrices. However M

should be larger than the autocorrelation time (the lag at which the first zero occurs).
According to Broomhead and King (1986), the reconstruction of the attractor is then
guaranteed under certain hypothesis on M (the viewing window), T, (the samphng
interval) and the smoothness of the time series.

From the trajectory matrix defined in (3), we can generate the correlation matrix
C taking the product of each column with all the others successively. These are, in
effect, the lagged auto correlation coefficients. Alternately the singular values can be
obtained directly by singular value decomposition of the data matrix (see Reyment
and Joreskog 1993 for e.g.). However, when we use the normalized values as shown
in equation (2), the covariance matrix generated -from the data and the correlation
matrix will yield the same results.

Broomhead and King (1986) have given useful recurrence relation for determining
the elements of the covariance matrix as outlined below:

C,; an element of the covariance matrix is given by

N
Cy = Z Vivg—1Uivr—1- (4)

i=1

Then

1
Crsri+1=Cp + V(bN+ka+l U Uy) (5)
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Thus only the elements of the first row in the matrix need to be directly calculated.
The amount of data required for calculating the lagged autocorrelation should ensure
convergence of the autocorrelation function of a stationary process. This implies an
upper bound on M sufficiently less than N.

Once the covariance matrix is obtained, the next step is the simple one of finding
its M eigen values in descending order and the corresponding M eigen vectors. Ideally,
the number of non-zero eigen values would correspond to the number of independent
variables. In the presence of noise in the data, the others will be close to zero (but
not actually zero) and will define a noise level (Sharma et al 1993).

The square root of the eigen values are called ‘Singular Values’ and their set is
called ‘Singular Spectrum’. The successive singular values can be arranged in
monotonically decreasing order and the noise level then appears in the Singular
Spectrum as a flat ‘floor’ at its tail. These are associated with non-significant pnnmpal
components (Vautard and Ghill 1989).

The projections of the time series along the directions of the eigen vectors then
yield the time variations of individual components. In other words, the eigen vectors
serve as data adaptive filters whose transfer functions delineate sharp spectral peaks
within narrow individual bands, thus providing a significantly more flexible tool than
conventional spectral analys1s (Vautard and Ghill 1989). If the eigen vectors appear
as even and odd pair in phase quadrature, it is indicative of pure oscillations in the
time series with the periods less than the length of the viewing window (Subramaniam
Moten 1993). Also, the distance of the pairs of singular values above the noise floor
is indicative of the fact that the corresponding modes are deterministic and not
stochastic (Schlesinger and Ramankutty 1994).

3. Data analysis

The monthly values of HIM rainfall from 1871 to 1990 (in mm) are the inputs to the
Singular Spectral Analysis. The time series, after normalisation, are used to generate
trajectory matrices of varying lengths with M = 25, 49, 61, 73. The corresponding
singular spectrums all showed a noise floor beyond M = 10. For subsequent analysis
we use M =49.

4. Results and discussion

The singular spectrum for order length upto 30 is shown in figure 1. All the four
spectra have the same shape and noise floor. The confidence intervals for the eigen

values are derived from the error estimate given by
5A‘k = Zik(Z/N)UZ

(Vautard and Ghill 1989). The 959 confidence level indicated in the figure corresponds
to the largest eigen value. With this criterion, only first six eigen values turn out to
be significant. Examination of the principal components associated with the singular
values for order 8 and above indicates that the time series are contaminated largely
by noise and therefore we can estimate the upper limit of the statistical dimension
for the HIM data as 8, but it is likely to be closer to 6, as seen from figure 1.
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Figure 1. The singular spectrum for HIM rainfall series for A upto 30. The ordinate scale
is log of the square root of the eigen values in descending order. As the singular values for
sinusoidal signals appear as even and odd pairs of nearly same values, only alternate values

are shown.

The first six modes together account for 90% of the total variability, the annual
components for 659, the semiannual components for 22% and the 4-monthly
(triannual) component for 3% The remaining 10% is accounted for by several
subsequent components none of which is significant individually.

The eigen vectors (even and odd parts) for each of these three major oscillations
are shown in figure 2. Apart from annual variation in HIM and its first two harmonics,
there are no other periodicities in the entire data length. This is in sharp contrast to
the reported longer period oscillation in Indian rainfall and peninsular Malaysian
rainfall with a periodicity of 185 years apparently due to long-term lunar tidal
potential caused by sun-earth-moon system (Subramaniam Moten 1993). This
conspicuous absence could be due to the procedure of deriving HIM series which is
weighted dominantly in favour of south west monsoon rainfall, with July-August the
wettest and the seven months November through May being the driest.

In view of the simple structure with only 3 major components for the rainfall it
becomes interesting to study the time variations in the individual sequences. For this

component, the semi-annual and triannual terms show less variability. The epochs
18921919 and 19521982 show very large swings in the range of annual precipitation
and for part of the duration, between 1930 and 1964, there is a discernible cyclicity.
These features tempt us to use autoregressive technique of analysis to predict the
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Figure 2. The first 6 eigen vectors corresponding to the six largest eigen values. The vectors
are plotted for M = 49. Note the exact phase quadrature between individual pairs 1-2, 3—4
and 5—6 corresponding to 12-, 6- and 4-month oscillations.

individual principal components and therefore make an educated guess about the
total annual rainfall in the HIM region.

Since the dominant periodicities in the HIM series have been identified with the
annual cycle and its harmonics, we could use the complex demodulation analysis to
get the time variations in their amplitudes and phases. Details of the method of
complex demodulation are provided in Banks (1975). Agarwal et al (1980) showed
the relationship between narrow bandpass filtering and the demodulate estimates of
amplitude and phase.

Using a version of Fast Fourier Transform valid when the number of data points
can be given by N = 2¥! x 3*2 where k1 and k2 are integers, we are able to derive the
demodulates for narrow bands centred precisely on 12-, 6- and 4-month periodicities
(Yfantis and Borgman 1981).

The demodulate amplitudes for the 3 principal components are also shown in
figure 3. The variability in the amplitudes is quite similar to that in the range of the
normalized HIM rainfall. The phase angles, on the other hand show excellent stability
with average values 252° + 2°, 58° + 6°, and 240° 4 16°. These correspond to maxima
for annual component near July 31, that for semi-annual near January 30 and July
30, and that for the four-month component near March 15, July 15 and November
15 respectively.

We then attempt to model the demodulates using Maximum Entropy Method.
The periodicities corresponding to the spectral peaks their amplitudes and phases as
also the percentages accounted for by these sinusoidal oscillations in the total variance



|
|
|
i
i
1l

444 G K Rangarajan

12 - Month Comp.

— 14
90 —13
85 — —12
QG
580 an
= 754 - 10 q
£ g
2] g
o (==
Z 90
3 85
£
Z 80
75 3 FoNS N 10
70 & Lo b
[ | 1 | | | 1
1870
55
4 s0
=1
= 45
[=%
£ 40
- &
g 55 5
= [s 4
3 s0 n
(o]
£ 45 -
[
& 40 "
35
5
L 1 L | I 1 |
1870 80 30 1900 10 20 1930
25 — 4 - Month Comp.
g 20
215 o3
=
2 10 -2
] 1 i
@
i g
§ &g
E &
Z 3
2
1

1 1 I 1 |
1870 80 80 1300 10 20 1930

Figure 3. Time variation in the range of annual variation (maximum — minimum in the
normalized HIM rainfall) for every 12 months computed {rom the three principal components
(continuous line with scale to the right). Also shown are the demodulate amplitudes centred
on 12-, 6- and 4-month periodicities (broken line with scale to the left).

of the demodulate amplitude series are shown in table 1. The validity of the model is
for the epoch 1881-1980 as the first 109, and last 10% of the data are not realistically
reproduced due to the cosine bell taper adopted prior to FFT to avoid undesirable
leakages (Bloomfield 1976).

As the time variations of the amplitude of the three periodicities (12-, 6- and 4
months) could be closely approximated by the cyclic components in table 1, we
can compute the total annual variation for each year by deriving the expected
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Table 1. Periodicities in the demodulate amplitude of the Annual Component and its first
two harmonics. Percentage of total variance accounted by individual cyclic component is

also given.
Demeodulate Period Amplitude Phase Percentage
component (years) (degree) accounted
Annual 81-82 4-98 133 33
2222 4-14 300 23
15-00 2:21 8 6
13:04 3-32 82 15
10-34 2:00 350 5
7-38 1-41 112 3 -
Semiannual : 54-55 2:34 11 21
18-18 © 139 . 219 7
17-14 2-61 242 26
11:76 1-73 295 11
632 0-90 334 3
Triannual 18-95 321 309 35
13-95 1-60 11 9
11-69 1-05 273 4
8-57 1-29 115 6
636 1-36 11 6

¥
i

amplitudes for the individual year and using the constant phases as shown below:

A, ,sin(30t + 252°) + A,sin(60¢ + 58°)
+ A,sin(90¢ + 240°) + Ag,t=0,1,...11 (6)

where A, is the gross average annual rainfall taken as 72:3 mm (Parthasarathy er al
1993).

In view of the known scaling down of the demodulate amplitudes in relation to
the expected values even for sinusoidal cycles (Agarwal et al. 1980) we utilised
normalization factors for 4,,, 4, and A4, by taking ratios of the average amplitudes
obtained from harmonic analysis for individual years and the average of the demodu-
late amplitudes. The values adopted are 107/81, 63/46 and 25/17 respectively.

Despite the fact that the HIM series is dominated only by 3 components, the
computed annual rainfall could not match the observed rainfall even for the closed
loop period of analysis 1881-1980 so that predictability beyond this range becomes
meaningless. This mismatch was initially quite unexpected. A closer examination of
the temporal evolution of the individual harmonic components derived taking 12
monthly values at a time shows very drastic changes in amplitude-from one year to
the other. For example the annual rainfall for successive years like 1877 and 1878
(760 and 1045 mm) 1894 and 1895 (1070 and 792 mm), 1898—99 and 1990 (855, 428,
890mm), 1917-1918 (1225 and 541 mm) etc. are so widely different that the funda-
mental assumption in complex demodulation that the signal should have slowly
varying amplitude and phase (Bloomfield 1976) is immediately violated.

In a way, this non-predictability of the HIM rainfall despite its simple structure
brings to the fore an aspect of Singular Spectral Analysis which has not been brought
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out hitherto. We conclude that the principal components derived from SSA can
highlight only the slowly varying signal similar to the complex demodulation and
hence care has to be taken while interpreting the amplitude variation of any signal.
The failure of predictability of the rapidly changing annual HIM rainfall can thus

be explained.

5. 'Spectrum of annual rainfall

Subramaniam Moten (1993) has shown that in peninsular Malaysia, longer period
oscillations with periods 18-5 years, 7—10 years, 3—5 years related to the ENSO mode,
and QBO could be clearly detected through SSA. Parthasarathy et al (1993) however
list only a weak QBO signal in the HIM rainfall series. The monthly values of HIM
analysed here also does not indicate any longer period variations in terms of significan’ —
principal components.

Singular spectrum is known to be suitable when the time series is short and noisy
(Vautard and Ghill 1989). Similarly the data-adaptive Maximum Entropy Method
of spectral analysis can also be utilised for detecting periodicities in short series, such
as even a truncated sinusoid (Ulrych and Bishop 1975).

For singular spectrum of the different annual rainfall series (columns 14 to 18 of
table 3 of Parthasarathy et al 1993) we use a viewing window of 25 for the total
length 120. The singular spectrum (not shown here) has no discernible noise floor
with the singular values decreasing almost monotonically. The variance aecounted
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Figure 4. A typical high resolution spectrum of annual rainfall series from Maximum
Entropy, Method. The numbers shown on individual spectral peaks correspond to the
dominant periodicities.
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by individual vectors varies between 8:8%; and 1-5%; almost equally distributed among
all the vectors. In view of this, no upper limit on the statistical dimension of the
annual rainfall series could be estimated successfully.

The MEM spectrum for the total annual precipitation with length of the prediction
error filter of 50, for N = 120 is shown in figure 4. Apparent periodicities (in years)
are indicated. The other annual mean series exhibit different apparent periodicities.
The spectrum is a clear indication that the annual rainfall series of HIM region is
almost a random series with no dominant periodicities corroborating the inference
based on the singular spectrum. Due to this random behaviour, any prediction into
the future based on the limited data of annual rainfall will be futile.

6. Conclusion

The Homogeneous Indian Monsoon rainfall series derived from a judicious choice
of meteorological subdivisions is simple in structure which could be accounted for
in terms of an annual cycle and its first two harmonics only. This is largely due to
the fact that the HIM series is dominated by monsoon rainfall unlike the rainfall
series for peninsular Malaysia, for instance. The annual rainfall series also appears
to be free of any dominant periodicities and random in nature. Even the quasibiennial
oscillation is not clearly seen though in the MEM spectrum the largest signals are
in the period range 2-78 to 2-10 years.

The ranges of the annual variation in the 3 major principal components show
some interannual variability and a highly consistent phase but attempts to model
the HIM rainfall from the amplitudes derived from complex demodulation and the
constant phase does not succeed in accurate prediction of the HIM for any epoch.
This helps us to highlight one aspect of SSA, not mentioned in literature earlier.
The principal components from SSA can delineate only slow and smooth changes
in the signal but cannot account for sharp and rapid fluctuations.
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