Please use this identifier to cite or link to this item: http://library.iigm.res.in:8080/xmlui/handle/123456789/328
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsurutani, B.T.
dc.contributor.authorLakhina, G.S.
dc.contributor.authorPickett, J.S.
dc.contributor.authorLin, N.
dc.contributor.authorGoldstein, B.E.
dc.contributor.authorGuarnieri, F.L.
dc.date.accessioned2015-09-07T05:15:49Z
dc.date.accessioned2021-02-12T09:27:27Z-
dc.date.available2015-09-07T05:15:49Z
dc.date.available2021-02-12T09:27:27Z-
dc.date.issued2005
dc.identifier.citationNonlinear Processes in Geophysics, v.12, p.321-336, 2005, doi: 10.5194/npg-12-321-2005en_US
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/328-
dc.description.abstractAlfvén waves, discontinuities, proton perpendicular acceleration and magnetic decreases (MDs) in interplanetary space are shown to be interrelated. Discontinuities are the phase-steepened edges of Alfvén waves. Magnetic decreases are caused by a diamagnetic effect from perpendicularly accelerated (to the magnetic field) protons. The ion acceleration is associated with the dissipation of phase-steepened Alfvén waves, presumably through the Ponderomotive Force. Proton perpendicular heating, through instabilities, lead to the generation of both proton cyclotron waves and mirror mode structures. Electromagnetic and electrostatic electron waves are detected as well. The Alfvén waves are thus found to be both dispersive and dissipative, conditions indicting that they may be intermediate shocks. The resultant "turbulence" created by the Alfvén wave dissipation is quite complex. There are both propagating (waves) and nonpropagating (mirror mode structures and MDs) byproducts. Arguments are presented to indicate that similar processes associated with Alfvén waves are occurring in the magnetosphere. In the magnetosphere, the "turbulence" is even further complicated by the damping of obliquely propagating proton cyclotron waves and the formation of electron holes, a form of solitary waves. Interplanetary Alfvén waves are shown to rapidly phase-steepen at a distance of 1AU from the Sun. A steepening rate of ~35 times per wavelength is indicated by Cluster-ACE measurements. Interplanetary (reverse) shock compression of Alfvén waves is noted to cause the rapid formation of MDs on the sunward side of corotating interaction regions (CIRs). Although much has been learned about the Alfvén wave phase-steepening processfrom space plasma observations, many facets are still not understood. Several of these topics are discussed for the interested researcher. Computer simulations and theoretical developments will be particularly useful in making further progress in this exciting new area.en_US
dc.language.isoenen_US
dc.subjectNonlinear Alfvén wavesen_US
dc.subjectMagnetosphereen_US
dc.subjectIntermediate shocksen_US
dc.subjectMagnetic fielden_US
dc.subjectElectrostatic electron wavesen_US
dc.titleNonlinear Alfvén waves, discontinuities, proton perpendicular acceleration, and magnetic holes/decreases in interplanetary space and the magnetosphere: intermediate shocks?en_US
dc.typeArticleen_US
dc.identifier.accession090821
Appears in Collections:UAS_Reprints

Files in This Item:
File Description SizeFormat 
LakhinaGS_NonlinProcGeophys_2005_321-336.pdf7.01 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.