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ABSTRACT

Two distinct sets of Cretaceous dolerite dikes intrude the Chhotanagpur gneissic complex of eastern India, mostly within the Damodar 
Valley Gondwanan sedimentary basins. One dike set trends NNE to ENE, whereas the other set, which includes the prominent Salma dike, 
trends NW to NNW. One dike from each set in the Raniganj Basin was dated using the 40Ar/39Ar method in order to resolve a controversy 
concerning the emplacement age of the Salma dike. The NE-trending dike yielded a plateau age of 70.5 ± 0.9 Ma, whereas the NNW-
trending Salma dike is much older, with a plateau age of 116.0 ± 1.4 Ma. These results demonstrate that the Salma dike was emplaced at 
ca. 116 Ma and not at ca. 65 Ma, as suggested in an earlier study. Geochemical characteristics of the two dikes are also distinct and indi-
cate that they belong to previously identified high-Ti and low-Ti dolerite groups, respectively. The observed geochemical characteristics 
of both dike sets are comparable with the geochemistry of basalts of the Kerguelen Plateau, Bunbury Island, and Rajmahal Group I and 
suggest a connection to mantle plumes. The new age data presented herein indicate that these two magmatic episodes in the eastern 
Indian Shield were related to the ca. 120–100 Ma Kerguelen mantle plume and its associated Greater Kerguelen large igneous province 
and the ca. 70–65 Ma Réunion plume and its associated Deccan large igneous province, respectively.

INTRODUCTION

Due to their vertical depth and lateral 
extent, mafic dike swarms often survive when 
the volcanic component of short-lived, mantle-
generated magmatic events or large igneous 
provinces is lost to erosion. Therefore, the study 
of dikes is of great importance in determining 
the original extent of large igneous provinces 
and in linking these events to mantle plumes 
(Ernst and Buchan, 2001a, 2001b; Bleeker 
and Ernst, 2006; Ernst et al., 2010; Srivas-
tava et al., 2010, 2019a; Ernst, 2014). Precise 

age determinations are essential for identify-
ing components of a large igneous province, 
determining its source plume, and comparing 
ages of magmatic events on different cratonic 
blocks (i.e., magmatic barcoding) to test con-
tinental reconstructions (e.g., Bleeker, 2003, 
2004; Bleeker and Ernst, 2006; Srivastava et 
al., 2010, 2019a; Ernst, 2014).

The Indian Shield has experienced a number 
of intraplate mafic magmatic events with ages 
ranging from Archean to Cretaceous (Kent et al., 
1997, 1998, 2002; Srivastava and Sinha, 2004a, 
2004b; Paul, 2005; Srivastava et al., 2008a, 
2008b, 2014; Srivastava and Ahmad, 2008, 
2009; Srivastava, 2011; Samal et al., 2019; and 
references therein). Although four plume heads 
(Crozet, Kerguelen, Marion, and Réunion) are 

thought to have passed under the Indian Shield 
during the Cretaceous, the major episodes of 
mafic magmatism observed during this period in 
the Indian Shield are associated with either the 
70–65 Ma Réunion (cf. Courtillot et al., 1988; 
Chenet et al., 2007; Hooper et al., 2010; Cha-
lapathi Rao and Lehmann, 2011) or 120–100 
Ma Kerguelen (cf. Storey et al., 1992; Baksi, 
1995; Kent et al., 1997, 2002; Coffin et al., 
2002; Ghatak and Basu, 2011; Srivastava et al., 
2014; Olierook et al., 2017) plumes. Very little 
or no magmatism is known for the Crozet and 
Marion plumes (Curray and Munasinghe, 1991; 
Roy, 2004). The Réunion plume was active in 
the western parts of the Indian Shield and pro-
duced the Deccan large igneous province (cf. 
Chenet et al., 2007; Hooper et al., 2010; Ernst, 
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2014; Mukherjee et al., 2017; and references 
therein). The Kerguelen plume was most active 
in the eastern Indian Shield, particularly in the 
Chhotanagpur gneissic complex (CGC) and the 
Shillong Plateau (e.g., Rajmahal-Sylhet tholei-
itic basalts and mafic dikes; Storey et al., 1992; 
Baksi, 1995; Kent et al., 1997, 2002; Coffin et 
al., 2002; Srivastava and Sinha, 2004a, 2004b; 
Ghatak and Basu, 2011; Srivastava et al., 2014; 
and references therein), where most Cretaceous 
magmatism is considered to have been part of 
the Greater Kerguelen large igneous province 
(cf. Olierook et al., 2017). Both the Deccan 
and Greater Kerguelen large igneous provinces 
include alkaline (both sodic and potassic)–ultra-
mafic–carbonatite complexes and mafic dikes 
(cf. Srivastava, 1994, 1997, 2019; Simonetti et 
al., 1998; Karkare and Srivastava, 1990; Kent et 
al., 2002; Srivastava and Sinha, 2004a, 2004b, 
2007; Srivastava et al., 2005, 2008a, 2008b, 
2009, 2014, 2019b; Chalapathi Rao and Lehm-
ann, 2011; Ghatak and Basu, 2013; Chalapathi 
Rao et al., 2011, 2014; Ernst, 2014).

More importantly in the context of the 
present study, Srivastava et al. (2014) pointed 
out that the CGC is the only terrane in the 
Indian Shield that appears to have experienced 
magmatic activity associated with both the Ker-
guelen and Réunion plumes. Although most 
of the Cretaceous magmatism in the region is 
related to the Kerguelen plume (Kent et al., 
2002; Srivastava et al., 2009, 2014; Ghatak and 
Basu, 2011, 2013; Chalapathi Rao et al., 2014; 
Srivastava, 2020; and references therein), Kent 
et al. (2002) reported an age of 65.4 ± 0.3 Ma 
for the prominent NNW-trending Salma dol-
erite dike, suggesting that it may be related 
to the Réunion plume. However, on the basis 
of paleomagnetic data, Patil and Arora (2008) 
questioned the reported ca. 65 Ma age of the 
Salma dike and suggested that it was emplaced 
at ca. 117 Ma, consistent with other mag-
matic activity of the region. Geochemistry of 
the Salma dike is also not consistent with a 
ca. 65 Ma emplacement age (Srivastava et al., 
2014). Srivastava et al. (2014) suggested that 
further geochronological study of the Salma 
dike is needed to resolve the uncertainty in its 
emplacement age. In this study, we report the 
results of a geochronological and geochemical 
study of the Salma dike, as well as a similar 
study of a NE-trending dike from the same 
region. In addition, we examined the possi-
ble link between the two dike sets and mantle 
plumes and associated large igneous provinces.

GEOLOGICAL BACKGROUND

The eastern and northeastern parts of the 
Indian Shield consist of the Singhbhum craton 

and the Shilling Plateau–Mikir Hills (Fig. 1). 
The northern portion of the Singhbhum craton 
is represented by the CGC, which is separated 
from the Singhbhum granite complex by the 
Singhbhum mobile belt (Fig. 1; cf. Naqvi and 
Rogers, 1987; Sharma, 2009; Srivastava et 
al., 2009, 2012, 2014). This part of the Indian 
Shield also includes two alkaline provinces, the 
Damodar Valley and the Shillong Plateau (Fig. 
1; Srivastava, 2020).

The geology of the CGC has been described 
and discussed in detail in several publica-
tions (Naqvi and Rogers, 1987; Mahadevan, 
2002; Sharma, 2009; Ramakrishnan and 
Vaidyanadhan, 2010; Rekha et al., 2011; and 
references therein). Therefore, only a brief 
summary is provided here. The CGC is consid-
ered to be a cratonized mobile belt of Archean 
age (cf. Naqvi and Rogers, 1987; Kumar and 
Ahmad, 2007; Sharma, 2009; Srivastava et al., 
2009, 2012). The cratonic nature of the CGC is 
supported by a number of ENE- to E-trending 
intracontinental rift/shear zones responsible for 
distinct magmatism in the region (Ghose and 
Chatterjee, 2008). In general, the CGC is domi-
nated by foliated granitoids (dominantly granite 
to granodiorite, occasionally tonalite) that are 
intrusive into amphibolites and granulite-facies 
gneisses and schists and occur as mesoscopic 
to regional-scale enclaves. The craton includes 
gabbros, massif anorthosites, peraluminous 
granite plutons, rapakivi granites, leptynites, 
komatiitic and tholeiitic sills/dikes, and flood 
basalts that range in age between late Paleo-
proterozoic and Early Tertiary (cf. Chatterjee 
et al., 2008; Ghose and Chatterjee, 2008; Chat-
terjee and Ghose, 2011). Cretaceous magmatic 
events are also recorded (cf. Baksi, 1995; Kent 
et al., 1997, 2002; Chalapathi Rao et al., 2014; 
Srivastava et al., 2014). Sedimentary rocks 
of the Gondwana Supergroup were deposited 
during the Carboniferous (ca. 295–250 Ma; 
Mahadevan, 2002) and occur mainly in trough-
like depressions arranged in a more or less 
en echelon fashion along distinct shear/fault 
zones. These include the NW-trending Maha-
nadi basin, and the E-trending Damodar Valley 
basins and subsidiary basins to the north and 
northeast of Damodar Valley (Mahadevan, 2002; 
Chakraborty et al., 2003).

Various magmatic rocks are associated with 
E-trending Proterozoic rifting in the CGC. The 
major lineaments linked with this extensional 
tectonism include the E- to ESE-trending South 
Purulia shear zone, roughly E-trending North 
Purulia shear zone, Gondwana basins along the 
Damodar graben (intruded by Lower Cretaceous 
dolerite and lamproite/orangeite dike swarms; 
represented by the Damodar Valley basins A to 
D and alkaline province in Fig. 1A), and the 

Narmada-Son Rift (Kent et al., 1997, 2002; 
Mahadevan, 2002; Ghose and Chatterjee, 2008; 
Ghatak and Basu, 2011; Srivastava et al., 2014; 
Chalapathi Rao et al., 2014). Rajmahal tholei-
itic basalts (cf. Kent et al., 1997, 2002; Ghatak 
and Basu, 2011) and a number of mafic dikes 
(cf. Baksi, 1995; Kent et al., 2002; Srivastava 
et al., 2014) are considered to be related to the 
ca. 120–100 Ma Kerguelen plume.

Mafic dikes of different ages (Mesoprotero-
zoic to Cretaceous) are well exposed in the CGC 
and the Damodar Valley sedimentary basins of 
eastern India (cf. Kent et al., 2002; Srivastava et 
al., 2012, 2014; see Fig. 1B). Several ENE- to 
E- and NNW- to NW-trending Mesoproterozoic 
mafic dikes intrude the basement gneisses of the 
CGC (Kumar and Ahmad, 2007; Srivastava et 
al., 2012). Cretaceous mafic dikes intrude the 
Damodar Valley sedimentary basins, as well as 
Precambrian basement rocks, and trend either 
NNW to NW or NNE to ENE (Kent et al., 2002; 
Paul, 2005; Srivastava et al., 2014). The two 
Cretaceous dike sets have distinct geochemical 
characteristics (Srivastava et al., 2014). Both 
sets of dikes are fresh and rarely show any 
hydrothermal alteration.

In this study, we focused on the dikes of 
the Raniganj Basin (Fig. 2). Kent et al. (2002) 
obtained 40Ar/39Ar ages for three Cretaceous 
dikes. Two of these dikes were from the Rani-
ganj Basin and have NNW trends. One of these 
was interpreted to be the Salma dike, and the 
other was interpreted to be a separate dike par-
allel to the Salma dike. The third dike, also 
trending NNW, was from the Koderma area 
(see Fig. 1B). The two dikes studied by Kent 
et al. (2002) from the Raniganj Basin yielded 
quite different ages, with the one interpreted to 
be the Salma dike dated at 65.4 ± 0.3 Ma and 
the other dated at 112.5 ± 0.5 Ma. The third 
dike, from the Koderma area, yielded an age of 
115.3 ± 0.4 Ma. There are several other NNW- to 
NW-trending mafic dikes exposed in the Rani-
ganj Basin that could be related to the Salma 
dike (Srivastava et al., 2014). A couple of NE-
trending dikes have also been reported from the 
Raniganj Basin (see Fig. 2).

SAMPLING AND ANALYTICAL 
TECHNIQUES

Sampled Dikes

Since this work aimed to settle the disagree-
ment concerning the emplacement age of the 
Salma dike, a very careful sampling of dikes in 
the Raniganj Basin was carried out. The NNW-
trending Salma dike is >50 km long, and its 
width varies between 40 and 100 m (Fig. 3A). 
It is one of the prominent geological features 
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in the basin. Figure 3 shows locations where 
geochronological and geochemical samples 
were collected for the present study, as well as 
locations for the geochronological samples of 
the earlier study by Kent et al. (2002). The four 
samples in the present study were used for geo-
chemistry, and two of these were also selected 
for 40Ar/39Ar dating. One dated sample (RG09/
SM14) came from the Chinchuria area and defi-
nitely belongs to the Salma dike (Fig. 3C). The 
other (RJ13/3) is from a NE-tending dolerite 
dike ~600 m north of the Domohani Railway 
Colony, and very close to the location of the 
dated sample that Kent et al. (2002) interpreted 
to be from the Salma dike. Our NE-trending 
dike likely intersects the Salma dike (Fig. 3B), 
although the actual intersection is not exposed 
in the field. The mafic dike samples are coarse 
grained, show ophitic/subophitic textures, and 
consist mainly of augite/titan augite, plagio-
clase, and ilmenite, with a few grains of rutile 
and apatite.

40Ar/39Ar Dating

In the present study, as noted above, two dol-
erite samples were collected from the mafic dikes 
of the Raniganj Basin for 40Ar/39Ar geochronolog-
ical analysis. Sample RG09/SM14 came from the 
NNW-trending Salma dike, and sample RJ13/3 
came from a NE-trending dike (see locations in 

Fig. 3). In order to constrain the emplacement 
ages and avoiding excess argon, the whole-rock 
fragments from the 60–80 mesh (200–280 μm 
in diameter) were checked carefully under a bin-
ocular microscope to remove impurities, enclaves, 
and phenocrysts (see Appendix for details). The 
final groundmass separates were dated at the 
Institute of Geology and Geophysics, Chinese 
Academy of Sciences (IGGCAS), Beijing.

Aliquots from both the samples, each con-
taining 10 grains, were wrapped in aluminum 
foil to form wafers and stacked in quartz vials 
with the international standard YBCs (29.286 ± 
0.045 Ma; Wang et al., 2014). Neutron irradia-
tion was carried out in position H8 of the 49–2 
Nuclear Reactor (49–2 NR), Beijing (China), 
with a flux of ~6.5 × 1012 n (cm2 s)–1 for 24 h. 
The CO2 laser fusion step-heating technique was 
used for 40Ar/39Ar analyses.

Isotopic measurements were made on the 
Noblesse mass spectrometer at IGGCAS. Ca 
and K correction factors were: [36Ar/37Ar]Ca = 
0.000261 ± 0.0000142, [39Ar/37Ar]Ca = 0.000724 
± 0.0000281, [40Ar/39Ar]K = 0.00088 ± 0.000023. 
All argon isotopes were measured using electron 
multipliers in ion-counting mode. Ages were 
calculated using the decay constant (5.531 × 
10-10 yr–1) reported by Renne et al. (2011), and 
all errors are quoted at the 2σ level. Different 
decay constants (Steiger and Jäger, 1977; Min 
et al., 2000) were used to recalculate the data for 

sample RG09/SM14 in order to make a direct 
comparison with the previous results of Kent et 
al. (2002), and to check for any bias in the ages 
associated with the different decay constants 
(Table A1). The recalculation shows that the bias 
in ages arising from different decay constants is 
minor (<0.25 Ma; in other words, <0.36% for 
both the samples) and undetectable within errors 
(see Table A1; Appendix).

Plateau ages were determined from three or 
more contiguous steps comprising >50% of the 
39Ar released, revealing concordant ages at the 
95% confidence level. The age errors reported 
here are internal errors, including analytical 
errors and errors on blanks, Ca and K correction 
factors, mass-discrimination, and J value; the 
error on the total decay constant was not propa-
gated into the age error. Uncertainties on all data 
reported herein are at the 95% confidence level 
(2σ). The data were processed using ArArCALC 
(Koppers, 2002). The detailed protocol of the 
40Ar/39Ar analysis technique is described in 
the Appendix.

Whole-Rock Geochemistry

Although geochemical data from the Cre-
taceous mafic dikes of the Damodar Valley 
(including the Salma dike) were presented in 
Srivastava et al. (2014), four new fresh mafic 
dike samples were analyzed for whole-rock 
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parallel to the Salma dike, rather than the Salma dike itself, as reinterpreted herein.
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geochemistry herein, including the two sam-
ples that were later used for 40Ar/Ar39 analyses 
(for sample locations, see Fig. 3). Geochemical 
data for the four freshly analyzed samples and 
a sample analyzed earlier by Srivastava et al. 
(2014) are presented in Table 1. All analyses 
were carried out at the Activation Laboratories, 
Ltd., Ancaster, Ontario, Canada. An inductively 
coupled plasma–optical emission spectrometer 
(ICP‐OES; model: Thermo‐JarretAsh ENVIRO 
II) was used to analyze major elements, whereas 
an inductively coupled plasma–mass spectrome-
ter (ICP‐MS; model: Perkin Elmer Sciex ELAN 
6000) was used to determine trace and rare earth 
element (REE) concentrations. The precision 
was ~5% and 5%–10% for the major oxides and 
trace elements, respectively, when reported for 
concentrations at 100× detection limit. Several 
geostandards were run with the studied samples 
to check accuracy and precision. The analytical 

procedure was described by Gale et al. (1997), 
and details are available on the Activation Labo-
ratories Ltd. website (http://www.actlabs.com).

DISCUSSION

Geochemical Characteristics

The geochemical characteristics of the Cre-
taceous mafic dikes exposed in Damodar Valley 
were comprehensively studied by Srivastava et 
al. (2014). They determined that the dikes trend-
ing NNE to ENE have geochemical signatures 
that are distinct from the dikes trending NW 
to NNW. The NE-trending dikes have higher 
concentrations of Ti, Fe, and high field strength 
elements (HFSEs) and are referred to as high-
Ti dolerite dikes. The NW-trending dikes have 
comparatively lower concentrations of Ti, Fe, 
and HFSEs and are referred to as low-Ti dolerite 

dikes. It is significant that both have comparable 
MgO contents, despite different HFSEs values, 
suggesting their derivation from manifestly dif-
ferent mantle melts.

Geochemical data obtained for samples in 
the present study (Table 1) are comparable with 
the high-Ti dolerite and low-Ti dolerite group-
ings identified in the earlier geochemical study 
(Srivastava et al., 2014). Samples from the NE-
trending mafic dike studied herein showed high 
concentrations of Ti, Fe, and HFSEs compared 
to the NNW-trending Salma dike samples. The 
NE dike samples fall in the basalt field on a 
total alkali-silica (TAS) classification diagram, 
whereas the NNW Salma dike samples fall in 
the basaltic andesite field (Fig. 4A; Irvine and 
Baragar, 1971; Le Maitre et al., 2002).

Geochemical distinctions between the NW- 
and NE-trending sets of dikes in the present 
study are also very evident in variation diagrams 
and comparable with the previously studied Cre-
taceous mafic dikes of this region. Two such 
variation plots are shown in Figures 4B and 4C. 
The multi-element (ME) and REE patterns of 
the high-Ti dolerite and low-Ti dolerite samples 
are also distinct (Fig. 5). The REE pattern of 
the NE-trending dike is comparatively more 
inclined (LaN/LuN ratios ~3.4) than the REE 
patterns of the NNW-trending Salma dike (LaN/
LuN ratios ~2.4). This suggests that the high-Ti 
dolerite samples crystallized from a melt gen-
erated through a lower percentage melting of 
a mantle source than the low-Ti dolerite sam-
ples (cf. Cullers and Graf, 1984; Hirschmann 
et al., 1998).

The Zr/Y and Nb/Y ratios were examined 
to identify any involvement of a plume com-
ponent in their genesis (Fig. 6A; Fitton et al., 
1997; Baksi, 2000); the samples of both groups 
showed a possible plume connection and less 
likelihood of any crustal involvement. Corre-
spondingly, the Th/Ta versus La/Ta ratio plot 
(Fig. 6B; cf. Kent et al., 1997; Srivastava et 
al., 2014) also indicates less possibility of any 
crustal contamination, as samples of both dike 
sets plot well away from the average continental 
crust and close to the primordial mantle value. 
Their geochemistry is also comparable with 
the geochemistry of basalts of the Kerguelen 
Plateau, Bunbury Island, and Rajmahal Group 
I (Fig. 6B; cf. Storey et al., 1992; Salters et al., 
1992; Mahoney et al., 1995; Frey et al., 1996). 
Therefore, it appears that crustal contamination 
has not played a significant role in the petrogen-
esis of the samples studied herein.

The observed geochemical characteristics of 
the dike samples studied herein are consistent 
with those of the earlier study (cf. Srivastava et 
al., 2014); however, they appear to be inconsis-
tent with the emplacement age reported by Kent 

TABLE 1. WHOLE-ROCK MAJOR OXIDES (WT%) AND TRACE AND RARE EARTH ELEMENT COMPOSITIONS 
(IN PPM) OF THE NNW-TRENDING SALMA DIKE AND A NE-TRENDING MAFIC DIKE (INTERPRETED TO 

CROSSCUT THE SALMA DIKE) FROM THE RANIGANJ BASIN, DAMODAR VALLEY, EASTERN INDIA

Sample no.:
NNW Salma dike NE mafic dike

SM13/1A SM13/2A RG09/SM14 RJ13/1 RJ13/3

SiO2 52.33 52.51 52.70 49.69 49.62
TiO2 1.37 1.42 1.66 3.20 3.26
Al2O3 15.26 15.05 14.60 12.70 12.31
Fe2O3 10.11 10.43 11.60 16.80 16.58
MnO 0.14 0.16 0.16 0.23 0.24
MgO 6.44 6.13 6.06 4.67 4.60
CaO 10.18 10.20 9.51 9.55 9.51
Na2O 2.54 2.64 2.68 2.40 2.39
K2O 0.51 0.53 0.59 0.63 0.65
P2O5 0.16 0.17 0.20 0.33 0.35
LOI 1.30 1.68 1.01 0.57 0.46

Total 100.34 100.92 100.77 100.77 99.97

Rb 9 10 10 18 18
Ba 152 228 376 171 189
Sr 296 277 279 229 227
Nb 5 5 7 15 16
Ta 0.3 0.3 0.4 1.0 1.1
Zr 85 86 95 200 206
Hf 2.2 2.4 2.8 5.0 4.9
Y 22 22 26 37 40
Th 0.9 0.7 1.1 2.1 2.3
U 0.2 0.2 0.2 0.6 0.6
La 7.90 7.40 8.70 18.5 19.8
Ce 18.50 17.30 20.50 42.80 45.4
Pr 2.64 2.49 2.60 5.98 6.38
Nd 12.30 12.30 12.40 27.70 29.10
Sm 3.60 3.90 3.90 7.40 7.90
Eu 1.38 1.44 1.38 2.30 2.38
Gd 4.20 4.30 4.70 7.80 7.80
Tb 0.70 0.80 0.80 1.30 1.40
Dy 4.50 4.60 4.70 7.70 8.10
Ho 0.90 0.90 0.90 1.50 1.50
Er 2.50 2.50 2.60 4.20 4.30
Tm 0.37 0.38 0.38 0.63 0.65
Yb 2.20 2.30 2.50 3.90 4.10
Lu 0.31 0.32 0.38 0.55 0.56

Note: LOI—loss on ignition.

Downloaded from https://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/doi/10.1130/L1108.1/4904313/l1108.pdf
by Indian Inst Geomagnetism Librarian Plot No 5  Sector 18 user
on 30 December 2019

https://www.geosociety.org
https://pubs.geoscienceworld.org/lithosphere
http://www.gsapubs.org


Geological Society of America  |  LITHOSPHERE  |  Volume 11  |  Number 5  |  www.gsapubs.org� 7

SRIVASTAVA ET AL.  |  40Ar/39Ar geochronology of Cretaceous mafic dikes, eastern India	 RESEARCH

et al. (2002) for the Salma dike. In particular, the 
NNW-trending Salma dike, with a reported age 
of 65.4 ± 0.3 Ma (Kent et al., 2002), has geo-
chemistry that is indistinguishable from that of 
another NNW-trending (low-Ti dolerite group) 
dike that was dated at 112.5 ± 0.5 (Kent et al., 
2002), but quite different from the geochemistry 
of NE-trending (high-Ti dolerite group) dikes. 
The paleomagnetic pole for the Salma dike is 
similar to that of the ca. 117 Ma Rajmahal Traps 
(Patil and Arora, 2008), also suggesting that there 
could be a problem with the reported age of the 
Salma dike. To resolve this issue, we carried out 
40Ar/39Ar dating for two samples, one from the 
Salma dike and the other from a NE-trending dike, 
as described in the next section.

40Ar-39Ar Ages

The 40Ar/39Ar data for the two geochrono-
logical samples are listed in Table 2, and age 
spectra and inverse isochron plots are shown in 
Figure 7. The sample from the NNW-trending 
Salma dike (RG09/SM14), collected from the 
Chinchuria area (Fig. 3C), yielded consistent 
plateau (116.0 ± 1.4 Ma) and inverse isochron 
(117.8 ± 2.9 Ma) ages within errors, suggesting 
there is no excess argon residing in the sample. 
This is also indicated by the trapped argon com-
position of 277.4 ± 25.8, which is within error 
of atmospheric Ar (295.5 ± 0.5). Therefore, we 
used the more precise age of 116.0 ± 1.4 Ma as 
the emplacement age of this sample. This age 

is quite different from the 40Ar/39Ar age of 65.4 
± 0.3 Ma for the Salma dike reported by Kent 
et al. (2002).

The sample from the NE-trending dike 
(RJ13/3) was collected ~600 m north of the 
Domohani Railway Colony (Fig. 3B); as noted 
earlier, this dike likely crosscuts the NNW-trend-
ing Salma dike, although the actual intersection 
is not observed. Similar to our analysis of the 
Salma dike data, we prefer the plateau age of 
70.5 ± 0.9 Ma, rather than the inverse isochron 
age of 69.5 ± 3.5 Ma, as representing the time 
of emplacement of this dike. It is noteworthy 
that the age of the NE-trending dike is close to 
the age that was reported for the NNW-trending 
Salma dike by Kent et al. (2002).

Our NE-trending dike sample (RJ13/3) was 
collected close to the sampling site (i.e., 2 km 
northeast of Asansol; as mentioned in Kent et 
al., 1997; see Fig. 3B) that Kent et al. (2002) 
interpreted to be on the Salma dike and where 
they obtained an age of ca. 65 Ma. The similar 
40Ar/39Ar ages of the NE-trending dike (sample 
RJ13/3) in this study and the dike of Kent et al. 
(2002) strongly suggest that the sample in the 
Kent et al. (2002) study was actually collected 
from the NE-trending dike (or perhaps another 
nearby NE-trending dike, given that there is a 
small difference of ~5 m.y. between the ages 
for the two dikes), and was not collected from 
the Salma dike. This interpretation is further 
strengthened by considering the location of 
another dated sample (RJ 1–19–1; ~1 km west 
of Kalidaspur; Fig. 3D) collected by Kent et al. 
(1997) from a NNW dolerite dike, which yielded 
a 40Ar/39Ar age of 112.5 ± 0.5 Ma (Kent et al., 
2002). The location of this sample indicates that 
it was likely collected from the SE extension 
of the Salma dike (see Figs. 3A and 3D), not 
from another dike parallel to the Salma dike at 
Kalidaspur, as suggested by Kent et al. (1997).

All these observations indicate that the sam-
ple that Kent et al. (2002) dated and interpreted 
to be from the NNW-trending Salma dike, based 
on the description of Kent et al. (1997), was 
actually from a NE-trending dike, rather than 
from the Salma dike. In addition, it is clear that 
the correct emplacement age of the Salma dike 
is 116.0 ± 1.4 Ma, not 65.4 ± 0.3 Ma.

Linkage to Mantle Plume Tectonics and 
Large Igneous Provinces

From the new 40Ar/39Ar geochronology and 
geochemical data presented in this work and 
the discussion above, the following two broad 
inferences can be drawn:

(1) The NNW-trending Salma dike was 
emplaced at 116.0 ± 1.4 Ma and not at 65.4 ± 
0.3 Ma (as suggested earlier; Kent et al., 2002).
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Figure 5. Primordial mantle–normalized multi-element spidergrams and chondrite-normalized rare earth element patterns for Cretaceous mafic 
dikes of the present study from the Raniganj Basin, as well as high-Ti dolerite and low-Ti dolerite samples. Primordial mantle and chondrite val-
ues are taken from McDonough et al. (1992) and Evensen et al. (1978). Red circles are NE dike samples and red diamonds are NNW Salma dike 
samples from the present study. Orange circles are high-Ti dolerites and sea-green diamonds are low-Ti dolerites from Srivastava et al. (2014).
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(2) The eastern and northeastern Indian 
Shield hosts magmatic activity related to both 
the Kerguelen and Réunion plumes (cf. Sriv-
astava et al., 2014), as evident from the Early 
Cretaceous (ca. 118–101 Ma) and Late Creta-
ceous (ca. 70–65 Ma) ages obtained by Kent et 
al. (2002) and in the present study.

The eastern and northeastern part of the 
Indian Shield experienced a prolonged period 
of magmatic activity in the Early Cretaceous 
(ca. 118–101 Ma; cf. Ghatak and Basu, 2011, 
2013; Srivastava et al., 2019b; and references 
therein). Many authors interpret the magmatism 
to have been derived directly from melting in the 
Kerguelen plume head, although some recent 
studies, particularly those based on isotopic data, 
suggest an indirect relation to the plume (cf. 
Ghatak and Basu, 2011, 2013; Olierook et al., 
2017; Srivastava et al., 2019b; and references 
therein), with the plume providing the heat nec-
essary to melt the source regions (cf. Olierook et 
al., 2017; Srivastava et al., 2019b). The Greater 
Kerguelen large igneous province has been 
identified over a wide region in East Gond-
wana (cf. Olierook et al., 2017) and is thought 
to include the Comei Province (140–130 Ma; 
Zhu et al., 2009; Olierook et al., 2017), Bun-
bury Basalt (ca. 137–130 Ma; Olierook et al., 
2016), Abor volcanics (ca. 132 Ma; Singh et al., 
2019), Wallaby Plateau (ca. 124 Ma; Olierook 
et al., 2016), Rajmahal-Sylhet-Bengal Traps (ca. 

118–112 Ma; Kent et al., 2002; Ghatak and Basu, 
2011), mafic dikes recorded from the CGC (ca. 
117–112 Ma; Kent et al., 2002; present study), 
Beaver Lake, Antarctica (ca. 117–110 Ma; Foley 
et al., 2002), Elan Bank (112–109 Ma; Ingle et 
al., 2002), and Naturaliste Plateau (>100 Ma; 
Pyle et al., 1995).

The younger Late Cretaceous magmatic 
event (70–65 Ma; Kent et al., 2002; present 
work) of eastern and northeastern India was 
likely connected to the Réunion plume and the 
associated Deccan large igneous province of 
western India (Kent et al., 2002; Paul, 2005; 
Srivastava et al., 2014). While it is well estab-
lished that the bulk (>90%) of Deccan volcanism 
occurred at 65 (±1) Ma, close to the Cretaceous-
Tertiary boundary (Duncan and Pyle, 1988; 
Baksi, 1994; Allègre et al., 1999; Hofmann et 
al., 2000; Chenet et al., 2007; Schoene et al., 
2015, 2019; Sprain et al., 2019), more limited 
Deccan volcanism occurred before and after 
the main event between 69 and 62 Ma (Wid-
dowson et al., 2000; Pande, 2002; Hooper et 
al., 2010; Chalapathi Rao and Lehmann, 2011). 
Volcanic rocks that are thought to be associ-
ated with the Réunion plume have also been 
identified far from the main Deccan large igne-
ous province in western India. For example, 
Mahoney et al. (2002) obtained a 72 Ma age 
for Réunion hotspot–related lavas in the South 
Tethyan suture zone of Pakistan that have very 

similar isotopic and trace-element geochemistry 
to the Deccan large igneous province (Mahoney, 
1988). In addition, 64.7 ± 0.5 Ma Rajahmundry 
lavas along India’s eastern coast, >400 km from 
the main Deccan lavas, are thought to have been 
part of the Deccan event (Knight et al., 2003). 
It appears likely that the huge (2000–2500-km-
diameter) Réunion mantle plume head and/or 
heat associated with it was responsible for all 
these volcanic eruptions, as well as for continen-
tal breakup of greater India with the Seychelles 
(cf. White and McKenzie, 1989; Mahoney et 
al., 2002).

Overall, the new 40Ar/39Ar ages obtained 
from the two geochemically distinct sets of dol-
eritic dikes in the CGC of eastern India indicate 
that they were intruded in extensional tectonic 
settings associated with the Kerguelen and 
Réunion mantle plumes. However, in both the 
cases, the plume was likely not directly involved, 
but rather provided additional heat necessary to 
melt the mantle source. More robust geochro-
nological, radiogenic isotope geochemical, and 
paleomagnetic data are required to determine 
the overall extent of these two events and bet-
ter constrain the relative contributions of the 
plumes to their genesis.

CONCLUSIONS

The NNE to ENE and NW to NNW Creta-
ceous mafic dikes exposed in the Chhotanagpur 
gneissic complex of eastern India show very 
distinct geochemical characteristics and are 
identified as high-Ti and low-Ti dolerites, 
respectively. In the Raniganj Basin, dikes 
of these two sets were dated by the 40Ar/39Ar 
method to resolve a controversy concerning the 
emplacement age of the long NNW-trending 
Salma dike.

The NE-trending dike has a 40Ar/39Ar plateau 
age of 70.5 ± 0.9 Ma, whereas the NNW-trend-
ing Salma dike has a plateau age of 116.0 ± 
1.4 Ma, indicating that the Salma dike was 
emplaced at ca. 116 Ma, not at ca. 65 Ma as 
suggested previously.

The genesis of the two dike sets is thought to 
be from melts generated during extensional tec-
tonic regimes developed by sizeable mantle plume 
heads, with the plume heads providing the addi-
tional heat necessary to melt the mantle source.

The ca. 116 Ma Salma dike is interpreted 
as part of the Greater Kerguelen large igneous 
province associated with the Kerguelen mantle 
plume, whereas the younger ca. 70 Ma mafic 
dike likely belongs to the Deccan large igneous 
province linked to the Réunion plume.

TABLE 2. 40Ar/39Ar DATA FOR CO2 LASER INCREMENTAL STEP-HEATING  
ANALYSES OF GROUNDMASS FROM RG09/SM14 AND RJ13/3

Laser
(W)

40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 40Ar*/39Ark

40Ar*
(%)

39Ark

(% )
Age
(Ma) ±2σ

RG09/SM14, 10 grains (200–280 µm) of groundmass, J = 0.00176800 ± 0.00000884

1.60 78.193347 1.837970 0.153750 32.95770 42.08 4.14 102.41 ± 7.62
1.70 58.981221 2.534441 0.075059 37.08288 62.74 7.85 114.83 ± 3.99
1.80 50.410211 2.240767 0.047391 36.65399 72.57 9.46 113.55 ± 3.06
1.90 47.004864 3.211667 0.032664 37.71107 80.01 10.01 116.72 ± 2.58
2.00 46.163157 3.141650 0.030071 37.62740 81.29 11.80 116.47 ± 2.33
2.10 45.321229 3.416633 0.027559 37.55832 82.63 6.98 116.26 ± 2.78
2.20 46.357722 3.882230 0.031720 37.41673 80.45 8.53 115.83 ± 2.79
2.30 45.574203 3.687282 0.029162 37.36712 81.73 8.90 115.69 ± 2.64
2.40 45.847757 3.827612 0.027918 38.02598 82.67 9.50 117.66 ± 2.61
2.50 45.466290 3.974935 0.028816 37.39349 81.97 8.24 115.77 ± 2.64
2.60 45.995475 3.876348 0.031470 37.12667 80.45 8.15 114.96 ± 2.81
2.70 45.588829 5.093547 0.027493 38.03427 83.07 6.45 117.69 ± 3.39

RJ13/3, 10 grains (200–280 µm) of groundmass, J = 0.00174500 ± 0.00000873

1.60 33.545302 0.889842 0.057195 16.72755 49.83 7.91 52.03 ± 2.70
1.70 25.278648 1.091163 0.012431 21.71216 85.81 4.79 67.25 ± 1.98
1.80 24.524985 1.344282 0.007533 22.43117 91.36 4.92 69.43 ± 1.82
1.90 24.443498 1.647999 0.004925 23.15151 94.58 7.61 71.62 ± 1.37
2.00 24.332572 1.890822 0.004164 23.28955 95.56 8.81 72.04 ± 1.35
2.10 24.077054 1.647098 0.004800 22.82144 94.65 9.94 70.62 ± 1.18
2.20 23.611197 1.740384 0.004168 22.55094 95.37 11.16 69.80 ± 1.16
2.30 23.632124 2.068614 0.003944 22.67084 95.76 10.40 70.16 ± 1.25
2.40 23.809221 2.361335 0.005153 22.51924 94.39 10.63 69.70 ± 1.18
2.50 23.700121 2.978236 0.004275 22.73114 95.67 9.12 70.34 ± 1.23
2.60 23.317797 2.691358 0.004530 22.24371 95.17 8.09 68.86 ± 1.32
2.70 23.360119 2.967936 0.005715 21.96245 93.78 6.62 68.01 ± 1.47
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APPENDIX: DETAILED ANALYTICAL TECHNIQUES

Sample Preparation and Irradiation
The groundmass of a volcanic rock is usually quenched 

from melt at or near the surface during eruption. Therefore, it 
is a proxy for the time of eruption, and its initial argon com-
position is similar to that of the atmosphere (avoiding con-
tamination from deep excess argon). In contrast, phenocrysts, 
such as plagioclase, may crystallize in a magma chamber in 
the lower crust or mantle sometime prior to its emplace-
ment, and, hence, may trap deep argon that is different from 
the atmosphere (excess argon). Therefore, to constrain the 
emplacement age and avoid excess argon, the groundmass 
portions of the dolerite samples were analyzed in this study.

The samples were crushed in a steel jaw crusher followed 
by grinding in a steel mill. Grinding was accomplished in 1–2 
second steps and alternated with sieving at 200 μm until 90% 
of the rock powder was reduced to <200 μm. The remain-
ing 200–280 μm fraction included the hardest components 
of the altered samples and is assumed to be the freshest 
parts of the samples. The groundmass aliquots were then 
handpicked under a binocular microscope from this 200–280 
μm fraction. The aliquots of every groundmass sample were 
inspected carefully to remove phenocrysts or xenocrysts, and 
all other impurities.

The separates of groundmass were further cleaned by 
acid-leaching with 2 N HNO3 for 30 min in an ultrasonic bath 
and heated to 50 °C in order to remove the calcite and other 
nitric-soluble phases. The leached separates were washed in 
an ultrasonic bath in deionized water three times, each for 30 
min, and then in acetone three times (for 30 min), and dried 
in preparation for irradiation.

All sample aliquots were wrapped in aluminum foil to 
form wafers and stacked in quartz vials with the interna-
tional standard YBCs. The vials were 40 mm in length, with 
an inner diameter of 6.5 mm. The position for each sample 
was recorded as the distance from the bottom of the vial. 
Then, the vials were sealed in vacuo and put in a quartz can-
ister. The canister was wrapped with cadmium foil (0.5 mm 
in thickness) for shielding slow neutrons in order to prevent 
interface reactions during the irradiation.

Neutron irradiation was carried out in position H8 of 49–2 
Nuclear Reactor (49–2 NR), Beijing (China), with a flux of ~6.5 
× 1012 n (cm2 s)–1 for 24 h, yielding J values of ~0.0017. The H8 
position lies in the core of the reactor and receives flux from 
all directions. Specimens were rotated during the fast neutron 
irradiation to get homogeneously distributed neutrons. Six to 
eight replicate analyses of the monitors from each vial were 
conducted to constrain the vertical neutron fluence gradient 
to within ±0.7%. This additional uncertainty was propagated 
into the plateau and inverse isochron ages. External uncer-
tainties arising from the decay constants and primary K-Ar 
standards were not propagated. Errors are reported at the 
2σ confidence level.

Gas Extraction and Mass Spectrometry Analyses
Argon isotope analyses were carried out on a mass-spec-

trometry system at the 40Ar/39Ar geochronology laboratory at 
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Figure 7. 40Ar/39Ar age spectra for RG09/SM14 
(NNW-trending Salma dike) and RJ13/3 (NE-
trending dike). Both plateau (A, C) and inverse 
isochron (B, D) ages are shown. In inverse iso-
chron plots, green squares show plateau data 
points, and blue squares represent nonplateau 
data points. MSWD—mean square of weighted 
deviates.
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the Institute of Geology and Geophysics, Chinese Academy 
of Sciences (IGGCAS), Beijing, China. The system, a product 
of NU Instrumental Company based in the UK, consists of 
a CO2 laser (50 W, 10.6μm wavelength, 999 Hz), a gas purifi-
cation preparation line, and a Noblesse mass spectrometer.

The irradiated samples were moved into 2-mm-diameter 
wells in a copper sample holder, which was then placed in a 
ZnSe windowed chamber. After preheating under pumping 
at 140 °C for 72 h by using heating tapes, the samples were 
heated in stepwise fashion to extract gas by using a continu-
ous 2-mm-spot CO2 laser beam. Twelve heating steps, each 
for 3 min, were performed for each sample with laser outputs 
from 1.6 to 2.7 W at steps of 0.1 W until the samples were 
completely molten (the grains turned into a black ball that 
did not glitter any longer under lasing). Each gas fraction was 
purified simultaneously during the 3 minutes using two SAES 
NP10 Zr-Al getters built in the prep-line, one of which ran at 
400 °C to remove active gases (e.g., N2, CO, CO2), and the 
other one of which was kept at room temperature to absorb 
H2. After purification, the valve between the prep-line and 
the mass spectrometer was switched on, and the gas was 
introduced into the mass spectrometer for argon isotope 
analyses. The entire volume of gas in the laser chamber, prep-
line, and mass spectrometer was ionized and analyzed. The 
purity of gas and a low level of residual active gases in the 
mass spectrometer were maintained by another two Zr-Al 
getters at room temperature. Argon isotopes were measured 
in the order of 40Ar, 39Ar, 38Ar, 37Ar, and 36Ar, and involved 13 
cycles of replicate measurements. For each peak and base-
line measurement, the ion beam of 40Ar, 39Ar, 38Ar, 37Ar, and 
36Ar was integrated for 5, 10, 5, 5, and 20 s, respectively, with 
baselines for 5 s. Baseline measurements were taken at a half 
mass unit away from the peaks, except between 39Ar and 40Ar, 
where the baseline was set at 39.3. The final measurement for 
each isotope was extrapolated to zero time using the least-
square regression from the 13 cycle measurements. Usually 
the “memory effect” of the instrument was negligible; the 
variation of 40Ar/39Ar was less than 1% in one run, and the 
analytic error was less than 0.1%.

The Noblesse mass spectrometer at IGGCAS is config-
ured as a multicollector with a high-mass Faraday cup with 
a 1011 Ω resistor and three discrete dynode secondary elec-
tron multipliers performing in ion-counting mode. Due to 
its well-focused ion beam and wide collector-slit spacing, 
the Noblesse mass spectrometer yields steep-margined and 
flat-topped broad peaks, with a peak flatness of ≤1 part in 103 
over ±300 ppm on the Faraday cup and ≤2 parts in 103 over 
±150 ppm on multipliers (without retardation filter). Electro-
static filters are positioned at the entrance of the multipli-
ers to suppress stray ions. Interferences produced by HCl 
and hydrocarbon species overlap the high-mass side of all 
argon peaks. Argon isotopic measurements were obtained 
on the unaffected low-mass sides of the peaks to obtain 36Ar 
measurements that were free of interference species (Sax-
ton, 2015). Static backgrounds of the IGGCAS Noblesse are 
typically ~4.5 × 10-17, 1.3 × 10-18, 3.5 × 10-19, 5.7 × 10-18, and 4.2 
× 10-19 mol for 40Ar through 36Ar. Procedural blanks (i.e., sim-
ulated analyses without sample gas) are ~3.8 × 10-16, 2.0 × 
10-18, 5.1 × 10-19, 5.5 × 10-18, and 1.9 × 10-18 mol for 40Ar through 
36Ar, respectively. Blanks were monitored every two mea-
surements for correction. The efficiency (gain) of multipliers 
against the Faraday cup, which depends on amount of gas 
and is governed by “dead time” of the multiplier, is monitored 
every month. Mass discrimination was monitored using an 
online air pipette from which multiple measurements were 
made before and after each experiment. The mean over this 
period was 1.00100 ± 0.00021 per amu, and the uncertainty of 
this value was propagated into all age calculations.

Ages were calculated using the decay constant of Renne 
et al. (2011), and all errors are quoted at the 2σ level. In order 
to make our results comparable directly with the previous 
study (Kent et al., 2002) on the same dike sets, the age results 
for RG09/SM14 were recalculated (Table A1) using the dif-
ferent decay constants reported by Steiger and Jäger (1977) 
and Min et al. (2000). The results show that the bias in ages 
caused by the different decay constants is minor (<0.25 Ma; 
Table A1) and is undetectable within errors (Table A1).
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