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Abstract

A nonresonant instability of kinetic Alfvén waves (KAWs) is studied in a three-component plasma system
consisting of background cold ions, an ion beam, and hot electrons with a κ-distribution. The nonresonant KAW
instability is produced by the combined sources of ion beam and velocity shear. It is found that the wave excitation
by velocity shear alone will give rise to purely growing KAWs, whereas the ion beam velocity alone as a source
cannot excite the waves for the considered plasma parameters. It is also observed that the combined sources of ion
beam and velocity shear can excite the KAWs in nonresonant instability with finite wave frequency (the mode is
not a purely growing mode). Also note that κ-electrons restrict the wave propagation very close to 90°, whereas the
Maxwellian electrons permit the wave to propagate a few degrees away from 90°. It is inferred that the presence of
κ-electrons shrinks the wave-unstable region of a KAW’s nonresonant instability. The coupling between KAWs
and ion-acoustic waves occurs at a lower value of βi for Maxwellian electrons as compared to κ-electrons.

Unified Astronomy Thesaurus concepts: Solar wind (1534); Space plasmas (1544)

1. Introduction

The wave-particle interaction and the energy transfer mech-
anism from the tail side of the Earth’s magnetosphere to the
auroral ionosphere is a notable topic of interest in space physics.
Many theories have been proposed to explain the energy transfer
mechanism from the magnetosphere to the ionosphere. The
kinetic Alfvén wave (KAW) is one of the agents responsible
for transporting the energy from the distant magnetosphere to
the auroral ionosphere (Louarn et al. 1994; Seyler et al. 1995;
Chaston et al. 2005, 2006; Ergun et al. 2005; Artemyev et al.
2015; Gershman et al. 2017) due to the existence of a parallel
component of a wave electric field along the ambient magnetic
field direction (Thompson & Lysak 1996; Hui & Seyler 1992).
The parallel electric field can be incorporated into the
magnetohydrodynamic (MHD) waves for a small spatial scale,
i.e., by making its perpendicular wavelength comparable to the
ion gyroradius or electron inertial length. In the former situation,
the wave is labeled as KAW and it requires that the electron
thermal speed be larger than the Alfvén speed in the medium
(Hasegawa & Chen 1976). This condition is usually satisfied in
the magnetosphere above the altitude of 4–5RE (Lysak &
Carlson 1981), where RE is the radius of Earth. In the latter
situation, the wave is referred to as an inertial Alfvén wave,
which exists when electron thermal speed is lower than the
Alfvén speed of the medium (Goertz & Boswell 1979) and is
observed in the Earth’s magnetosphere below 4–5RE (Lysak &
Carlson 1981).

There are ample observational studies that support the
existence of KAWs in various regions of Earth’s magnetosphere,
such as the magnetopause (Johnson et al. 2001; Chaston 2005),
magnetosheath, auroral region (Boehm et al. 1990; Louarn et al.
1994; Wahlund et al. 1994), magnetotail, plasma sheet boundary
layer (PSBL; Keiling et al. 2000, 2005; Keiling 2002; Wygant
et al. 2002; Duan et al. 2012), and central plasma sheet (Keiling
et al. 2001). The observational study by Wygant et al. (2002)
showed that the increase in Poynting flux in the PSBL during the
substorm expansion phase is related to the observation of KAWs.

The turbulence observed in the solar wind is also attributed to the
KAWs (Salem et al. 2012). From the THEMIS spacecraft
observation, it is reported that in the spacecraft frame the
fluctuations of the wave field in the frequency range of

»f 0.2 20sc ( – ) Hz are well described by KAWs (Chaston
et al. 2012). In a later study, ion heating in the plasma sheet by
broadband KAWs was reported by Chaston et al. (2014). The
energy exchange between the undamped KAWs and charged
particles has been confirmed by Gershman et al. (2017) using
Magnetosphere Multiscale mission data.
Like waves and instabilities such as MHD surface waves and

Kelvin–Helmholtz instability, KAWs have been invoked to
explain particle acceleration, anomalous transport, and ultra-low-
frequency (ULF) waves in the Earth’s magnetosphere (Angelo
1973, 1977; Chen & Hasegawa 1974; Hasegawa 1976; Hasegawa
& Chen 1976; Hasegawa & Mima 1978; Goertz & Boswell 1979;
Huba 1981; Lysak & Dum 1983; Lakhina 1987, 1990; Lysak &
Lotko 1996; Thompson & Lysak 1996; Nosé et al. 1998).
Theoretically, KAWs have been at the forefront of explaining the
observed ULF waves. Lakhina (2008) studied the excitation of
KAWs by velocity shear for resonant and nonresonant case for
Maxwellian electrons. It was shown that the frequency of KAWs
is in the range of ULF waves in the spacecraft frame. This study
was further extended by Barik et al. (2019a, 2019b) to analyze the
combined effect of ion beam and velocity shear on the excitation
of KAWs. They showed that ion beam and velocity shear can act
as a dual source that can excite the waves with a higher growth
rate, compared to the single source of ion beam or velocity shear.
Also, the anti-parallel ion beam streaming and positive velocity
shear are found to be more favorable for the growth of KAWs.
Observational evidence supports the particle distribution having a
power-law distribution with a long energy tail. These distributions
are best fit by a non-Maxwellian kappa distribution (Vasyliunas
1968; Livadiotis 2015; Lazar et al. 2016). Barik et al. (2019c)
advanced one step further to study the instability produced in
KAWs by velocity shear in the presence of kappa-distributed
electrons for the resonant case.
The transition regions of Earth’s magnetosphere, such as

the magnetopause, magnetosheath, auroral region, polar cusp,
magnetotail, PSBL, etc., are thick boundaries rather than thin
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through which the particle velocities change abruptly. These
regions support a gradient in velocity that is called velocity
shear and acts as a free energy source to excite waves. These
velocity shears also change according to the background
conditions. For example, during high solar activity due to
high solar wind dynamic pressure, the compression of the
magnetopause region increases, leading to an increase in
the velocity shear. Also, during the expansion phase of the
geomagnetic substorm, the compression of the magnetosphere
from the night side further increases the velocity shear in
the transition region. These were incorporated in our theoretical
models presented earlier to see the effects of enhanced velocity
shear on the growth rate of the KAWs. This analysis facilitates
our understanding of various physical phenomena occurring in
different magnetospheric regions, e.g., the increase in growth
rate of KAWs due to increase in velocity shear can explain the
enhanced Poynting flux in the PSBL during the substorm
expansion phase (Wygant et al. 2002). The velocity shear along
the field lines also acts as a free energy source for the
generation of Kelvin–Helmholtz instability, which is respon-
sible for the observed ULF waves in the polar cusp region
(Angelo 1973, 1977).

Non-Maxwellian particle distributions and velocity shear
have been observed in the solar wind and interplanetary
medium. For example, Ulysses spacecraft observations
(Schwadron 2002; McComas et al. 2003) reported the presence
of transverse velocity shear in the solar wind created by
latitudinal variation of velocity. Recently, Phan et al. (2020)
reported that a substantial amount of transverse velocity shear
is found in the solar wind using Parker Solar Probe (PSB) data
during its first orbit. Hollweg et al. (2013) studied the velocity
shear-induced mode coupling in the corona and solar wind. The
effect of velocity shear on the fluctuating interplanetary
magnetic field is studied by Jokipii et al. (2015). Also, non-
Maxwellian electrons are observed in the solar wind (Jian et al.
2014). Gary et al. (2016) studied ion beam-driven instabilities
in the solar wind using Wind spacecraft data. The expanding
solar wind flow can lead to non-Maxwellian electron and ion
velocity distributions, which can excite instabilities. These
observational and theoretical studies revealed the existence of
ion beam, velocity shear, and non-Maxwellian electrons in the
solar wind and interplanetary medium. Motivated by these
findings, we have developed a theoretical model that consists of
Maxwellian background ions and beam ions and kappa-
distributed electrons that can be applicable to Earth’s magneto-
sphere and solar wind. The paper is arranged in the following
manner. In Section 2 a theoretical model is presented. In
Section 3 a generalized dispersion relation is derived for the
combined case of ion beam and velocity shear. The
nonresonant instability of KAWs driven by ion beam and
velocity shear is discussed in Section 4. The numerical results
are presented in Section 5. A discussion of the results and
conclusions are presented in Section 6.

2. Theoretical Model

A three-component plasma model comprising Maxwellian
background ions (N T,i i) and beam ions (N T,B B) and kappa-
distributed electrons (N T,e e) is considered. Here, Nj and
Tj are number density and temperature, respectively, which
characterize the plasma species and j=i, e, and B for
background ions, electrons, and beam ions respectively. The
relation = +N N Ne i B describes the quasi-neutrality condition

in equilibrium. In this model, the background ions, although
they have a finite temperature, are treated as cold species, and
the electrons and beam ions are treated as hot species. Here, the
cold species essentially refer to those that satisfy the condition
w
ak i
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Here, Γ is the usual gamma function, and κ-index is a
measure of non-Maxwellian characteristics; the smaller the κ

value the more non-Maxwellian is the species, = +v̂ v vx y
2 2

and =v vz , respectively, represents the perpendicular and
parallel component of velocity with respect to the ambient
magnetic field (i.e., z-direction), qj is the generalized thermal
speed related to the normal thermal speed through the relation
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where a =j
T

m

2 1 2
j

j( ) is the normal thermal speed. Here, Vj(X)

represents the non-uniform streaming of plasma species in
the z− direction, whereas it has a gradient in one of the
directions perpendicular to the ambient magnetic field, i.e., the
x-direction, where w= +X x vy cj is a constant of motion and

w =cj
q B

cm
j

j

0
is the cyclotron frequency of plasma species, qj and

mj are charge and mass of jth species, and c is the speed of
light. Note that Equation (1) is valid for κ>3/2. The zeroth-
order Maxwellian distribution function for background ions
and beam ions can be found from Equation (1) in the limit
k  ¥.

Since we are assuming low beta plasma (i.e., the ratio of
thermal pressure to magnetic pressure being much smaller than
unity), the incompressibility of the magnetic field along the
ambient magnetic field direction allows us to write the wave
electric field as the gradient of two different scalar potential
(Hasegawa 1976), i.e., ψ, along the parallel direction and f,
along the perpendicular direction

f f y= - + = - - ^ ^E E z . 3ˆ ( ) 

The first-order distribution (perturbed distribution) function
can be derived by solving the linearized Vlasov’s equation.
This is achieved by assuming the perturbation to be of the form

w~ + -^ik y ik z i texp( ) , where k̂ and k are the perpend-
icular and parallel components of propagation vector k,

2
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respectively, with respect to the ambient magnetic field, and ω
is the frequency of KAWs. We have also assumed a local
approximation of L k 1v  to solve the Vlasov’s equation,
where =L V dV dxv j j( ) is the velocity gradient scale length

and = +k k ky z
2 2 is the wavenumber. The final form of the

perturbed distribution function is given by Lakhina (2008) and
Barik et al. (2019a, 2019b, 2019c) as
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Here, a cylindrical coordinate system is used to derive this
relation, i.e., q= ^v v v, ,( ) , where θ is the angle the velocity
vector makes with the ambient magnetic field, and xJn j( ) and

xJm j( ) are the Bessel function of orders n and m, respectively,

with argument x =
w
^ ^

j
k v

cj( ).
The perturbed number density and parallel current density

can be derived from Equation (4) using the relations
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The perturbed number and current density for the back-
ground ions and beam ions can be derived from Equation (7)
using the Maxwellian distribution function as the zeroth-order
distribution and are exactly the same as Equations (10) and (11)
of Barik et al. (2019a) and that for the non-Maxwellian
electrons can be obtained using the κ distribution as the zeroth-
order distribution and are the same as Equations (16) and (17)
of Barik et al. (2019c).

The number density nj and parallel (z-component) current
density Jzj are used in Poisson’s equation and the z-component
of Ampere’s law to derive the dispersion relation and are
given by:

(Poisson’s equation)
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Keeping in mind that the KAWs are the low-frequency
electromagnetic waves (i.e., w wcj ) and assuming nearly
perpendicular propagation of the waves (i.e., ^k k ),

Equations (8) and (9) can be written as
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dispersion function. Note that while arriving at the coefficients
Equations (11)–(14), it is assumed that the electrons have no
drift and velocity shear, i.e., = =V S0e e, thus the absence of a
shear term in the expressions of electrons.

3. Generalized Dispersion Relation

The generalized dispersion relation is obtained by following
the procedures of Lakhina (2008) and Barik et al. (2019a).
This is achieved by assuming the beam ions have drifting
velocity VB and velocity shear =S SB , and background ions
without drift and velocity shear, i.e., Vi=0 and Si=0. Under
the assumptions, w
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the general dispersion relation is obtained by equating the
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determinant of Equation (10) and is given by
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plasma betas, respectively. Note that in multi-component
plasmas, ion-acoustic speed can be defined by taking into
account the temperatures and densities of the constituent’s, as
has been done in Dubinov & Senilov (2011), Saberian (2019),
and several other papers, e.g., Moolla et al. (2010). However,
for ease of numerical computations and to study the effect of
variation of different constituent’s temperatures and densities
on the dispersion characteristics of the waves, we have defined
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which is the same as Equation (26) of Barik et al. 2019c. It
shows the coupling between ion-acoustic waves (IAWs) and
KAWs in the presence of a kappa electron and reduces to the
same expression as Equation (36) of Hasegawa & Chen (1976)
and Equation (23) of Lakhina (2008) in the limit k  ¥. In
the smaller plasma beta limit, i.e., b 1i  , the coupling
between these two waves becomes weak and the modes get
decoupled, as shown in Equations (27) and (28) of Barik et al.
(2019c) and the limit k  ¥ reduces to Equations (24) and
(25) of Lakhina (2008).

4. Nonresonant Instability of KAWs

In this section, we study the nonresonant instability of
KAWs. When the thermal speed of the plasma species is
comparable to the phase velocity of the wave, resonance occurs
in the system and this kind of instability is known as resonant
instability. However, there are situations when the contribution
from the resonant particles is negligible, and the wave still
grows because of the free energy supplied by the nonresonant
particle distributions. This type of instability is called
nonresonant instability. The electrostatic two-stream instability
is a well-known example of a nonresonant instability
(Nicholson 1983; Lakhina 1994). From Equation (15),
neglecting the CI term, the contribution from the imaginary
part that gives rise to the growth/damping of the wave in
resonant instability vanishes and we are left with only the real
part of the equation. If the solution of the real part gives one of
the roots as imaginary, that will contribute to the growth/
damping of the wave in nonresonant instability. However, roots
can also be purely imaginary or a combination of real and
imaginary parts. The former will be considered a purely
growing mode. It is worth mentioning here that the growth/
damping term arises in the system for the resonant case that is
studied by the kinetic approach only. Nonresonant instabilities
can be studied by neglecting growth/damping terms and also
be described by a fluid kind of picture. Furthermore, wave-
particle interactions can be studied by resonant instability,
whereas they cannot be studied by nonresonant instability.
Here, nonresonant instability is studied by solving the
following simplified equation, which is obtained from
Equation (15) by putting CI=0:
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The solution of the equation Equation (23) can be written as
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The nonresonant instability is obtained when <C 0R and
from this a threshold condition for the velocity shear is found
to be
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In the limit k  ¥, the above expression reduces to
Equation (32) of Lakhina (2008). It is apparent from
Equation (27) that larger velocity shear is required to excite
nonresonant instabilities with non-Maxwellian electrons, com-
pared to Maxwellian electrons.

5. Numerical Analysis

It is well known that in the low β limit, the coupling between
KAWs and IAWs will become weak and these two waves will
decouple. We examine the decoupling of KAWs and IAWs in
the presence of non-Maxwellian κ-electrons (κ=2) and
compare with the case of Maxwellian electrons (k = ¥) for
the set of plasma parameters, = =^T T k k0.1, 0.01i e  , and
for different βi. The coupled dispersion relation Equation (22)
is solved numerically and the two positive roots are plotted to
show the coupling and decoupling of KAWs and IAWs. For
Maxwellian electrons, Figure 1 delineates three different
phases: (a) the decoupled KAW (blue curve) and IAW (red
curve), (b) the starting phase of coupling, and (c) the coupling
of KAW and IAW at a larger βi. It can be seen that at smaller βi
(=0.01 for the parameters considered here), two distinct

decoupled modes, i.e., the KAW and IAW are observed,
which remain decoupled up to b < 0.2i . The coupling of the
two modes starts at b » 0.2i (Figure 1(b)) and continues to
couple at higher values of βi (Figure 1(c)). Note that with
increasing βi, the coupling occurs at lower values of li.
Figure 2 describes the coupling and decoupling of KAWs and
IAWs for non-Maxwellian κ-electrons. Although the same
trend continues, i.e., at smaller values of βi the two waves
remain decoupled and get coupled at larger βi values, it is quite
interesting that for κ-electrons, the coupling starts at a
comparatively higher value of βi (=0.6 here) and also at a
lower value of wave frequency as compared to the Maxwellian
electrons. This is due to the fact that κ-electron lowers the wave
frequency.
The critical value of βi obtained from our computations is

important for the coupling and decoupling of the KAWs and
IAWs. For βi values smaller than the critical value, the KAWs
and IAWs remain as two independent decoupled modes. At the
critical value of βi, the coupling between the two modes starts
and continues for higher values of βi. Once the coupling starts,
it is difficult to distinguish between KAWs and IAWs. There is
theoretical evidence that supports the decoupling of KAWs and
IAWs (Hasegawa & Chen 1976; Lakhina 2008; Barik et al.
2019c), although numerically it is not shown. Though we are
not aware of observations showing coupling between KAWs
and IAWs, our analysis predicts that for βi greater than the
critical values, the observed low-frequency electromagnetic
modes would not be purely KAWs but will also have some
properties of IAWs.
Now, we numerically evaluate growth rate of nonresonant

instability of the KAWs in non-Maxwellian plasmas. The
typical plasma parameters considered for the computations are

= =N N S0.5, 0.5B e , b k= = = ¥^k k0.01, 0.005, 2, 4, 6,i  .
The normalized growth rate obtained from Equation (24) is
plotted for different variations in the plasma parameters. We
have used similar normalizations as adopted by Lakhina (2008)

Figure 1. Coupling of KAWs and IAWs in the presence of Maxwellian electrons for plasma parameters, = =^T T k k0.1, 0.01i e  , k = ¥ and for different values of
βi=0.01 for (a), 0.2 for (b), and 0.4 for (c), respectively, as mentioned on the curves.
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and Barik et al. (2019a), i.e., frequencies wr are normalized
with respect to ion beam cyclotron frequency wcB, temperatures
with ion beam temperature TB, and streaming velocity VB, with
thermal speed of ion beam, aB.

Figure 3 delineates variation of growth rates of KAWs
with the square of normalized perpendicular wavenumber,

l = a
w
^

B
k

2
B

cB

2 2

2 , for various values of κ-index and other plasma

parameters described in the previous paragraph. The growth
rate of nonresonant instability increases with a decrease in κ
index at a fixed value of lB and the growth rate is at maximum
for highly non-Maxwellian electrons (smaller κ). Note that with
decreasing κ value, the wave-unstable region (i.e., the range of
lB for which the growth rate of the KAW’s nonresonant
instability is obtained) also decreases. Similar results are found
in the resonant KAW instability (Barik et al. 2019c), thus it can
be inferred that the presence of non-Maxwellian electrons
narrows down the wave-unstable region in both nonresonant
and resonant KAW instabilities.

Figure 4 shows the dependence of the growth rate of
nonresonant instability on velocity shear for κ=2 and¥. The
other plasma parameters are the same as those in Figure 3. The
peak growth rate and the unstable region (in wavenumbers) of
the instability increases with increasing velocity shear. For
comparison, we have also plotted the growth rate for k = ¥
and S=0.2. It is obvious from the curves that non-Maxwellian
electrons restrict the unstable region and at small wavenumbers
the growth rate is higher for non-Maxwellian electrons than the
Maxwellian electrons. The peak growth rate shifts toward
larger wavenumbers with increasing velocity shear. For all
values of velocity shear shown here, the growth rate initially
increases slowly and then rises sharply as lB is increased. The
peak growth rate is higher for Maxwellian electrons, compared
to the non-Maxwellian electrons for the same value of velocity
shear.

Numerically, we find that the threshold of velocity shear is
inversely related with the non-Maxwellian index κ, i.e., the
lower the non-Maxwellian index (i.e., more non-Maxwellian
electrons), the higher the velocity shear threshold value to
excite nonresonant KAWs. From our computations, it is found
that the threshold velocity shear Sth=0.18, 0.1, and 0.07 for
electrons with κ=2, 3, and for Maxwellian electrons
(k = ¥), respectively. The effect of ion beam velocity on
the growth rate of nonresonant KAW instability is also tested.
It is found that the ion beam alone is unable to excite the
nonresonant KAW instability for the plasma parameters
considered here. The combined effect of ion beam and velocity
shear on the excitation of KAWs is also examined. It is

Figure 2. Coupling of KAWs and IAWs in the presence of κ-electrons for plasma parameters, = =^T T k k0.1, 0.01i e  , κ=2 and for different values of βi=0.2
for (a), 0.6 for (b), and 0.8 for (c), respectively, as mentioned on the curves.

Figure 3. KAW nonresonant instability showing variation of normalized growth

rate vs.l =
a

w
^

B
k

2
B

cB

2 2

2 for =N N 0.5B e , S=0.5, βi=0.01, =^k k 0.005 , and for

various values of κ, as mentioned on the curves.
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observed that in the presence of a finite positive velocity shear
and ion beam velocity, the growth rate of the KAWs is not
affected significantly but now the wave mode is not a purely
growing mode. Note that the nonresonant KAW instability
excited by the velocity shear alone is a purely growing mode.
However, the inclusion of ion beam velocity introduces a finite
real frequency to the nonresonant KAW instability.

The effect of variation of ion beam number density on the
growth rate of KAWs for non-Maxwellian (κ=2) and
Maxwellian (k = ¥) electrons is depicted in Figure 5. It can
be seen that for the non-Maxwellian electrons with increasing
number density NB/Ne, the peak growth rate increases and a
spread in the lB range is noticed. For the same value of number
density ( =N N 0.2B e here), the peak growth rate and the range
of unstable wavenumbers of KAWs is larger for Maxwellian
electrons compared to non-Maxwellian electrons. It is observed
that similar to velocity shear, the critical value of number
density is reciprocally related to non-Maxwellian index κ. Our
computation confirms that a critical number density of 0.17 is
required for a non-Maxwellian electron (κ=2); the critical
value should be 0.10 for electrons with κ=3, and for a
Maxwellian electron, a critical value of 0.06 is required to
excite the waves.

Figure 6 shows the variation of growth rate of KAWs with
lB for different values of kP/k⊥ for non-Maxwellian and
Maxwellian electrons. The other plasma parameters are the
same as those in Figure 3. It is seen that with decreasing kP/k⊥
(increase in angle of propagation) the unstable region shifts
toward a higher lB region. The peak growth rate occurs at
larger values of lB for subsequent increases in angle of
propagation. From our computations it is found that for
nonresonant instability of KAWs, no growth is obtained for

^ k k 0.015 (θ=89°.14) for non-Maxwellian electrons with
κ=2, ^ k k 0.026 (θ=88°.51) for κ=3, ^ k k 0.031
(θ=88°.22) for κ=4 and ^ k k 0.042 (q = 87 .59) for
Maxwellian electrons. Hence, it can be inferred that Maxwel-
lian electrons allow the waves to propagate a few degrees away
from 90°, whereas kappa electrons restrict the wave propaga-
tion very close to 90° for nonresonant instability of KAWs.

Figure 7 illustrates the variation of KAW growth rates with
lB for non-Maxwellian and Maxwellian electrons for different
Te/TB ratios. For non-Maxwellian electrons(κ=2) peak
growth rates are shifted to higher lB values with increasing
Te/TB and waves are excited for a higher lB range. Although
not shown here, the effect of βi on the excitation of nonresonant
KAWs instability with kappa electrons is examined. It is found
that changes in βi have a marginal effect on the excitation of
nonresonant KAWs.

6. Discussion and Conclusion

We have studied KAWs in three-component plasma
consisting of kappa electrons, protons, and ion beam. First,
coupling and decoupling of IAWs and KAWs is examined in a
plasma with κ-electrons and protons. It is shown that the
decoupling of IAWs and KAWs occurs at a higher value of
ion plasma βi and lower-wave frequency in the presence of

Figure 4. KAW nonresonant instability showing variation of normalized

growth rate vs. l =
a

w
^

B
k

2
B

cB

2 2

2 for =N N 0.5B e , k = ¥2,( ), βi=0.01,

=^k k 0.005 , and for various values of velocity shear S, as mentioned on
the curves.

Figure 5. KAW nonresonant instability showing variation of normalized growth

rate vs.l =
a

w
^

B
k

2
B

cB

2 2

2 for k b= = ¥ = =^S k k0.5, 2, , 0.01, 0.005i( )  , and for

various values of number density NB/Ne, as mentioned on the curves.

Figure 6. KAW nonresonant instability showing variation of normalized

growth rate vs. l =
a

w
^

B
k

2
B

cB

2 2

2 for k b= = ¥ = =S N N0.5, 2, , 0.01, 0.5i B e( ) ,

and for various values of propagation angle kP/k⊥, as mentioned on the curves.
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non-Maxwellian electrons as compared to the Maxwellian one.
Furthermore, a nonresonant instability of KAWs generated by
ion beam and velocity shear has been discussed. It is found that
non-Maxwellian electrons restrict the unstable region of KAWs
in the wavenumber regime, but tend to increase the growth rate
of the instability. It is observed that for the plasma parameters
considered here, an ion beam as a single free energy source
cannot excite the nonresonant KAW instability, whereas
velocity shear alone can excite the purely growing KAWs.
On the other hand, when ion beam and velocity shear are
simultaneously present, KAWs with finite real frequency are
generated with a substantial growth rate. The threshold velocity
shear is inversely related to the non-Maxwellian index κ, i.e.,
for highly non-Maxwellian electrons a large velocity shear is
required to excite nonresonant KAWs and vice versa.

The critical value of ion beam number density is reciprocally
related to the non-Maxwellian κ-index. A large peak growth
rate for KAWs is obtained for propagation angle close to 90°
for non-Maxwellian electrons and for the same propagation
angle a larger peak growth is found for Maxwellian electrons
compared to the κ electrons. Note that for non-Maxwellian
electrons the wave propagation is restricted only very close to
90°, whereas it is permissible for few degrees away from 90°
for Maxwellian electrons. The growth rate of the nonresonant
KAW instability peaks at a larger value of wavenumber when
the temperature of the non-Maxwellian electrons increases. At
the same electron temperature, the Maxwellian electrons tend
to enhance the wave-unstable region. The ion plasma βi has a
marginal effect on the growth of KAWs in nonresonant
instability.

It is found that the features of nonresonant instability of
KAWs are similar to the resonant case studied by Barik et al.
(2019c). In resonant instability the wave propagation is allowed
up to q  82 (q  76 .50) for non-Maxwellian (Maxwellian)
electrons, whereas in nonresonant instability this range is
q  89 .14 (q  87 .59). Thus, the nonresonant instability is
limited to a highly oblique propagation angle. In both cases the
critical value of the ion beam number density and the threshold
of velocity shear increases with decreasing κ-index, i.e., a high

critical ion beam number density and a large velocity shear are
required to excite KAWs with non-Maxwellian electrons,
compared to Maxwellian electrons. In both cases, the increase
in non-Maxwellian electron (i.e., low κ index) temperature
tends to increase the wave-unstable region of KAWs. On the
other hand, the magnitude of the growth rate for nonresonant
instability is much larger than that for the resonant case. The
perpendicular and parallel wavelengths range are quite high in
the nonresonant case compared to the resonant one.
For application purposes, we have taken the plasma parameters

relevant to the auroral/polar cusp region at an altitude of 5–7RE,
where RE represents Earth’s radius (Lysak & Lotko 1996;
Lakhina 2008; Barik et al. 2019a). The available parameters
are ion beam densities, =N N 0.01 0.2B e ( – ), a <V 2B B , where
we assume =N N 0.1 0.5B e ( – ), b = 0.001 1.0i ( – ) and S=
(0.01–0.5). Also, we consider the ion beam cyclotron frequency,
w p»2cB (2.2–3.0) Hz common at the auroral altitude of 5–7RE,
the hot electron temperature, »Te 100 eV, the background cold
ion temperature, »Ti 10 eV, and the beam ion temperature, »TB
1–2 keV.
The maximum normalized growth rate (Figure 4) is found to

be 0.053 at l = 1.9B , whereas this is excited in the lB range of
(0.1–1.9). The corresponding un-normalized growth rate is
obtained as 0.1325 Hz. The un-normalized growth rate falls in
the range of (0.5 132.5– ) mHz for the whole range of our
computation. The perpendicular wavenumber can be calculated
from the relation l w a=k̂ 2 B cB B and is found as
(0.01 0.05– ) -km 1 and the corresponding perpendicular wave-
length is (628− 125) km. The parallel wavenumber can be
found from the relation =^k k 0.005 and is given by
(0.05 0.25– )× 10−3 -km 1 and the respective parallel wave-
length is (125− 25)×103 km.
The perpendicular wavelength of (125–628) km obtained for

the KAW from our model matches the upper value of the
observed wavelengths of (20–120) km in the polar region
(Wygant et al. 2002). The above model may be able to explain
some of the observed characteristics of ULF waves in the
Earth’s magnetosphere.
Although we have presented an application of the model to

the auroral region of Earth’s magnetosphere, it can also be
applied to other regions of the magnetosphere, solar wind, and
the interplanetary medium, where signatures of ion beam,
velocity shear, and non-Maxwellian electrons are evident.
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