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Abstract

Several studies have shown the importance of electromagnetic ion cyclotron (EMIC) waves to the pitch angle
scattering of energetic particles in the radiation belt, especially relativistic electrons, thus contributing to their net
loss from the outer radiation belt to the upper atmosphere. The huge amount of data collected thus far provides us
with the opportunity to use a deep learning technique referred to as the Bag-of-Features (BoF). When applied to
images of magnetic field spectrograms in the frequency range of EMIC waves, the BoF allows us to distinguish, in
a semi-automated way, several patterns in these spectrograms that can be relevant to describe physical aspects of
EMIC waves. Each spectrogram image provided as an input to the BoF corresponds to the windowed Fourier
transform of a ∼40 minutes to 1 hour interval of Van Allen Probes’ high time-resolution vector magnetic field
observations. Our data set spans the 2012 September 8 to 2016 December 31 period and is at geocentric distances
larger than 3 Earth radii. A total of 66,204 spectrogram images are acquired in this interval, and about 45% of
them, i.e., 30,190 images, are visually inspected to validate the BoF technique. The BoF’s performance in
identifying spectrograms with likely EMIC wave signatures is comparable to the visual inspection method, with the
enormous advantage that the BoF technique greatly expedites the analysis by accomplishing the task in just a few
minutes.

Unified Astronomy Thesaurus concepts: Planetary magnetosphere (997); Van Allen radiation belt (1758); Neural
networks (1933); Space plasmas (1544); pp waves (1288); Support vector machine (1936); Classification (1907)

1. Introduction

The Earth’s magnetosphere, which is formed by the
interaction of the magnetized solar wind with Earth’s magnetic
field, contains a region known as the Van Allen radiation belts.
In this region, energetic particles are mostly trapped in the inner
belt between 1.1 and 2 Earth radii (1 RE=6371 km) and in the
outer belt approximately between 3 and 6 RE. Particle fluxes in
the inner belt generally do not vary appreciably over the course
of months or even years. In the outer radiation belt, however,
the story is quite different. An increase in solar wind dynamic
pressure can reduce the radiation belt electron fluxes. In such a
way, the filling in of the radiation belt is controlled mainly by
the solar wind velocity (see e.g., Li et al. 2005; Reeves et al.
2011; Wing et al. 2016, and references therein). In addition,
these fluxes can be altered in a matter of hours by both external
(to the Earth’s magnetosphere) and internal causes, such as
magnetopause boundary motions driven by solar wind dynamic
pressure fluctuations (see e.g., Souza et al. 2017, and references
therein), relativistic electron gyro-resonant interactions with
internally generated electromagnetic waves (see e.g., Shprits
et al. 2009; Usanova et al. 2014, and references therein), and
other wave particle interactions (see more details in, e.g.,
Roederer & Zhang 2016; Jaynes & Usanova 2020).

Particle fluxes in the outer radiation belt can change by
orders of magnitude either over periods of 12 hr or even less
(Roederer & Zhang 2016; Jaynes & Usanova 2020) or remain
essentially unaltered by many days (e.g., Alves et al. 2016;

Ozeke et al. 2017). Such rapid variations in the outer belt fluxes
with subsequent removal of particles from the outer radiation
belt have been attributed to the gyro-resonant interaction with
the so-called electromagnetic ion cyclotron (EMIC) waves
whose frequencies typically range from 0.1 to 5 Hz (see e.g.,
Thorne & Horne 1992; Summers & Thorne 2003; Zhang et al.
2010; Thorne et al. 2013; Usanova et al. 2014; Medeiros et al.
2019). Studying the characteristics of such interactions, as well
as EMIC wave occurrence patterns in the radiation belts region,
is extremely important since EMIC waves contribute signifi-
cantly to the variability of the energetic particle fluxes in the
outer radiation belt and also promote the precipitation of
radiation belt particles into the upper atmosphere, thereby
affecting its chemical composition (Horne et al. 2009). Space
missions such as NASA’s Van Allen Probes (Mauk et al. 2012)
provide us a data set of in situ measurements made by electric
and magnetic field sensors through which we can infer EMIC
wave occurrence (Kletzing et al. 2013).
EMIC waves identification in near-Earth space has tradi-

tionally been performed via Fourier analyses of locally
measured magnetic field data. The Fourier power spectral
density (PSD) in units of nT2 Hz−1 is plotted in a frequency
versus time graph, yielding the so-called spectrograms. EMIC
wave detection in such spectrograms is made: (i) by eye
inspection of the wave packets’ magnetic field amplitude,
which in turn translates to (usually) localized, in both time and
frequency, enhancements of PSDs relative to background
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values or (ii) by computational techniques that interactively
analyze the pixel intensities of the spectrogram’s images
against the background (see e.g., Usanova et al. 2014; Saikin
et al. 2015; Wang et al. 2015, and references therein). When
wave packets are clearly distinct from the background,
the interval can be considered as having a candidate EMIC
wave event. Since the waves are in the 0.1–5 Hz frequency
range, the data acquisition rate must be at least twice as high
to resolve the wave packets. The Van Allen Probes mission,
for example, provides local magnetic field measurements at an
acquisition rate of 64 Hz, i.e., approximately one sample every
15 ms, which is high enough to detect EMIC waves. In the case
where only a short period needs to be investigated, visual
inspection seems to suffice. However, when the data set span
months or years, individually checking EMIC wave intervals
that typically range from a few minutes to a few hours may
be impractical. This study aims to present a new technique
referred to as the Bag-of-Features (BoF) that is based on deep
learning algorithms. It quickly and efficiently finds signatures
of EMIC waves in large amounts of spectrogram images. Data
from NASA’s Van Allen Probes mission are used here as an
application example, but the technique is general enough so it
can also be applied to any kind of spectrogram images. This
paper is organized as follows: Section 2 presents details of the
Van Allen Probes’ data used here, whereas Section 3 provides a
brief description of EMIC waves. Next, in Section 4, a brief
introduction to artificial neural networks (ANN) is presented as
well as the deep learning-based technique used for both
identification of salient features in spectrogram images and
their classification into user-defined classes. After that, Section 5
presents the methods employed here—specifically how the
spectrograms and the corresponding images are generated—and
the procedures used for validating the proposed technique. Finally,
Section 6 summarizes the results obtained when the BoF
technique is applied in the identification of likely EMIC wave
events in a Van Allen Probes data set spanning a ∼4 yr period.

2. Data Set Description

The Van Allen Probes mission consists of two low inclination
(10°), elliptically orbiting, and identically instrumented satellites
named the Radiation Belt Storm Probes (RBSP-A and RBSP-B),
which were launched on 2012 August 30. Both perform
approximately three orbits in a daily basis with an orbital period
of approximately 9 hr. The spacecraft altitude ranges from 0.1 RE
to 5.8 RE at apogee and the satellites lap each other during the

orbit with lags ranging from a few minutes to 4.5 hr (Mauk et al.
2012). They cross the inner and outer Van Allen radiation belts,
measuring a number of physical parameters. Our main interest is
the high time-resolution magnetic field data obtained by the
Electric and Magnetic Field Instrument Suite and Integrated
Science (EMFISIS) instrument (Kletzing et al. 2013). The
EMFISIS magnetometer on board both satellites measures the
magnetic field vector with a sampling rate of 64 Hz. The data set
were available in several coordinate systems. In this study, we
choose data from all three magnetic field components Bx, By, and
Bz in Geocentric Solar Magnetospheric (GSM) coordinate system,
which has its X-axis along the Earth–Sun line, its Y-axis
perpendicular to the Earth’s magnetic dipole, and its X–Z plane
in the dipole axis. The data set interval in this study comprises the
period from 2012 September 8 to 2016 December 31. We limit
our data set to measurements acquired mostly in the outer Van
Allen belt, i.e., at altitudes above 3RE. The radiation belt
community typically uses the L* parameter to address radial
distance from Earth. The L* parameter was not relevant to perform
the PSD calculation itself but it could increase significantly the
computer-time demand. Thus, we adopted radial distance obtained
directly from the high-resolution GSM data set. The orbital period
is divided into eight segments according to the spacecraft radial
distance, as shown in Figure 1. This is done so we can discriminate
EMIC waves’ occurrence at different radial distances. In this way,
the orbital period is split in regions in each of which the spacecraft
spent 40–60 minutes. Magnetic field vector components are stored
in each of these time windows, and they are subsequently Fourier
analyzed, as described below in Section 5.1, in order to generate
the spectrogram images that will be used as an input to the neural
network-based tool presented here.

3. EMIC Waves

In the context of Earth’s Van Allen radiation belts, EMIC waves
play a crucial role on the variability of the relativistic (1 MeV)
electron population (Reeves et al. 2003; Horne et al. 2009; Li et al.
2014; Usanova et al. 2014; Zhang et al. 2016b; Clilverd et al.
2017; Jaynes & Usanova 2020). They are commonly found in the
0.1–5Hz frequency range. These waves are associated with ion
cyclotron instabilities, which are usually excited by ring current ion
injections during geomagnetic storms and also during compres-
sions of the day-side magnetopause: the boundary that separates
the Earth’s magnetized plasma from the solar wind (Cornwall 1965;
Kennel & Petschek 1966; Summers & Thorne 2003; Thorne et al.
2013). The local plasma composition defines the EMIC wave’s

Figure 1. Sketch of regions along the Van Allen Probes orbit where the stacked up spectrogram images (see Figure 2) are obtained. These numbered regions (from 1
to 8) are selected according to the satellites’ radial distance in Earth radii. The time it takes for the satellites to cross each region is around 50 minutes.
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propagation frequency band and the energy level of the particles
that will be affected by their occurrence. Ions of hydrogen (H+),
helium (He+), and oxygen (O+) are present in the outer radiation
belt and their gyrofrequencies define the bands of propagation of
these waves. The most common propagation band is the hydrogen
band, as shown in Figures 2(a)–(c), which presents a typical EMIC
wave signature found in our data set. A burst of intensified PSD
values reaching around ∼100–101 nT2 Hz−1 can be seen between
the gyrofrequencies of hydrogen (green line) and helium (red line).
The waves are mostly left-hand polarized and their amplitude can
range from a few to tens of nT (Clausen et al. 2011; Halford et al.
2016). The preferential region of occurrence of EMIC waves is
known to be the afternoon magnetic local time (MLT) sector from
∼12:00 to ∼18:00 MLT in the region near the plasmapause and
the plasmaspheric plume (see e.g., Saikin et al. 2015; Wang et al.
2015; Tetrick et al. 2017, and references therein). The occurrence
of EMIC waves and the resonant interaction with energetic
particles promotes pitch angle scattering and the likely precipitation
of these particles into the upper atmosphere (Li et al. 2014;
Usanova et al. 2014; Remya et al. 2015; Zhang et al. 2016a;
Clilverd et al. 2017).

The most common techniques to identify EMIC waves is the
analysis of their PSDs in order to find signatures of their
occurrence, intensity, and frequency band propagation (see
e.g., Usanova et al. 2014; Saikin et al. 2015; Wang et al. 2015;
Medeiros et al. 2019, and references therein). Afterward, these
data are validated by detailed analysis of the electric and/or
magnetic fields as a function of direction of propagation, wave
mode, and polarization. However, visual inspection to find
EMIC waves signatures is quite time consuming, especially
when it is necessary to sweep through a large spectrogram
database. Thus, it is highly desirable to use other automated
search methods, particularly those based on deep learning
techniques, that significantly narrow down the number of likely
EMIC wave event candidates.

4. Neural Network-based Technique: The BoF Approach

ANN have been gaining an ever increasing space of
applicability in many disciplines, particularly in space sciences
(Camporeale et al. 2018). This success is due mostly to the
significantly large amount of accumulated data on which ANN
are especially well suited to be applied. Some of the ANN’s
goals include the identification and clustering of patterns by
using computational systems in a faster way. An ANN is
essentially made up of parallel-working simple processing units
known as “neurons,” which have the “propensity for storing
experiential knowledge and making it available for use”
(Haykin 2008). This empirical knowledge is gained by the
ANN via several exposures to a given data set, and it is stored
in the form of synaptic weights that essentially encode the
“importance” of the input data to each neuron pertaining to the
ANN. By devising an algorithm intended to iteratively modify
the synaptic weights, one can “train” an ANN to perform a
specific task, which can be, but is not limited to, data clustering
and classification, pattern recognition, image and data com-
pression, and so forth. For an in-depth view on the inner
workings and applications of ANNs, the reader is referred to
Haykin (2008).
There is a very important aspect of the learning/training

phase of an ANN that is explored in this work, and it has to do
with how the learning process is carried out, i.e., whether it is
supervised or not. In a supervised training one already knows
the expected outputs the ANN should provide in advance, so
the ANN structure is modified accordingly. In this case, the
user effectively interferes in the ANNs’ training phase. On the
other hand, in an unsupervised training, the ANN itself will try
to create its own organization or representation of the
information it receives during learning time without any
interference from the user.
Section 5.3 describes the so-called BoF technique (O’Hara &

Draper 2011), which is a deep learning technique that employs
both of the learning paradigms mentioned above. By using a

Figure 2. PSDs in units of nT2 Hz−1, obtained from a Fourier analysis of the time series of three magnetic field components measured by the EMFISIS instrument on
2015 April 16 from 05:33 to 06:10 UT. The y-axis ranges from 0 to 5 Hz on the left-hand side panels, whereas it goes from 0.2 to 5 Hz on the right-hand side image.
Panels (a), (b), and (c) contain the PSDs of δBx, δBy, and δBz, respectively, along with the gyrofrequencies of ions of hydrogen (green line), helium (red), and oxygen
(black line). These panels show a typical EMIC wave signature found in our data set. On the right-hand side, all three PSDs were stacked up to form a single image
(560×420 pixels) containing only the PSD information, so it can be used as an input to the BoF technique. See the text for details.
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large database of spectrogram images as an input to the BoF,
our goal is to recognize patterns in those images that are
characteristic of EMIC wave signatures. Briefly, the different
patterns, or features, are used to group the images into distinct,
user-defined classes each containing a set of characteristics of
the input data. More details on the feature extraction algorithm
employed here and classification/grouping of images can be
found in Sections 5.4.1 and 5.4.2, respectively. The main
advantage of using the BoF technique is that it is based on a
methodology that allows for a more efficient processing of the
image structure (see Vapnik 1999, for details). Moreover, it is a
simple algorithm to implement, using few computational
resources and accomplishing the task typically in a few
minutes that otherwise would take days or even weeks to
complete.

We used a BoF implementation provided by the Imaging
Processing, Statistics and Machine Learning Toolboxes from
MATLABTM. In what follows, we describe in detail all the
steps employed to implement the BoF technique.

5. Methodology

5.1. PSD Evaluation and Preparation of Input Data

The PSD is obtained via a Fourier analysis of the magnetic
field component perturbation d = -B B Bi i iavg, , where i=x, y,
and z and B iavg, is a 100 s time average of the magnetic field
component Bi, similar to the method employed by Medeiros
et al. (2019). Specifically, we performed a short-time Fourier
transform (STFT) of the δBi time series with a window length
of 3750 samples (∼1 minute) and an overlap of 1875 samples
(∼30 s). An example of spectrograms generated using the
STFT method is shown in Figures 2(a)–(c). The frequency
(vertical) axis range is set from 0 to 5 Hz. Later on, all three
magnetic field components have their spectrograms stacked up
as shown in the right panel of Figure 2 in order to form a single
560×420 pixels image. Any white spaces that surround the
resulting stacked up spectrogram image are trimmed off so that
the area within the image being analyzed by the BoF technique
contains only the spectrograms. Failing to perform this step
might result in a poor BoF performance. Such an edited image
is used as an input to the BoF. Notice that in the stacking up
process, we deliberately increased the lower bound of the
frequency axis range to 0.2 Hz to exclude the higher PSD
values contained in such lower frequencies. They were posing a
problem for the feature extraction algorithm used within the
BoF (see Section 5.4.1 for details) in the sense that most of the
features found were located exactly over this lower frequency
range, i.e., from 0 to 0.2 Hz, and as a result, a number of likely
EMIC wave events were being overestimated. All images
analyzed here are generated in the same way, and they all have
the same color bar range—namely, from 10−4 to 102 nT2 Hz−1.

5.2. Separating Input Data into Classes

Most of the time during the Van Allen Probes orbits, one does
not find EMIC wave signatures in the spectrograms, thus a large
number of unwanted cases are also present in our data set amidst
the sought-after EMIC wave events. Therefore, we deemed it wise
to allow the BoF technique to group together the stacked up
spectrogram images into distinct classes, where each class would
hold within it images that share some characteristics. The number
of classes wherein the data set is going to be divided is defined by
the user. Visual inspection of about 10% of our data set (that is,

∼6600 images) revealed spectrograms often showing: (i) no
discernible PSD enhancement above the background level, like
those shown in Figure 3(c); (ii) instrumental artifacts, as shown in
Figure 3(d); (iii) clear EMIC wave signatures, as presented in
Figures 2 and 3(b); and finally (iv), a mixture of instrumental
artifacts and PSD enhancements that could possibly be character-
istic of EMIC wave signatures but are not as clear as those seen in
the images categorized as (iii), thus requiring a careful analysis to
find unambiguous evidences of EMIC waves. This way, it seemed
natural to divide the data set into 4 classes. However, a preliminary
analysis of the BoF technique’s performance has shown that many
of the images that by visual inspection would fall into categories
(i), (ii), and (iv) were erroneously categorized as EMIC cases,
which considerably decreased the BoF accuracy (more on that in
Section 5.4.2). In order to minimize misclassification of EMIC
cases by the BoF technique, we then chose to group images that
were visually categorized as (iii) and (iv) as forming a new class
referred to as EMIC, and all other types of spectrograms were
gathered into a single class named NOEMIC.
Our data set is comprised of 66,204 stacked up images, all

with the same format as the one shown on the right-hand side
of Figure 2. Data from the first, second, and half of the third
precession periods analyzed in more detail in Section 6.3
correspond to the following time intervals, respectively: 2012
September 8 to 2014 June 19, 2014 June 20 to 2016 March 29,
and 2016 March 30 to 2016 December 31. About 45% of the
total (that is, 30,190 images) are visually inspected and
classified into either one of the two major classes above:
EMIC or NOEMIC. This step, although tedious, is very
important for the validation of the BoF technique, as shown
below in Section 5.4.3. These 30,190 images spanned a period
going from 2012 September 8 to 2014 August 25 that accounts
for somewhat more than the first full orbit precession of the
Van Allen Probes around Earth (it actually completed the first
precession about two months earlier, on June 19), so the orbit’s
apogee covered all MLTs.

5.3. BoF’s Training and Validation Data Sets

As with any other deep learning technique, the BoF needs to
be fed with some subset of the input data to be trained. The
BoF, and other ANN-based techniques, has the powerful ability
to generalize, i.e., it can provide reasonable outputs for inputs
not encountered during the training phase (Haykin 2008). Thus,
to train the BoF, one does not need to use the whole data set but
rather only a smaller, representative part of it. As mentioned in
the previous section, the total amount of visually classified
stacked up spectrogram images are 30,190, and they are
obtained within the 2012 September 8 to 2014 August 25
period, as already mentioned above. Such images were not
randomly chosen. Instead, we inspected each and every one of
those 30,190 images in the same sequence they were acquired.
This data set is nearly evenly distributed between the two
satellites, i.e., each contributed with about 15,000 images.
These images are then split into 2000 images for composing the
training data set and 28,190 for the validation one. Smaller
numbers for the training data set have also been tested, but the
2000 image set was found to be the one that provided a slightly
better accuracy. By “accuracy” we mean the percentage of
correct classifications performed by the BoF, i.e., we check
whether or not the BoF’s classification of the input images
matches the previously done visual classification of these same
input images. The following sections are devoted to provide
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more details on the BoF’s classification process and accuracy
determination.

The training data set possesses 1000 images randomly taken
from the visually classified EMIC class and another 1000
images also randomly taken from the visually classified
NOEMIC class. Both Van Allen Probes contributed about
50% of the number of images in each class, as summarized in
Table 1, and the random selection ensured that both EMIC and
NOEMIC cases would be fairly well distributed in MLT. The
other 36,014 images acquired during the time interval from
2014 August 26 to 2016 December 31 have not been visually
classified, and they also serve to be used as an input to the BoF
and to be classified by it, as shown in Section 6.

5.4. Applying BoF for Identification and Classification

The stacked up images are generated as described in
Section 5.2. The steps below detail how the BoF classifies
them. The entire process is divided in two blocks: (i) training
process and accuracy evaluation and (ii) application to
unclassified spectrogram images, as shown in the schematic
diagram in Figure 4. Consider initially the upper block. After
visually classifying 30,190 images, 2000 of them will compose
the so-called “training data set,” as already pointed out in the
previous section. Such images are then used as an input to
the BoF, which is represented in Figure 4 by the dashed box.

Notice that the BoF technique is composed of two other
intermediate steps referred to as “feature extraction” and “K-
means clustering,” which are presented in the next sections.
Afterward, the images composing the validation data set are
classified by the BoF, and finally, the BoF’s accuracy can be
evaluated. Subsequently, in the bottom block, the BoF is used
to classify the remainder of our data set, i.e., 36,014 images,
whose results are presented in Section 6.
The following subsections provide more details of the BoF

technique and its application on the classification of stacked up
spectrogram images.

Figure 3. Typical stacked up spectrogram images found in our data set. The date, time interval, and which spacecraft the spectrograms have been obtained with are
shown on top of each panel. Images like those shown on panels (a) and (b) form a single class, named EMIC, with likely EMIC wave events. They exemplify cases
where (a) PSD enhancements might be related with EMIC wave signatures, but a further analysis is required, and (b) where unambiguous evidence of EMIC waves is
found. Likewise, images like those shown on panels (c) and (d) form a single class, named NOEMIC, where (c) no distinguishable EMIC wave signatures are present
and (d) there is a presence of instrumental artifacts that do not allow a clear eye inspection of EMIC wave signatures.

Table 1
Classification of Stacked Up Spectrogram Images as Either EMIC or NOEMIC

EMIC NOEMIC

Data Set A B A B Total

Training 538 462 466 534 2000
Validation 1416 1074 12,674 13,026 28,190
BoF classification 3920 3787 14,371 13,936 36,014
Total 5874 5323 27,511 27,496 66,204

Note.Images pertaining to both training and validation data sets totalizing
30,190 images are classified via visual inspection, whereas the remaining
36,014 images from the whole data set are classified only via the BoF
technique. A and B denote RBSP-A and RBSP-B, respectively.
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5.4.1. Feature Extraction

The main target here is to find regions within the image,
hereafter named features, with relevant information so one can
use them to distinguish one image from the other. In our data
set, this means to find features in spectrogram images that can
be identified as EMIC wave signatures. It turns out that such
features are accompanied by other types of features that
characterize regions in an image that are not related with EMIC
wave signatures but are related to background noise and
instrumental artifacts instead. Thus, the challenge here is to find
an optimum number of features so one can use them to identify
images possessing similar types of features and then grouping
such images into classes. These classes will be characterized by
images that hold similar characteristics.

Features are found using the Speeded Up Robust Features
(SURF) detector (see Bay et al. 2008, for details), and here we
describe its main characteristics. SURF’s goal is to find a
certain amount of features in an image and to chart each one of
them into a “vector descriptor,” which is a mathematical way of
unambiguously identifying a feature in the image. These
concepts are made clear below.

The first step to find interesting features in the image is having
a way to detect the so-called interest points. These are usually
locations in the image where there are strong spatial variations,
i.e., gradients, in the pixel intensities relative to the points
surrounding the interesting features. To detect them, we first
need to convert our red, green, and blue color code, stacked up
spectrogram images to a gray scale, since that is how the SURF
detector operates. The pixel intensities varied from 0 (black) to

255 (white), and they are denoted by I(i, j), where integer
indexes i and j refer to a given pixel location in the image. After
that, an important procedure is performed on the input image I
that accounts for SURF’s reduced computational time: the
integral image representation IΣ of the gray-scale image I. An
element of an integral image ( )S rI at a location ( )=r x y,
represents the sum of all pixels in the input image I of a
rectangular region formed by the point r and the origin, that is

( ) ( ) ( )åå=S
= =

 
rI I i j, . 1

i

i x

j

j y

0 0

The reason for using the integral image representation is as
follows. SURF is a Hessian-based detector (detailed below) and
it recurrently performs convolutions of the image I with so-
called box-type filters, which are very basic approximations for
Gaussian second order derivatives (see Figure 1 of Bay et al.
2008, for details on the box filters). Therefore, a large number
of addition operations are needed, particularly when the image
size, i.e., the number of pixels, is big. Once IΣ is calculated, the
number of additions to be done as a result of the convolution
operations is drastically reduced, especially when the afore-
mentioned box-type convolution filters are used.
SURF uses the Hessian matrix formulation to detect pixel

intensity variations in the image along the horizontal, vertical,
and diagonal directions. This is a required step to find the
interest points whose determination is based on local
maximization of the determinant of the Hessian matrix in the
vicinity of a given pixel in the image I. Considering a point

( )=r x y, in input image I, the Hessian matrix ( s r, ) in r at a

Figure 4. Schematic diagram to illustrate all steps involved in the classification of input images. A total of 30,190 visually classified images are used to compose both
the training (2000 images) and validation (28,190 images) data sets. Once presented to the BoF, the images have their features extracted and an image classifier is built
via K-means clustering (see the text for details). Using the validation data set, the BoF’s accuracy can be evaluated. Afterward, the unclassified (36,014) images are
presented to the BoF to be classified and the results are further analyzed.
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scale σ is given by

( )
( ) ( )
( ) ( ) ( )
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s s
s s

= r
r r

r r

D D

D D
,
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, ,
, 2

xx xy

xy yy

where ( )srD ,xx is the convolution of the approximate second
order Gaussian derivative with the image I at point r and
likewise for ( )srD ,xy and ( )srD ,yy . The determinant of the
Hessian matrix provides us with quantitative information about
pixel intensity variation in the immediate neighborhood of a
given pixel and at a given scale, σ. The scale parameter σ

effectively enters as a smoothing parameter (that is, the higher
its value, the higher the degree of smoothing of the original
image). By smoothing the image, one increases the suppression
of noise and other interfering fine-scale structures, so this
procedure is expected to facilitate the search for interest points
that uses maximization of the determinant of ( )s r, across
different scales (see Bay et al. 2008, and references therein for
more details on the interest points determination). When σ is
increased, the box-type convolution filter’s size also increases,
hence there is an upper limit to which σ can be increased,
otherwise the box filter’s size would surpass the image size. For
the stacked up spectrogram images used here, eight scale
values are used that translate into eight box-type convolution
filter sizes of 9×9, 15×15, 21×21, 27×27, 39×39,
51×51, 75×75, and 99×99 pixels. Further increasing σ

would only make the computational time for feature selection
grow bigger without bringing newer information that has not
been already found in the aforementioned eight scales (Bay
et al. 2008).

Locating an interest point in the input image I is tantamount
to say that its (x, y; σ) location has been found. The interest
point’s (x, y) location marks the centroid of the feature it is
related to. The scale σ wherein the interest point has been
located ultimately determines the size of the corresponding

feature in the image, i.e., the higher the σ value, the larger the
feature’s size. The central panel in Figure 5 shows an example
of the results of the feature extraction algorithm used in this
study. In fact, a few thousands of features are usually extracted,
but for clarity, only five of them are shown. They match
locations in the image where one would normally associate the
higher PSD values as being characteristic of an EMIC wave
signature.
Each located feature has associated with it a vector

descriptor that, as already mentioned above, is a mathematical
way of unambiguously identifying that feature. Each feature,
regardless of its (pixels) size, is represented by an unique array
with 64 elements. The 4×4 square subregions shown on top
of the highlighted feature on the right-hand side of Figure 5 just
emphasizes the descriptor’s structure. Each subregion has a
four-dimensional descriptor vector for its underlying intensity
structure, thus resulting in a more general descriptor vector of
64 in length. Each element’s determination is described in great
detail in Section 4 of Bay et al. (2008). The key point here is
that by having such descriptors, one can perform a quantitative
comparison among features pertaining to different images and
then be able to group/classify images that have similar
characteristics. The classification process is presented next.

5.4.2. Classification of Input Images

The classification process in this study is done in a
supervised way, in the sense that the user specifies in advance
the number of classes into which the BoF will group the input
images. The main target of this step is to obtain what it is called
here as the classifier. It starts with presenting the set of 2000
visually classified images used for the training/learning phase
to the BoF. Recall that we already split up these images into
two equally sized classes—namely, EMIC and NOEMIC—and
provide them as inputs to the BoF in this way. Examples of
such images are presented in the upper part of Figure 6. The
feature extraction (SURF) algorithm, as briefly presented in

Figure 5. An example of feature selection by the SURF algorithm. (Left): three-dimensional representation of an example stacked up spectrogram image with the
vertical and horizontal axis providing an estimate of the image’s pixel size. The third, out-of-plane axis represents the pixel intensity. (Middle): two-dimensional
representation of the image on the left showing a typical EMIC wave signature. The center of the green circles represent the interest points’ locations in the image as
determined via the SURF algorithm (see the text for details). Tens of thousands of features are typically extracted, but only five of them are shown for clarity. (Right):
a blown up image feature. The feature is split up into 4×4 subregions, with each subregion having a four-dimensional vector descriptor containing the underlying
intensity structure of that subregion. Ultimately, each feature is unambiguously represented by a more general vector descriptor with 64 elements.
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the previous section, is applied to each and every image within
the training data set, so we end up with a total number of
extracted features, Nf (or vector descriptors), for each of the two
predefined classes. The larger number of extracted features is
always found in the EMIC class (that is, >N Nf f,EMIC ,NOEMIC),
since it contains images possessing higher pixel contrasts
relative to the background.

The numbers Nf ,EMIC and Nf ,NOEMIC are commonly on the
order of tens of thousands, so what BoF does is select a number
of features from each class to compose a single BoF containing
an user-defined number of features, Nf ,user, or words. The
Nf ,user features (i.e., words) are presumably the most relevant
ones that shall be subsequently used in the classification of both
the validation and unclassified data sets. The feature selection
process for composing the BoF is done via K-means clustering
(Duda & Hart 1973) wherein the user defines the number Nf ,user
of cluster centers whereby the vector descriptors of the training
data set are going to be grouped. Then, this “bag” with Nf ,user
features is the classifier. We tested several values of Nf ,user, as
shown in Table 2, and =N 500f ,user provided both a slightly

better mean accuracy when compared to other smaller values
and the best accuracy for the NOEMIC cases (it is also
important to exclude cases that we are not interested in from
our data set). Whenever a new image is presented to the BoF,
its features are extracted with SURF and then compared against
those in the “bag” and then a histogram of features’ occurrence
like those shown on the bottom panel in Figure 6 are obtained
(see Dietterich & Bakiri 1995, for details on how to compare
extracted features with those in the “bag”). Notice that images
classified as EMIC (NOEMIC) by the BoF technique have
histograms that resemble the one being shown on the left
(right).
After the classification process is done, one needs to verify

its accuracy by presenting to the BoF the validation data set
that has been already visually classified.

5.4.3. Validation Process

The validation data set contained 28,190 images from where
2490 are visually classified as EMIC and 25,700 are classified

Figure 6. An illustration of the classification process. During the training phase, a set of 1000 images for each of the two classes, i.e., EMIC and NOEMIC, have their
features extracted by the SURF detector. A K-means clustering procedure (see the text for details) is used to group the extracted features into an user-defined number
of features, or words, which will compose the BoF. In this illustration, the “bag” contains only 14 words (features), while for the configuration used in the present
study, 500 words are used. Next, a new (unclassified) image goes through the classifier where the image has its features extracted via SURF and they are subsequently
compared against those in the BoF. Histograms like the ones shown on the bottom are constructed by finding the features extracted from the new (unclassified) image
that is closest to those in the BoF (see Dietterich & Bakiri 1995, for details). Images classified as likely EMIC wave candidates typically show histograms like the one
on the left, whereas images classified in the NOEMIC group present typical histograms like the one on the right.

8

The Astrophysical Journal Supplement Series, 249:13 (13pp), 2020 July Medeiros et al.



as NOEMIC. After being presented to the BoF’s classifier, as
schematically shown in the upper block of Figure 4, a so-called
confusion matrix is generated comparing the number of times,
in percentage, that the BoF’s classifier correctly or incorrectly
predicted the class wherein the input image should be
categorized. The confusion matrix is presented in Table 3.
The percentages shown in Table 3 are obtained as follows. All
2490 EMIC cases are exposed to the trained neural network
and 78% of them (1931 images) are correctly classified into the
EMIC class. The remaining 22% (559 images) are then
computed as pertaining to the NOEMIC class, which in turn
contributes to increase the error in the classification of
NOEMIC-type images. Likewise, when the 25,700 NOEMIC
cases are exposed to the trained neural network, 94% (24,171)
of them are correctly classified into the NOEMIC class, and the
remaining 6%, which account to 1529 images, fall directly into
the EMIC class, which ends up overestimating the number of
EMIC-type images.

A possible explanation for such a discrepancy is the
following. The NOEMIC-type images contain mostly the
(blue) background PSD levels, thus the extracted features from
those images are not so different from one another. As a result,
the BoF’s classifier does not find major problems in correctly
matching the extracted features from these NOEMIC-type
images with those contained in the BoF. The same does not
happen for the EMIC-type images, which have a very large
number of distinct features, so the BoF’s classifier is more
prone to misclassifications in this case. Moreover, we have
found that the BoF’s classifier has some difficulty disentangling
small EMIC waves’ signatures from the background noise, as
illustrated in Figure 7 where panels (a) and (b) present
examples of images visually classified as belonging to the
EMIC class and the BoF’s classifier categorized them as
pertaining to the NOEMIC class. Notice that EMIC waves’
signatures are very faint in both panels (a) and (b), as indicated
by the red ellipses, so it might be quite hard for the algorithm to
automatically separate those from instrumental artifacts that are
superposed on the image as horizontal green stripes. Another
example of misclassification is shown in panels (c) and (d) in
Figure 7, where the images are visually classified as an
NOEMIC-type and the BoF’s classifier categorize them as
pertaining to the EMIC class. Both horizontal red stripes in
panel (c) and the vertical, very faint stripes amidst the

background in panel (d) most likely contributed for the
misclassification. Still, the 86% average accuracy of the BoF’s
classifier is quite acceptable.

6. Results

6.1. BoF’s Classification Performance Compared to Visual
Classification

Before presenting the BoF’s performance with the unclassi-
fied set of images, it is important to see how well the visually
and BoF classified images agree, or not, with each other. That
is, in order to be trusted, we expect the neural network-based
technique to perform nearly as good as the human eye during
the classification process or even to outperform the method of
visual classification. Figure 8 tries to address this point. It
shows the number of likely EMIC wave cases, per month, as a
function of time, as obtained by visual classification (blue line)
and via the BoF technique (red line). Only the validation data
set has been used in this case, and it spans the 2012 September
8 to 2014 August 25 period. One can see that nearly throughout
the analyzed period, the BoF technique performs quite well
when compared to the visual classification method. It closely
follows the blue curve, overestimating the monthly number of
likely EMIC cases usually by a factor of less than 4, which we
consider to be quite acceptable. There are two contributing
factors to the overestimation in the EMIC-like cases: one has
been already mentioned in Section 5.4.3, which has to do with
how the BoF technique handles the input images and the other
with the highly unbalanced number of EMIC- and NOEMIC-
type images. Such an unbalance was already expected to
happen, since EMIC waves are a very spatially localized and
sporadic phenomenon (Saikin et al. 2015; Wang et al. 2015),
which is why a way larger number of NOEMIC-type images
are present in our data set. Another important aspect of the BoF
technique that favors its usage is that it is quite accurate when
excluding the unwanted cases, which in, this context, are the
images contained in the NOEMIC class. This characteristic
helps us to significantly narrow down the number of analyzed
images in larger data sets, saving a great deal of time.
Therefore, we argue that the BoF technique is performing
nearly as good as the visual classification method, which gives
us confidence to apply it in other data sets.

6.2. Likely EMIC Wave Event Candidates According to the
BoF Technique

The set of 36,014 unclassified images spanned the time
interval from 2014 August 26 to 2016 December 31. From the

Table 2
BoF’s Performance Evaluation According to the Number of Words (See the

Text for Details)

Words or Nf,user Average Accuracy (%) NOEMIC (%) EMIC (%)

500 86 94 78
250 85 92 79
125 86 91 81
100 86 91 80
50 84 88 80
25 81 87 76
10 80 83 76

Note.Bold values have been selected to denote the word parameter
Nf,user=500 since it provides the best combined evaluation: for the
classification of the NOEMIC cases (94%), EMIC cases (78%), and an
average accuracy of 86%.

Table 3
Confusion Matrix of the Validation Data Set

Known Predicted

EMIC % NOEMIC %

EMIC 78 22
NOEMIC 6 94

Average accuracy is 86%

Note. Bold values stand for results that are correctly evaluated in 78% of the
EMIC cases and in 94% of the NOEMIC cases after exposing the validation
data set to BoF’s classifier.
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Figure 7. An example of wrong BoF classifications for both RBSP-A (panels (a) and (c)) and RBSP-B (panels (b) and (d)) data. Each green circle represent an
extracted feature of the image as obtained by the SURF detector. Panels (a) and (b) show examples of images that have been visually classified as likely EMIC cases,
therefore pertaining to the EMIC class, but the BoF classification defined them as belonging to the NOEMIC class. The opposite situation occurs in panels (c) and (d).

Figure 8. Comparison of BoF’s performance against that of the visual classification method. The validation data set is used and the period it refers to is shown on the
top of both panels. The monthly number of EMIC cases as given by the visual classification (blue line) and by the BoF classification (red line) methods is shown in the
vertical axis.
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beginning of this period up to about 2016 March 30, the Van
Allen Probes’ orbit apogee has covered all MLT sectors for the
second time since the start of the mission in 2012 September.
From early 2016 April to 2016 December 31, the satellites have
covered the 11:00→06:00→00:00→19:00 MLT sectors,
as will be discussed below. The BoF technique has been
applied to this whole data set and the results are summarized
both in Figures 9 and 10. The technique predicted that about
21% (7707) of the images should be categorized as EMIC
cases, whereas the remaining 79% (that is, 28,307 images)
should be classified as NOEMIC. Figure 9 also tells us that the
number of either EMIC or NOEMIC cases is almost balanced
between the two satellites, as also confirmed by Figure 10. The
exact amount of either EMIC or NOEMIC cases that are either
visually classified or classified by the BoF technique using
in situ data from each Van Allen Probes is shown in Table 1 for
the training, validation, and unclassified data sets. The number

of likely EMIC wave event candidates is nearly equal for
RBSP-A and RBSP-B.

6.3. Spatial Distribution of EMIC Wave Events as Obtained by
the BoF Technique

With exception of the training data set that contains 2000
images, we applied the BoF technique in the remaining data, i.e.,
64,204 stacked up spectrogram images, to estimate the number
of EMIC wave event cases during the entire span of our data set.
The images grouped in the EMIC class by the BoF technique are
split up according to the precessions of the Van Allen Probes’
orbits (Table 4), and their spatial distribution is shown in
Figure 11 as a function of MLT and the spacecraft’s geocentric
distance. Notice that the bin’s size in radial distance shrinks at
farther out distances since they follow the same binning
procedure in Figure 1. The four bins in radial distance are
3–4 RE, 4–5 RE, 5–5.5 RE, and 5.5–6 RE. In Figure 11, we do not

Figure 9. BoF’s classification of unclassified data set (36,014 images). About 21% of the input images are classified as EMIC and 79% are classified as NOEMIC.
RBSP-A and RBSP-B observed almost the same number of cases per class.

Figure 10. Monthly number of likely EMIC wave events as determined only by the BoF technique for the unclassified data set, which contains 36,014 stacked up
spectrogram images. Data from RBSP-A (blue line) and RBSP-B (red line) is shown.
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discriminate between likely EMIC events that are found either
during the inbound or outbound portions of the orbit. The left,
middle, and right columns of Figure 11 refer to the spatial
distribution of likely EMIC wave events during the first, second,
and half of the third precessions, respectively. The occurrence
rate of likely EMIC wave events is calculated as follows. At a
given MLT and radial distance bin, say 11:00–12:00 MLT and
3–4 RE, we count the number of images NI acquired at that bin
during the analyzed interval, e.g., if the period refers to the first

precession, then the analyzed interval would be between 2012
September 8 to 2014 June 29. Then, for that same bin, we
determine the number NE of images classified by the BoF
technique as likely EMIC wave events, thus the occurrence rate
at that bin is given as N NE I multiplied by 100 in order to
provide a percentage value.
The spatial (BoF-based) EMIC wave distribution in the first

precession, as presented in Figures 11(d) and (g), shows a slightly
intensified occurrence rate near the noon (12:00 MLT) and
midnight sectors, as has already been found in the literature (see,
e.g., Saikin et al. 2016). The second precession contained most of
the EMIC cases in our data set and both the dusk-side and part of
the night-side sectors show the higher occurrence rates, as one can
see in panels (e) and (h). Investigating whether the incidence of
geomagnetic storms during the second precession was higher or
not as compared to the previous precession could perhaps provide
an explanation for an increased occurrence rate in these MLT
sectors, since during geomagnetically perturbed periods night-side
particle injections that contribute with storm-time ring current
enhancements are expected to be higher, thus increasing the rate
of EMIC wave generation in the midnight-dusk sector (see, e.g.,
Thorne 2010; Tetrick et al. 2017). This investigation, however,
lies outside of the scope of the present work. During the period
encompassing half of the third precession, almost all EMIC cases
are concentrated between the midnight and dawn-side sectors, i.e.,
between 00:00 MLT and 06:00 MLT, as shown in panels (f)
and (i). The relatively higher occurrence rate compared to the

Table 4
The Number of Images, per Van Allen Probe (Either A or B), Classified as

EMIC or NOEMIC via the BoF Technique

EMIC NOEMIC

Data Set A B A B Total

First precession 1390 1057 11,461 11,695 25,603
Second precession 2588 2516 11,068 11,027 27,199
Half of the third precession 1358 1288 4516 4240 11,402
Total 5336 4861 27,045 26,962 64,204

Note.The data set used for the BoF classification is comprised of both
validation and unclassified data sets, and they are divided into three precessions
of the Van Allen Probes’ orbits. The first precession interval goes from 2012
September 8 to 2014 June 19, whereas the second and half of the third
precessions go from 2014 June 20 to 2016 March 29 and from 2016 March 30
to 2016 December 31, respectively.

Figure 11. Distribution of images per classes according to the BoF classification process for (a) the first, (b) the second, and (c) the beginning of the third precession.
In all intervals, the NOEMIC class contained most of the cases; see Table 4. Panels (d), (e), (f), (g), (h), and (i) contain the distribution of EMIC class cases for MLT
for RBSP-A and RBSP-B, respectively.
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preceding precessions is due mostly to the fact that a smaller
number (roughly a factor of 2) of images have been analyzed in
half of the third precession. An analysis of the interplanetary
medium data should provide insights on the likely causes for the
intensified EMIC wave occurrence rate on the dawn-side–
midnight sector, as predicted by the BoF technique. We leave
this step to a future study though.

The authors thank the EMFISIS’ instrument team for
providing scientific data which is publicly available at the
websitehttps://emfisis.physics.uiowa.edu/data/index. V.M.S.
acknowledges the financial support from the Brazilian National
Council for Research and Development (CNPq) PCI grants
301228/2019-1 and 300053/2020-7.

ORCID iDs

Claudia Medeiros https://orcid.org/0000-0002-6914-5799
V. M. Souza https://orcid.org/0000-0001-7294-7963
L. A. Da Silva https://orcid.org/0000-0002-8822-5030
P. R. Jauer https://orcid.org/0000-0002-8064-5030

References

Alves, L. R., Da Silva, L. A., Souza, V. M., et al. 2016, GeoRL, 43, 978
Bay, H., Ess, A., Tuytelaars, T., & Gool, L. V. 2008, Computer Vision and

Image Understanding, 110, 346
Camporeale, E., Wing, S., & Johnson, J. R. 2018, Machine Learning

Techniques for Space Weather (Amsterdam: Elsevier)
Clausen, L. B. N., Baker, J. B. H., Ruohoniemi, J. M., & Singer, H. J. 2011,

JGRA, 116, A10205
Clilverd, M. A., Rodger, C. J., McCarthy, M., et al. 2017, JGRA, 122, 534
Cornwall, J. M. 1965, JGR, 70, 61
Dietterich, T. G., & Bakiri, G. 1995, J. Artificial Intelligence Research, 2, 263
Duda, R. O., & Hart, P. E. 1973, Pattern Classification and Scene Analysis

(New York: Willey)

Halford, A. J., Fraser, B. J., Morley, S. K., Elkington, S. R., & Chan, A. A.
2016, JGRA, 121, 6277

Haykin, S. 2008, Neural Networks and Learning Machines (3rd ed.; New
Jersey: Pearson Education)

Horne, R. B., Lam, M. M., & Green, J. C. 2009, GeoRL, 36, L19104
Jaynes, A. N., & Usanova, M. E. 2020, The Dynamic Loss of Earthʼs Radiation

Belts (Amsterdam: Elsevier)
Kennel, C. F., & Petschek, H. E. 1966, JGR, 71, 1
Kletzing, C. A., Kurth, W. S., Acuna, M., et al. 2013, SSRv, 179, 127
Li, X., Baker, D. N., Temerin, M., et al. 2005, SpWea, 3, 04001
Li, Z., Millan, R. M., Hudson, M. K., et al. 2014, GeoRL, 41, 8722
Mauk, B. H., Fox, N. J., Kanekal, S. G., et al. 2012, SSRv, 179, 3
Medeiros, C., Souza, V. M., Vieira, L. E. A., et al. 2019, ApJ, 872, 36
O’Hara, S., & Draper, B. A. 2011, arXiv:1101.3354
Ozeke, L. G., Mann, I. R., Murphy, K. R., Sibeck, D. G., & Baker, D. N. 2017,

GeoRL, 44, 2624
Reeves, G. D., McAdams, K. L., Friedel, R. H. W., & O’Brien, T. P. 2003,

GeoRL, 30, 1529
Reeves, G. D., Morley, S. K., Friedel, R. H. W., et al. 2011, JGRA, 116, 2213
Remya, B., Tsurutani, B. T., Reddy, R. V., Lakhina, G. S., & Hajra, R. 2015,

JGRA, 120, 7536
Roederer, J. G., & Zhang, H. 2016, Dynamics of Magnetically Trapped

Particles (Berlin: Springer)
Saikin, A. A., Zhang, J.-C., Allen, R. C., et al. 2015, JGRA, 120, 7477
Saikin, A. A., Zhang, J.-C., Smith, C. W., et al. 2016, JGRA, 121, 4362
Shprits, Y. Y., Chen, L., & Thorne, R. M. 2009, JGRA, 114, A03219
Souza, V. M., Lopez, R. E., Jauer, P. R., et al. 2017, JGRA, 122, 10084
Summers, D., & Thorne, R. M. 2003, JGRA, 108, 1143
Tetrick, S. S., Engebretson, M. J., Posch, J. L., et al. 2017, JGRA, 122, 4064
Thorne, R. M. 2010, GeoRL, 37, L22107
Thorne, R. M., & Horne, R. B. 1992, GeoRL, 19, 417
Thorne, R. M., Horne, R. B., Jordanova, V. K., Bortnik, J., & Glauert, S. 2013,

GMS, 169, 213
Usanova, M. E., Drozdov, A., Orlova, K., et al. 2014, GeoRL, 41, 1375
Vapnik, V. N. 1999, ITNN, 10, 988
Wang, D., Yuan, Z., Yu, X., et al. 2015, JGRA, 120, 4400
Wing, S., Johnson, J. R., Camporeale, E., & Reeves, G. D. 2016, JGRA,

121, 9378
Zhang, J., Halford, A. J., Saikin, A. A., et al. 2016a, JGRA, 121, 11086
Zhang, J.-C., Kistler, L. M., Mouikis, C. G., et al. 2010, JGRA, 115, 6212
Zhang, X.-J., Li, W., Ma, Q., et al. 2016b, JGRA, 121, 6620

13

The Astrophysical Journal Supplement Series, 249:13 (13pp), 2020 July Medeiros et al.

https://emfisis.physics.uiowa.edu/data/index
https://orcid.org/0000-0002-6914-5799
https://orcid.org/0000-0002-6914-5799
https://orcid.org/0000-0002-6914-5799
https://orcid.org/0000-0002-6914-5799
https://orcid.org/0000-0002-6914-5799
https://orcid.org/0000-0002-6914-5799
https://orcid.org/0000-0002-6914-5799
https://orcid.org/0000-0002-6914-5799
https://orcid.org/0000-0001-7294-7963
https://orcid.org/0000-0001-7294-7963
https://orcid.org/0000-0001-7294-7963
https://orcid.org/0000-0001-7294-7963
https://orcid.org/0000-0001-7294-7963
https://orcid.org/0000-0001-7294-7963
https://orcid.org/0000-0001-7294-7963
https://orcid.org/0000-0001-7294-7963
https://orcid.org/0000-0002-8822-5030
https://orcid.org/0000-0002-8822-5030
https://orcid.org/0000-0002-8822-5030
https://orcid.org/0000-0002-8822-5030
https://orcid.org/0000-0002-8822-5030
https://orcid.org/0000-0002-8822-5030
https://orcid.org/0000-0002-8822-5030
https://orcid.org/0000-0002-8822-5030
https://orcid.org/0000-0002-8064-5030
https://orcid.org/0000-0002-8064-5030
https://orcid.org/0000-0002-8064-5030
https://orcid.org/0000-0002-8064-5030
https://orcid.org/0000-0002-8064-5030
https://orcid.org/0000-0002-8064-5030
https://orcid.org/0000-0002-8064-5030
https://orcid.org/0000-0002-8064-5030
https://doi.org/10.1002/2015GL067066
https://ui.adsabs.harvard.edu/abs/2016GeoRL..43..978A/abstract
https://doi.org/10.1016/j.cviu.2007.09.014
https://doi.org/10.1016/j.cviu.2007.09.014
https://doi.org/10.1029/2010JD015391
https://ui.adsabs.harvard.edu/abs/2011JGRA..11610205C/abstract
https://doi.org/10.1002/2016JA022812
https://ui.adsabs.harvard.edu/abs/2017JGRA..122..534C/abstract
https://doi.org/10.1029/JZ070i001p00061
https://ui.adsabs.harvard.edu/abs/1965JGR....70...61C/abstract
https://doi.org/10.1613/jair.105
https://doi.org/10.1002/2016JA022694
https://ui.adsabs.harvard.edu/abs/2016JGRA..121.6277H/abstract
https://doi.org/10.1029/2009GL040236
https://ui.adsabs.harvard.edu/abs/2009GeoRL..3619104H/abstract
https://doi.org/10.1029/JZ071i001p00001
https://ui.adsabs.harvard.edu/abs/1966JGR....71....1K/abstract
https://doi.org/10.1007/s11214-013-9993-6
https://ui.adsabs.harvard.edu/abs/2013SSRv..179..127K/abstract
https://doi.org/10.1029/2004SW000105
https://ui.adsabs.harvard.edu/abs/2005SpWea...3.4001L/abstract
https://doi.org/10.1002/2014GL062273
https://ui.adsabs.harvard.edu/abs/2014GeoRL..41.8722L/abstract
https://doi.org/10.1007/s11214-012-9908-y
https://ui.adsabs.harvard.edu/abs/2013SSRv..179....3M/abstract
https://doi.org/10.3847/1538-4357/aaf970
https://ui.adsabs.harvard.edu/abs/2019ApJ...872...36M/abstract
https://arxiv.org/abs/1101.3354
https://doi.org/10.1002/2017GL072811
https://ui.adsabs.harvard.edu/abs/2017GeoRL..44.2624O/abstract
https://doi.org/10.1029/2002GL016513
https://ui.adsabs.harvard.edu/abs/2003GeoRL..30.1529R/abstract
https://doi.org/10.1029/2010JA015735
https://ui.adsabs.harvard.edu/abs/2011JGRA..116.2213R/abstract
https://doi.org/10.1002/2015JA021327
https://ui.adsabs.harvard.edu/abs/2015JGRA..120.7536R/abstract
https://doi.org/10.1002/2015JA021358
https://ui.adsabs.harvard.edu/abs/2015JGRA..120.7477S/abstract
https://doi.org/10.1002/2016JA022523
https://ui.adsabs.harvard.edu/abs/2016JGRA..121.4362S/abstract
https://doi.org/10.1029/2008JA013695
https://ui.adsabs.harvard.edu/abs/2009JGRA..114.3219S/abstract
https://doi.org/10.1002/2017JA024187
https://ui.adsabs.harvard.edu/abs/2017JGRA..12210084S/abstract
https://doi.org/10.1029/2002JA009489
https://ui.adsabs.harvard.edu/abs/2003JGRA..108.1143S/abstract
https://doi.org/10.1002/2016JA023392
https://ui.adsabs.harvard.edu/abs/2017JGRA..122.4064T/abstract
https://doi.org/10.1029/2010GL044990
https://ui.adsabs.harvard.edu/abs/2010GeoRL..3722107T/abstract
https://doi.org/10.1029/92GL00089
https://ui.adsabs.harvard.edu/abs/1992GeoRL..19..417T/abstract
https://doi.org/10.1029/169GM14
https://ui.adsabs.harvard.edu/abs/2006GMS...169..213T/abstract
https://doi.org/10.1002/2013GL059024
https://ui.adsabs.harvard.edu/abs/2014GeoRL..41.1375U/abstract
https://doi.org/10.1109/72.788640
https://doi.org/10.1002/2015JA021089
https://ui.adsabs.harvard.edu/abs/2015JGRA..120.4400W/abstract
https://doi.org/10.1002/2016JA022711
https://ui.adsabs.harvard.edu/abs/2016JGRA..121.9378W/abstract
https://ui.adsabs.harvard.edu/abs/2016JGRA..121.9378W/abstract
https://doi.org/10.1002/2016JA022918
https://ui.adsabs.harvard.edu/abs/2016JGRA..12111086Z/abstract
https://doi.org/10.1029/2009JA014784
https://ui.adsabs.harvard.edu/abs/2010JGRA..115.6212Z/abstract
https://doi.org/10.1002/2016JA022521
https://ui.adsabs.harvard.edu/abs/2016JGRA..121.6620Z/abstract

	1. Introduction
	2. Data Set Description
	3. EMIC Waves
	4. Neural Network-based Technique: The BoF Approach
	5. Methodology
	5.1. PSD Evaluation and Preparation of Input Data
	5.2. Separating Input Data into Classes
	5.3. BoF’s Training and Validation Data Sets
	5.4. Applying BoF for Identification and Classification
	5.4.1. Feature Extraction
	5.4.2. Classification of Input Images
	5.4.3. Validation Process


	6. Results
	6.1. BoF’s Classification Performance Compared to Visual Classification
	6.2. Likely EMIC Wave Event Candidates According to the BoF Technique
	6.3. Spatial Distribution of EMIC Wave Events as Obtained by the BoF Technique

	References



