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ABSTRACT
We present approximate solutions of non-local linear perturbational analysis for dis-
cussing the stability properties of the Gravito-Electrostatic Sheath (GES)-based solar
plasma equilibrium, which is indeed non-uniform on both the bounded and unbounded
scales. The relevant physical variables undergoing perturbations are the self-solar grav-
ity, electrostatic potential and plasma flow along with plasma population density. We
methodologically derive linear dispersion relation for the GES fluctuations, and solve
it numerically to identify and characterize the existent possible natural normal modes.
Three distinct natural normal modes are identified and named as the GES-oscillator
mode, GES-wave mode and usual (classical) p-mode. In the solar wind plasma, only
the p-mode survives. These modes are found to be linearly unstable in wide-range of
the Jeans-normalized wavenumber, k. The local plane-wave approximation marginally
limits the validity or reliability of the obtained results in certain radial- and k-domains
only. The phase and group velocities, time periods of these fluctuation modes are in-
vestigated. It is interesting to note that, the oscillation time periods of these modes are
3-10 minutes, which match exactly with those of the observed helio-seismic waves and
solar surface oscillations. The proposed GES model provides a novel physical view of
the waves and oscillations of the Sun from a new perspective of plasma-wall interaction
physics. Due to simplified nature of the considered GES equilibrium, it is a neonatal
stage to highlight its applicability in the real Sun. The proposed GES model and
subsequent fluctuation analysis need further improvements to make it more realistic.

Key words: Sun: interior - Sun: oscillations - Sun: solar wind - instabilities - hydro-
dynamics

1 INTRODUCTION

It is well-known that the solar plasmas, including all
stellar plasmas, are bounded and are confined by the
self-gravitational barrier. Hence, the role of plasma and
boundary-wall interaction physics and process becomes a re-
ality which should not be ignored while studying their equi-
libria and stabilities. However, earlier theoretical models for
the description of solar interior and exterior plasma equi-
libria and dynamics did not consider the boundary effects
(Christensen-Dalsgaard 2002; Alerts, Christensen-Dalsgaard
& Kurtz 2010; Priest 2014) as well as self-gravitational fluc-
tuation effects (Cowling 1941). Analogous to the labora-
tory plasma (Chen 1984; Riemann 1991), a pre-sheath like
quasi-neutral space-charge region should be formed around
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the solar surface boundary (SSB) over a Jeansean spa-
tial extension. Motivated by the above physical situations
and conceptual arguments, a novel theoretical model of the
Gravito-Electrostatic Sheath (GES) physics was proposed
by Dwivedi, Karmakar & Tripathy (2007) to give a new
physical perspective to the Sun. One can get details on
plasma sheath and pre-sheath formation in laboratory (Chen
1984; Riemann 1991, 1997; Deka & Dwivedi 2010; Pandey
& Vladimirov 2011) and in solar wind plasmas (Pines et al.
2010) from various sources enlisted herein.

The proposed GES model predicts a quasi-hydrostatic
equilibrium of the solar interior plasma (SIP) and the hydro-
dynamic equilibrium of the solar wind plasma (SWP). The
SIP and SWP are connected at the GES-defined SSB. The
GES model gives a unified picture of the sub-sonic solar inte-
rior origin of the SWP, in contrast with its sub-sonic surface
origin, as predicted by Parker’s model (Parker 1958). The
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GES theory reproduces Parker’s SWP results. In addition,
it predicts the solar surface-charging (∼ -120 C) and flow
of high (∼ −1012 A m−2) negative net (electron-dominated)
electric current across the SSB. This terminates into positive
net current at about 1RΘ away from the SSB. The defined
SSB is very sensitive to a minuscule imbalance in the GES
forces and hence, it is very susceptible to even little fluctu-
ations in the net force fields. These fluctuations constitute
perturbations in the self-solar gravitational sheath potential
(termed as gravitational wall potential), electrostatic sheath
potential, plasma density and plasma flow. The fundamen-
tal importance of the solar plasma waves and oscillations lies
in its ability to probe the ultra-hot solar interior structure
inaccessible for direct diagnostics.

In this research contribution, we have carried out ap-
proximate linear perturbation analysis (eigenvalue treat-
ment) of the spherically symmetric solar plasma system un-
der the GES equilibrium to explore its stability properties.
Since the bounded and unbounded solar plasma equilib-
ria are inhomogeneous, and hence, local linear perturbation
analysis is inadequate. For simplicity, we have used the lo-
cal plane-wave approximation to derive the non-local linear
dispersion relations (eigenvalue equations) for the travelling
Fourier wave-like solutions. The derived dispersion relations
are solved by numerical methods and the possible normal
modes are identified and their dispersion properties are dis-
cussed. Three distinct natural normal modes, named as the
GES-oscillator, GES-wave and usual electrostatic acoustic
wave called as the p-mode, are obtained and characterized.
Detailed calculations and discussions about these modes are
given in the subsequent sections of the text.

Apart from the introduction as in Section 1, Section
2 deals with the description of the plasma model and the
GES-equilibrium on the bounded and unbounded scales. In
Section 3, non-local linear calculations are performed to de-
rive global linear dispersion relations for the fluctuations.
Numerical calculations are carried out in Section 4 with all
possible information about the wave properties. Results are
discussed and conclusions are finally drawn in Section 5.

2 EQUILIBRUM PLASMA DESCRIPTION
AND CONFINING FORCES

The plasma of the proposed GES-model Sun consists of
mainly hydrogen ions and electrons ignoring many other
ionic and neutral species which are, of course, present, but
in minorities (Stix 2002; Peratt 2015). The localized self-
solar gravity with radial variation of its own strength plays
the role of the confining wall with its maximum strength at
the derived SSB. Its strength is measured in terms of the
escape velocity of the ionic fluid. The localized electrostatic
sheath potential suffers a major negative potential drop in
the neighborhood of the outer GES-solar surface. It termi-
nates into a maximum negative constant value at the radial
location of about 1RΘ away from the defined SSB. It pro-
duces a counter acting force to the self-solar and external
solar gravity both and we call it as the electrostatic sheath
rebounding force. We propose it to act as the restoring force
for driving the GES-oscillator and waves. At this radial lo-
cation the net current becomes zero and hence, in the usual

plasma sheath terminology, the corresponding spherical sur-
face is said to be in floating condition.

According to the GES model, the radial size (1RΘ) of
the spherically symmetric plasma chamber comes out to be
RSSB ∼ 3.5λJ = 1RΘ = 1.08×1011 cm, where λJ = 3.09×1010

cm is the well-known Jeans length. It comes out to be larger
than the standard solar radius, RSSM = 6.96 × 1010 cm by
about 40%. Also, the mass of the model GES-Sun comes out
as MGES ≈ 7×1033 g, which is also larger by about four times
than the standard solar mass, MSSM = 1.99 × 1033 g. The
population density of the GES-solar plasma, ni ∼ 8.5 × 1023

cm−3, at the initial radial point is equal to the standard
mean solar density

(
n0 = ρΘ/mi

)
with surface value nΘ ∼

3 × 1023 cm−3. The isothermal electron temperature of the
SIP comes out to be Te ∼ 1 × 107 K with isothermal ion
temperature Ti ∼ 4× 106 K. The SWP plasma density varies
from nΘ ∼ 3 × 1023 cm−3 (at the SSB) to n1AU ∼ 3 × 1011

cm−3 (at 1 A.U). The SWP electron temperature comes out
to be Te ∼ 1 × 106 K with ion temperature Ti ∼ 1 × 105

K. Consideration of proper equation of state as well as en-
ergy transport equation may definitely improve the results
to compare with the real Sun. Under constant plasma tem-
perature, the consideration of convective effect is beyond the
scope of our present GES model.

We calculate the magnitudes of various forces, like-
Lorentz force (FL) for 0.1 G magnetic field, electrostatic
force according to the Pannekoek-Rosseland (P-R) model
(Vranjes 2011), buoyancy force and rotational force for unit
angular velocity (Priest 2014; Peratt 2015). Comparing our
calculations of the GES forces, we notice [Figs 1(a, b, c, d)]
that the GES-based solar plasma model equilibrium is jus-
tified for magnetic field of strength B0 < 1 G. In reality, we
cannot ignore the magnetic field effects, which may be in-
corporated in the form of the Chodura magnetic presheath
formalism (Chodura 1982) with proper care of the geometry.
He clearly concludes that the presence of magnetic field of
any arbitrary value does not affect the net potential drop
between the bulk plasma and the confining wall.

2.1 SIP-equilibrium description

The basic set of normalized equations for the description of
hydrodynamic equilibrium of spherically symmetric model
of the GES-solar plasma on the bounded scale is reproduced
from the reference (Dwivedi et al. 2007) as

Ion continuity equation:

dθ
dξ
+

1
M

dM
dξ
+

2
ξ
= 0, (1)

The third term of this equation is originating due to
spherical geometry and causes the decrease of the ion
density flux due to increasing surface area of the spher-
ical surfaces at successive radial positions relative to
the center. This is what we term as the ”curvature effect”
or ”geometry effect” appearing at different places in the text.

Ion momentum equation:

M
dM
dξ
= −α

dθ
dξ
− gs, (2)
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Reduced form of equations (2) after equation (1):(
M2 − α

) 1
M

dM
dξ
= α

2
ξ
− gs, (3)

Self-solar gravity (non-rigid confining wall) equation:

dgs
dξ
+

(
2
ξ

)
gs = eθ . (4)

Here, gs, θ and M stand for the normalized equilibrium
self-solar gravity, normalized GES-associated electrostatic
sheath potential and SIP Mach number, respectively. The
self-solar gravity equation describes what we term as the
non-rigid (diffused) gravitational wall. Here too, the second
term on the LHS of equation (4) contains curvature effect
arising due to spherical geometry (non-planar influence).
The standard astrophysical normalization scheme adopted
here is symbolically defined with all the usual notations as

ξ = r
λJ

, M =
vi
cS

, θ =
eφ
Te

, η =
ψ

c2
S

, cS =
(
Te
mi

)1/2
,

ωJ =
(
4πρΘG

)1/2, εT =
Ti
Te

, α = 1 + εT , and gs =
dη
dξ .

The unnormalized notations r, vi , φ, ψ represent re-
spectively the radial coordinate, the radial component of
the solar plasma velocity, the GES associated electrostatic
and gravitational sheath potentials. The other notations Te,
Ti , mi , cS , λJ , e, ρΘ, G, ωJ stand for the unnormalized elec-
tron temperature, ion temperature, ion mass, plasma sound
speed, critical Jeans length, electronic charge, mean solar
density, universal gravitational constant and mean Jeans
frequency, respectively. Under Boltzmannian distribution of
electrons, i.e., for Ne = Ni = N = eθ , the electron continu-
ity equation becomes redundant. However, its role will be
included in the context of charge conservation principle as
discussed in the Appendix. The nonlinear pressure gradient
term, (1/N ) dN/dξ, is reduced to dθ/dξ, which is appearing
in equations (1)-(2).

2.1.1 Condition for GES-boundary

The self-solar gravity, as a physical variable, is more suitable
physical quantity that defines the non-rigid gravitational
wall and its strength. Keeping this fact into mind we
consider the maximization of the self-solar gravity to
mathematically define the SSB. The necessary condition
for gs to become maximum at some radial position, ξ = ξΘ,
for some specified value of θ = θΘ is dgs/dξ |ξ=ξΘ = 0.

Using this condition in equation (4), we find ξΘ = 2gΘe−θΘ .
The condition of sufficiency needs d2gs/dξ2 |ξ=ξΘ < 0 and
to derive it, we spatially differentiate equation (4) once to get

d2gs

dξ2 −

(
2
ξ2

)
gs +

( 2
ξ

)
dgs

dξ = eθ dθ
dξ .

Now, using the condition of exact hydrostatic equilib-
rium at the surface, |dθ/dξ |ξ=ξΘ ≈ |dη/dξ |ξ=ξΘ =

(
gs

)
ξ=ξΘ ,

and using dgs/dξ |ξ=ξΘ= 0 into above equation, one gets

d2gs

dξ2 |ξ=ξΘ= gΘ

(
2
ξ2 − eθΘ

)
< 0.

After eliminating eθΘ , the above inequality yields gΘξΘ > 1.
If we define the escape velocity as v∞ =

√
2gΘξΘ, it is further

reduced to v∞ >
√

2 . This is the required condition for
the existence of a localized self-gravitational sheath of the
Jeans scale width. It is similar to the usual Bohm condition
for the existence of plasma sheath (Riemann 1991). Solving
numerically the basic set of equations (1)-(4) as an initial
value problem, the boundary is found to exist at ξ ∼ 3.5
(see Fig. 6 of Karmakar & Dwivedi 2011). Existence of
the subsonic electrostatic pre-sheath on the Jeans scale
length with major potential drop beyond the SSB becomes
a reality in the presence of negative current flowing across
the SSB. In similar situation with negative current across a
surface in laboratory plasmas also (Loizu, Ricci & Theiler
2011), the sub-sonic electrostatic sheath is studied.

2.1.2 Equilibrium of GES Sun

To understand the true nature of the SIP equilibrium,
let us look into the radial profile of the net GES force(
FGES = −gs − αdθ/dξ

)
as shown in Fig. 1(a). It shows small

deviation from the exact hydrostatic equilibrium due to non-
zero but very small net force. Moreover, due to finite ion
temperature, there is a directional change in the net force
from radially inward to outward at ξ = 1.5, i.e., r = 0.4RΘ.
Fig. 1(b) depicts the radial profile of the net GES poten-
tial

(
VGES = η + αθ

)
, which acts as a potential barrier all

through the solar interior region up to the surface. Fig. 1(c)
depicts the net effect of curvature or geometry and gravita-
tional acceleration

(
FC = 2α/ξ − gs

)
. It is seen that the cur-

vature term in equation (3) dominates over gs, and hence,
a subsonic plasma flow with strong deceleration exists up
to about ξ = 1.5. As a result, the GES theory predicts a
quasi-hydrostatic equilibrium of the SIP.

This is to emphasize further that the electric field esti-
mated by the P-R model (Vranjes 2011) calculation comes
out to be smaller than that by us, as depicted in Fig. 1(d).
The estimation of current density (eq. [A4], Appendix) at
the defined SSB by the GES theory, jSSB ∼ 1012 A m−2

= 1 TA m−2 (where, 1 T = 1012, termed as 1 tera), is ex-
tremely high, which is beyond the limit of physical reality!
Similarly, the corresponding magnetic field comes out to be
BSSB ∼ 1021 G at the SSB defined by the GES model. It fur-
ther increases in the SWP linearly with radial position. De-
spite the high BSSB-values, the electrostatic potential drop
between the SIP and SSB would not be influenced according
to the well-known Chodura conclusion (Chodura 1982).

2.2 SWP-equilibrium description

The SWP dynamics is not affected by the self-solar gravity,
because it is switched off at the defined SSB. The SSB
forms a diffused transition layer, where the self-solar gravity
transforms from internal (not following the Newtonian
inverse square law) to external one, following the inverse
square law. Here, the external solar gravity affects only the
equilibrium structure of the SWP as we will see in the next
subsection. The basic equilibrium governing equations for
the SWP dynamics are given as

Ion momentum equation:

M
dM
dξ
= −α

dθ
dξ
−

a0
ξ2 . (5)
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Figure 1. Profile of the normalized (a) net equilibrium GES force

without thermal contribution [FGES = −(gs + dθ/dξ ), blue solid

line] and with thermal contribution [FGES = −(gs + αdθ/dξ ),
α = (1 + εT ), red dashed line]; (b) net equilibrium GES po-

tential without thermal contribution [VGES = (η + θ), blue

solid line], and with thermal contribution [VGES = (η + αθ),
red dashed line]; (c) net effect of curvature and gravitational

forces without thermal contribution [FC = (2/ξ − gs ), blue
solid line], and with thermal contribution [FC = (2α/ξ − gs ),
red dashed line]; (d) gravitational force [Fg = gs ], electrostatic

force with thermal contribution [FE = −αdθ/dξ ], Lorentz force
[FL = (ωci/ωJ )M , for B0 = 0.1 G], gravity-induced electro-

static force [FPR = {(miTe −meTi )/mi (Te +Ti ) } gs ], buoyancy

force [Fb = −(γ−1)g2
sξ ], and Coriolis force [FΩ = −(2Ωrot/ωJ )M ,

rescaled by multiplying with 103 for Ωrot = 1 rad s−1]; (e) prod-

uct of wave number (k) and scale-length (L) for self-solar grav-

ity [kLg ], electrostatic potential [kLθ ], Mach number [kLM ], and
population density [kLN ]; and (f) previous current density [J1]

without geometrical effects, new current density [J2, rescaled

by multiplying with 103] with geometrical effects, and charge-
conservation parameter [Q = (2/ξ )J2 + ∂J2/∂ξ ] in the SIP with

position (ξ). Different input and initial values are in the text.

Ion continuity equation is the same as given by equation (1).
Equations (2) and (5) can be combined to yield(

M2 − α
) 1

M
dM
dξ
=

2α
ξ
−

a0
ξ2 , (6)

where, a0 = GMΘ/c2
S
λJ is a normalization constant measur-

ing the SWP temperature in the same normalization scheme.

2.2.1 Hydrodynamic equilibrium of SWP

Fig. 2(a) is plotted to depict the net GES force(
FSWP = −αdθ/dξ − a0/ξ

2
)

acting on the SWP flow. It is
clear to note that FSWP > 0 beyond about ξ = 5 , i.e.,
r = 1.4RΘ, and it goes maximum at about ξ = 8, i.e.,
r = 2.3RΘ away from the SSB. This is the region where the

Figure 2. Profile of the normalized (a) net equilibrium force with-

out thermal contribution [FSWP = −(∂θ/∂ξ + a0/ξ
2), blue solid

line], and with thermal contribution [FSWP = −(α∂θ/∂ξ+a0/ξ
2),

α = (1 + εT ), red dashed line]; (b) net equilibrium potential

without thermal contribution [VSWP = (θ − a0/ξ ), blue solid

line], and with thermal contribution [VSWP = (αθ − a0/ξ ), red
dashed line]; (c) net effect of curvature and gravitational forces

without thermal contribution [FC = (2/ξ − a0/ξ
2), blue solid

line], and with thermal contribution [FC = (2α/ξ − a0/ξ
2), red

dashed line]; (d) electrostatic force with thermal contribution

[FE = −α∂θ/∂ξ ], and gravity-induced electrostatic force [FPR =

{(miTe −meTi )/mi (Te +Ti ) } (a0/ξ
2)]; (e) product of wave number

(k) and scale-length (L) for electrostatic potential [kLθ ], Mach

number [kLM ], and population density [kLN ]; and (f) previous
current density [J1] without geometrical effects, corrected current

density [J2] with geometrical effects, and charge-conservation pa-

rameter [Q = (2/ξ )J2 + ∂J2/∂ξ ] in the SWP with position (ξ).
The input and initial values used are highlighted in the text.

SWP is accelerated from sub-sonic to sonic levels (see Fig.
4(c) of Dwivedi et al. 2007), and this is consistent with equa-
tion (5). Fig. 2(b) depicts the profile of negative net potential(
VSWP = αθ − a0/ξ

)
, which clearly indicates the existence of

a potential well. The curvature effect
(
FC = 2α/ξ − a0/ξ

2
)
,

as shown in Fig. 2(c), is weaker in comparison with the ex-
ternal gravitational force. However, the FC -effect becomes
prominent after ξ = 47.5, i.e., r ≈ 14RΘ, where, the SWP
flow suffers transonic transformation from sonic to super-
sonic speeds (see Fig. 4(c) of Dwivedi et al. 2007), and this
is also consistent with equation (6). Thus, the SWP equilib-
rium is hydrodynamic in nature with free-fall motion of the
plasma on large scales of the Jeans order. This is again to
emphasize that the electric field estimated by the P-R model
calculation for the SWP also comes out to be smaller than
that by GES model as in Fig. 2(d).

We give a schematic diagram of the GES and standard
solar model (SSM) equilibria in Figs 3(a, b). Accordingly, in
Figs 3(a, b), we portray schematic diagram of the Sun and
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Figure 3. Schematic diagram of the Sun and its ambient atmo-

sphere according to the (a) standard solar model (SSM), and (b)
gravito-electrostatic sheath (GES) model. The solar surface in

the former lies in the photosphere, named spectroscopically, after

emission of most visible light from the Sun. The surface in the
latter is defined by the maximization of the self-solar gravity wall

strength amid exact gravito-electrostatic force balancing.

its ambient atmosphere according to the (a) SSM, and (b)
GES model. According to the latter, the SSB includes excess
concentric region composed jointly of the solar photosphere
(∆r ∼ 500 km), chromosphere (∆r ∼ 200 km) and marginally,
the coronal base (inner, ∆r ≤ 1RΘ ). As per the spectroscopic
definition, the SSB lies in the photosphere, where the opac-
ity becomes unity for the visible light (green, 5000 Å, at
r = 1RΘ) emission from the Sun. From Figs 3(a, b), we can
notice that the SSM-Sun consists of more multiple zones as
compared to the GES-Sun. We now turn over the discussions
of the non-local linear perturbations and their normal mode
analysis by analytical and numerical methods.

3 NON-LOCAL LINEAR WAVE ANALYSIS

3.1 GES fluctuations in SIP

The GES equilibrium for this problem has already been
described. We focus our efforts to look into the perturba-
tion part only. The set of unnormalized time-dependent
equations for the quasi-neutral SIP dynamics are given as

Ion momentum equation:

∂vi
∂t
+ vi

∂vi
∂r
= −

(
e

mi

)
∂φ

∂r
−

(
Ti
mi

) (
1
ni

)
∂ni
∂r
−
∂ψ

∂r
, (7)

Ion continuity equation:

∂ni
∂t
+

1
r2

∂

∂r

(
nivir2) = 0, (8)

Self-solar gravity (non-rigid confining wall) equation:

d2ψ

dr2 +

(
2
r

)
dψ
dr
= 4πGmini . (9)

This is to notice that the self-solar gravitational wall equa-
tion is time-independent. This is due to the fact that the
gravitational Poisson equation (eq. [9]), which defines and
mimics the non-rigid stationary wall of our model consider-
ation, is intrinsically time-independent. Now, using the nor-
malization procedure as defined earlier along with a new
notation τ = ωJ t for the normalized time, we set out the
normalized forms of equations (7)-(9) respectively as

∂M
∂τ
+ M

∂M
∂ξ
= −α

∂θ

∂ξ
− gs, (10)

∂θ

∂τ
+ M

∂θ

∂ξ
+
∂M
∂ξ
+

(
2
ξ

)
M = 0, (11)

dgs
dξ
+

(
2
ξ

)
gs = eθ . (12)

Now, splitting the physical variables linearly into equilib-
rium and fluctuation parts as defined below

*.
,

M
θ

gs

+/
-

(
ξ, τ

)
=

*.
,

M0
θ0
gs0

+/
-

(
ξ
)
+

*.
,

M̃
θ̃

g̃s

+/
-

(
ξ, τ

)
, (13)

we linearise equations (10)-(12) respectively as

∂M̃
∂τ
+ M0

∂M̃
∂ξ
+ M̃

∂M0
∂ξ
= −α

∂θ̃

∂ξ
− g̃s, (14)

∂θ̃

∂τ
+ M0

∂θ̃

∂ξ
+ M̃

∂θ0
∂ξ
+
∂M̃
∂ξ
+

(
2
ξ

)
M̃ = 0, (15)

dg̃s
dξ
+

(
2
ξ

)
g̃s = eθ0 θ̃ . (16)

It is clear to note from equations (14)-(16) that the fluc-
tuations are dynamically coupled with the equilibrium. As
a result, quasi-linear effects, i.e., the coupling of the linear
perturbations with the equilibrium have already gone into
mathematical calculations and description of the linear nor-
mal modes of the GES fluctuations. Equation (16) describes
the self-solar gravitational wall strength fluctuations coupled
with the GES associated equilibrium electrostatic potential
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6 P. K. Karmakar et al.

and fluctuations. This is how the self-solar gravitational wall
fluctuations are coupled with the enclosed plasma fluctua-
tions through equations (14)-(15).

Now to proceed further, we would like to state that the
medium is inhomogeneous, and for very short-wavelength
(kL >> 1) [Fig. 1(e)] perturbations, a local plane-wave(
kξ > 1

)
(Priest 2014; Ostashev & Wilson 2016) approxi-

mation provides a valid first approximation as

*.
,

M̃
θ̃

g̃s

+/
-

(
ξ, τ

)
=

*.
,

M̃ (ξ)
θ̃(ξ)
g̃s (ξ)

+/
-

e−iωτ+ikξ . (17)

Applying the above Fourier wave-like solutions in equations
(14)-(16), we deduce respectively the following set of equa-
tions describing the SIP fluctuation dynamics
[
∂

∂ξ
+
∂θ0
∂ξ
+

(
ik +

2
ξ

)]
M̃ (ξ) = iΩθ̃(ξ) − M0

∂θ̃(ξ)
∂ξ

, (18)

[
M0

∂

∂ξ
− iΩ +

∂M0
∂ξ

]
M̃ (ξ) = −

[
α
∂θ̃(ξ)
∂ξ

+ iαk θ̃(ξ) + g̃s (ξ)
]
,

(19)

∂g̃s (ξ)
∂ξ

+ ik g̃s (ξ) +
(
2
ξ

)
g̃s (ξ) = eθ0 θ̃(ξ), (20)

where, the variables having ”0” subscripts define the equi-
librium parameters and Ω =

(
ω − k M0

)
defines the Doppler-

shifted wave frequency. Now, let us introduce an operator
formalism by defining the following differential operators ap-
pearing on the LHS of equations (18)-(19) as

Ô1 :=
∂

∂ξ
+
∂θ0
∂ξ
+

(
ik +

2
ξ

)
, (21)

Ô2 := M0
∂

∂ξ
− iΩ +

∂M0
∂ξ

. (22)

We allow Ô1 to operate over equation (19) and Ô2 over equa-
tion (18). Under commutative property of these two oper-
ators, the resulting differential equations can be combined
together to yield two distinct ordinary differential equations
respectively for the evolution of θ̃(ξ) and M̃ (ξ) as

α1
∂2 θ̃(ξ)
∂ξ2 + β1

∂θ̃(ξ)
∂ξ

+ γ1 θ̃(ξ) = −
∂g̃s (ξ)
∂ξ

− δ1g̃s (ξ), (23)

∂M0
∂ξ

∂M̃ (ξ)
∂ξ

+ ik
∂M0
∂ξ

M̃ (ξ) +
∂2M0
∂ξ2 M̃ (ξ) = M0

∂2θ0
∂ξ2 M̃ (ξ)

−

(
2
ξ2

)
M0M̃ (ξ), (24)

where,

α1 =
[
α − M2

0
]
,

β1 =
[
2iΩM0 − 2M0

∂M0
∂ξ + iαk + α ∂θ0

∂ξ + α
(
ik + 2

ξ

)]
,

γ1 =
[
−ik M0

∂M0
∂ξ +Ω

2 + iΩ ∂M0
∂ξ + iαk ∂θ0

∂ξ + iαk
(
ik + 2

ξ

)]
,

δ1 =
[
∂θ0
∂ξ +

(
ik + 2

ξ

)]
.

Equation (23) clearly shows the linear coupling of θ̃(ξ) and
g̃s (ξ), whereas M̃ (ξ) [eq. (24)] evolves independently. It can
be inferred from equation (24) that the existence of plasma

flow fluctuations
[
M̃ (ξ)

]
is a direct consequence of non-local

effects in non-planar geometric approximation. This is to
note that equation (23) is a coupled differential equation
and it is mathematically easy to eliminate θ̃(ξ) to derive an
independent differential equation for g̃s (ξ). For this, let us
first derive the following relations from equation (20)

θ̃(ξ) = e−θ0
[
∂g̃s (ξ )
∂ξ +

(
ik + 2

ξ

)
g̃s (ξ)

]
.

Let us differentiate it once to deduce

∂θ̃ (ξ )
∂ξ = e−θ0

[
∂2g̃s (ξ )
∂ξ2 + a01

∂g̃s (ξ )
∂ξ − b01g̃s (ξ)

]
.

Let us again differentiate it further to yield

∂2 θ̃ (ξ )
∂ξ2 = e−θ0

[
∂3g̃s (ξ )
∂ξ3 + a02

∂2g̃s (ξ )
∂ξ2 + b02

∂g̃s (ξ )
∂ξ + c02g̃s (ξ)

]
,

where, the involved coefficients in the above are

a01 =
[(

ik + 2
ξ

)
−
∂θ0
∂ξ

]
,

b01 =
[(

ik + 2
ξ

)
∂θ0
∂ξ +

2
ξ2

]
,

a02 =
[(

ik + 2
ξ

)
− 2 ∂θ0

∂ξ

]
,

b02 =

[
−2

(
ik + 2

ξ

)
∂θ0
∂ξ −

4
ξ2 +

(
∂θ0
∂ξ

)2
−
∂2θ0
∂ξ2

]
,

c02 =

[(
ik + 2

ξ

) {(
∂θ0
∂ξ

)2
−
∂2θ0
∂ξ2

}
+ 4
ξ2

(
∂θ0
∂ξ +

1
ξ

)]
.

Now, substituting θ̃(ξ) and its derivatives in equation
(23), one derives the following third-order linear differential
equation for describing the dispersion properties of the GES
fluctuations and their amplitude variations as

α2
∂3g̃s (ξ)
∂ξ3 + β2

∂2g̃s (ξ)
∂ξ2 + γ2

∂g̃s (ξ)
∂ξ

+ δ2g̃s (ξ) = 0, (25)

where,

α2 = α1 =
[
α − M2

0
]
,

β2 =
(
ik + 2

ξ

) (
2α − M2

0
)
−

(
α − 2M2

0
)
∂θ0
∂ξ + 2iΩM0

−2M0
∂M0
∂ξ + ikα,

γ2 =

{
−2

(
ik + 2

ξ

)
∂θ0
∂ξ −

4
ξ2 +

(
∂θ0
∂ξ

)2
−
∂2θ0
∂ξ2

} (
α − M2

0
)

+

{
2iΩM0 − 2M0

∂M0
∂ξ + iαk + α ∂θ0

∂ξ + α
(
ik + 2

ξ

)}
×

{(
ik + 2

ξ

)
−
∂θ0
∂ξ

}
+Ω2 − ik M0

∂M0
∂ξ + iΩ ∂M0

∂ξ + ikα ∂θ0
∂ξ

+ikα
(
ik + 2

ξ

)
+ eθ0 ,

δ2 =
[
Ω2 − k2α + ikα ∂θ0

∂ξ − ik M0
∂M0
∂ξ + iΩ ∂M0

∂ξ +
2ikα
ξ

] (
ik + 2

ξ

)
+

[(
ik + 2

ξ

) {(
∂θ0
∂ξ

)2
−
∂2θ0
∂ξ2

}
+

(
4
ξ2

)
∂θ0
∂ξ +

4
ξ3

] (
α − M2

0
)
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+

{
∂θ0
∂ξ +

(
ik + 2

ξ

)}
eθ0 −

{(
ik + 2

ξ

)
∂θ0
∂ξ +

2
ξ2

}
×

{
2iΩM0 − 2M0

∂M0
∂ξ + iαk + α ∂θ0

∂ξ + α
(
ik + 2

ξ

)}
.

Equation (25) is the desired differential equation re-
vealing two distinct parts. The lowest-order term, ∂0

ξ
g̃s (ξ),

when equated to zero (for any arbitrarily small amplitude),
yields the desired non-local linear dispersion relation
(eigen-value equation). The remaining 3rd order differential
equation (eigen-function equation) gives the corresponding
amplitude variation. The arbitrariness in the linear local
fluctuation level is now removed. Equating the lowest-order
term to zero, we get the dispersion relation as

[
Ω

2 − k2α + ikα
∂θ0
∂ξ
− ik M0

∂M0
∂ξ
+ iΩ

∂M0
∂ξ
+

2ikα
ξ

] (
ik +

2
ξ

)
+



(
ik +

2
ξ

) 


(
∂θ0
∂ξ

)2
−
∂2θ0
∂ξ2



+

(
4
ξ2

)
∂θ0
∂ξ
+

4
ξ3



(
α − M2

0
)

−

{
2iΩM0 − 2M0

∂M0
∂ξ
+ iαk + α

∂θ0
∂ξ
+ α

(
ik +

2
ξ

)}
×

{(
ik +

2
ξ

)
∂θ0
∂ξ
+

2
ξ2

}
+

{
∂θ0
∂ξ
+

(
ik +

2
ξ

)}
eθ0 = 0. (26)

The remaining differential terms in equation (25) are as

α2
∂3g̃s (ξ)
∂ξ3 + β2

∂2g̃s (ξ)
∂ξ2 + γ2

∂g̃s (ξ)
∂ξ

= 0. (27)

The amplitude variation of the GES associated θ̃(ξ) can be
estimated from equation (27), and then, substituting the
obtained g̃s (ξ) in equation (20). It is noted that the mathe-
matical approach of differential operator formalism is quite
general in nature. In fact, handling the problems of wave be-
havior in non-uniform plasma is itself mathematically com-
plicated. The non-uniformity in multiple variables (like, in
the Sun) further complicates the mathematical treatment.
However, this mathematical approach provides a simple way
to derive non-local linear dispersion relation. In the absence
of non-local effects in the plane-geometry approximation
(ξ → ∞), equation (26) is reduced to the usual Jeans mode
(Jeans 1902; Pandey, Avinash & Dwivedi 1994) as

Ω
2 =

(
αk2 − 1

)
. (28)

Its numerical plots on the mode frequencies, phase velocity,
group velocity and time period are given in Figs 11(a, b, c, d)
to offer a known standard to compare with the corresponding
numerical profiles dictated by equation (26). Details will be
discussed in the next section. Now, let us go for the non-local
linear analysis of the SWP fluctuations.

3.2 SWP fluctuations

The considered plasma model for our GES-SWP is the
same as the SIP, but with different plasma parameters
as discussed in section 2. The self-solar gravity effect is
switched off and the Sun acts as an external source of the
solar gravity to monitor and tailor the SWP dynamics.
As earlier, we ignore magnetic field and other effects just
for simplicity. The basic set of normalized coupled time-
dependent equations for the SWP fluctuations is written as

Ion continuity equation:

∂θ

∂τ
+ M

∂θ

∂ξ
+
∂M
∂ξ
+

(
2
ξ

)
M = 0, (29)

Ion momentum equation:

∂M
∂τ
+ M

∂M
∂ξ
= −α

∂θ

∂ξ
−

a0
ξ2 . (30)

These equations simply describe the flow dynamics of the
radially outflowing solar plasma controlled by the external
solar gravity as appearing in the second term in RHS of
equation (30). Applying the same mathematical approach as
adopted in the SIP, we can derive the following differential
equations for the description of the SWP fluctuations as

∂θ̃

∂τ
+ M0

∂θ̃

∂ξ
+ M̃

∂θ0
∂ξ
+
∂M̃
∂ξ
+

(
2
ξ

)
M̃ = 0, (31)

∂M̃
∂τ
+ M0

∂M̃
∂ξ
+ M̃

∂M0
∂ξ
= −α

∂θ̃

∂ξ
. (32)

This is to note that there are only two physical variables
θ̃(ξ) and M̃ (ξ), where g̃s (ξ) is limited up to the SSB only.
Moreover, the external solar gravity affects only the equilib-
rium, and not the fluctuations. Quasi-linear coupling then
provides a channel to solar-equilibrium control of the fluc-
tuations. Now, carrying out the non-local linear plane-wave
analysis, as outlined in the the SIP, we arrive at the following
respective differential equations for the SWP fluctuations as

[
∂

∂ξ
+
∂θ0
∂ξ
+

(
ik +

2
ξ

)]
M̃ (ξ) = iΩθ̃(ξ) − M0

∂θ̃(ξ)
∂ξ

, (33)

[
M0

∂

∂ξ
− iΩ +

∂M0
∂ξ

]
M̃ (ξ) = −α

[
∂θ̃(ξ)
∂ξ

+ ik θ̃(ξ)
]
. (34)

We see that the operators come out to be the same as in
equations (21)-(22). Now, allowing Ô1 to operate over equa-
tion (34) and Ô2 over equation (33), we derive two indepen-
dent differential equations under Ô1Ô2 = Ô2Ô1 as

a0
∂2 θ̃(ξ)
∂ξ2 + b0

∂θ̃(ξ)
∂ξ

+ c0 θ̃(ξ) = 0, (35)

∂M0
∂ξ

∂M̃ (ξ)
∂ξ

+ ik
∂M0
∂ξ

M̃ (ξ) +
∂2M0
∂ξ2 M̃ (ξ) = M0

∂2θ0
∂ξ2 M̃ (ξ)

−

(
2
ξ2

)
M0M̃ (ξ), (36)

where,

a0 =
[
α − M2

0
]
,

b0 =
[
2iΩM0 − 2M0

∂M0
∂ξ + α

∂θ0
∂ξ + 2α

(
ik + 1

ξ

)]
,

c0 =
[
Ω2 − k2α + ikα ∂θ0

∂ξ − ik M0
∂M0
∂ξ + iΩ ∂M0

∂ξ +
2ikα
ξ

]
.

Now, as in the SIP, the lowest-order term in equation
(35) when equated to zero, yields the dispersion relation as

Ω
2 − k2α + ikα

∂θ0
∂ξ
− ik M0

∂M0
∂ξ
+ iΩ

∂M0
∂ξ
+

2ikα
ξ
= 0. (37)
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Table 1. Initial and Boundary Values of Relevant Physical Pa-
rameters

Parameter
Equilibr ium

At ξ=0.01 At ξ=3.5
Fluctuat ion

At ξ=0.01 At ξ=3.5

θ θ = −10−3 θ = −1 θ̃ = −10−5 θ̃ = −3 × 10−4

θ/ = 0 θ/ = −0.62 θ̃/ = −10−6 θ̃/ = −10−4

gs gs =
1
2
ξie

θ gs = 0.6 g̃s = 10−4 N/A

g/s = 0 g/s = 0 g̃s
/ = 2 × 10−5 N/A

g̃s
// = 10−5 N/A

M M =
1
2
ξie

θ/2 M = 10−7 M̃ = 10−11 M̃ = 5 × 10−15

M/ = −eθ/2 M/ = 0 M̃/ = 10−13 M̃/ = 0

It is now simple to reduce equation (37) to a usual acoustic
mode (p-mode) in uniform plasma background under the
plane-geometry approximation

(
ξ → ∞

)
as

Ω
2 − k2α = 0. (38)

This is clear that the analytic form of both the equations,
(24) for the SIP and (36) for the SWP, is the same. Thus,
the M̃ (ξ)-profiles, on both the scales, are invariant under the
applied operator commutator rule.

4 NUMERICAL ANALYSIS AND
DISCUSSIONS

Before the numerical analysis, we apply the usual procedure
of dynamical stability analysis (Dwivedi et al. 2007) to ob-
tain a specific set of input and initial values of the relevant
physical parameters. The initial and boundary values, thus
obtained, are presented in Table 1.

4.1 SIP scale description and discussion of the
fluctuations

We have used a numerical approach based on the incremen-
tal search method (Kiusalaas 2005) to solve the derived dis-
persion relation, equation (26), for the GES fluctuation de-
scription in the SIP. The obtained 3-D plots for real and
imaginary parts of the frequency with variation in the k-
and ξ- spaces are shown in Figs 4(a, b). The frequency plot
in Fig. 4(a) depicts a specific domain in the k- space within
k = 10−4 − 0.8 (λ ≈ 2 × 104 − 2RΘ), where the frequency is
real with non-zero constant value. This is the same domain
representing the usual Jeans mode with purely growing char-
acter. This is quasi-linearly transformed into an oscillatory
mode, termed as the GES-oscillator. The more resolved Fig.
6(a) of the frequency plot depicts that this mode is localized
within a domain of k = 10−4 − 0.8 (λ ≈ 2 × 104 − 2RΘ) in the
k- space and ξ ∼ 1.5− 3.5 (r = 0.4− 1RΘ in the ξ- space. The
limitation (kξ > 1), imposed by the plane-wave approxima-
tion in the present analysis, makes the results in the core
region, ξ = 0 − 1.5 (r = 0.003 − 0.4RΘ), unreliable.

Beyond the above mentioned domain in the k- space, the
plasma GES-wave spectrum begins to exist. The growth rate
is depicted in Fig. 4(b). The GES-oscillator is found to grow
fast, whereas the GES-wave mode grows with a constant
rate. Fig. 4(c) depicts the ratio of the real and imaginary
parts of the frequency with variations in the k- and ξ- spaces.
It is seen that the condition of the linear analysis (Ωi/Ωr < 1)

Figure 4. Profile of the normalized (a) real part (Ωr ), (b) imag-

inary part (Ωi ), and (c) imaginary-to-real part ratio (Ωi/Ωr ) of
the fluctuation frequency associated with the SIP flow dynam-

ics with normalized position (ξ ), and wave number (k). Different

input and initial values used are described in Table 1 in the text.

Figure 5. Same as Fig. 4, but in the extended k- space (high-k)

on the logarithmic scale.

does not hold good in a wide-range domain of the k- and ξ-
spaces and nonlinear analysis is the only remedy, which is
for now, beyond the scope of the present work.

Fig. 5(a, b, c) depict the real and imaginary parts of
frequency and the ratio of imaginary-to-real parts in the
extended k-space to see the nature of natural modes in the
high-k regions. It is seen that the frequency increases rapidly
beyond the shorter wavelength range (k ≥ 104, λ ≤ 190 km).

In Figs 6(a, b), we depict the resolved real and imagi-
nary frequencies in the lower range of the k- space (k ∼ 0−1)
to view the real nature of the GES-oscillator.

In Figs 7(a, b, c), we depict the phase velocity, group ve-
locity and time period variations in the k- and ξ- spaces. The
time period plot as shown in Fig. 7(c) depicts that the time
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Figure 6. Profile of the normalized (a) real part (Ωr ), and (b)
imaginary part (Ωi ) of the fluctuation frequency in the resolved

k- space (low-k) of Fig. 4 associated with the SIP flow dynamics

with normalized position (ξ). Different input and initial values
used are the same as in Fig. 4.

Figure 7. Profile of the normalized (a) phase velocity (Vp), (b)
group velocity (Vg), and (c) unnormalized time period (τ) of the

oscillations (in minute) associated with the SIP fluctuation dy-

namics with normalized position (ξ) and wave number (k). Dif-
ferent input and initial values used are the same as in Fig. 4.

periods of the GES-solar surface oscillations fall in the range
of 3-10 minutes. From this plot, one can also see a small do-
main in the k- and ξ- spaces, where the GES-oscillator modes
are found to have time period ranging between τ = 10 − 80
minutes, but this is not reliable. These physical parameters
in the extended space are shown in Figs 8(a, b, c). Inter-
estingly, the oscillation period is found to be almost con-
stant with three typical values of 3, 5 and 10 minutes pe-
riod in three different zones of all the explored ranges of k
at the SSB. The inset panel in Fig. 8(c) clearly shows the
time period (τ = 10 minutes) at the SSB for k = 10−4 − 100
(λ ≈ 2 × 104RΘ − 1.9 × 104 km) on the linear scale.

We have used the fourth-order Runge-Kutta (Kiusalaas
2005) method to solve the coupled ordinary differential equa-
tions [eqs (20), (24) and (25)] as an initial value problem to
depict g̃s (ξ), θ̃(ξ) and M̃ (ξ) in the k- and ξ-spaces. More-
over, the inhomogeneous effects appearing in the form of
the equilibrium parameters are properly included. The am-
plitude variations of g̃s (ξ), θ̃(ξ) and M̃ (ξ) in the k- and ξ-
spaces are graphically depicted in Figs 9(a, b, c).

Figure 8. Same as Fig. 7, but in the extended k- space (high-k)

on the logarithmic scale. The inset panel in Fig. 8(c) shows the
time period on the linear scale as in Fig. 7(c).

Figure 9. Profile of the normalized fluctuating (a) self-gravity
[g̃s (ξ )], (b) electrostatic potential [ θ̃ (ξ )], and (c) Mach number
[M̃ (ξ )] associated with the SIP flow dynamics with normalized

position (ξ) and wave number (k). Different input and initial

values used are the same as in Fig. 1.

Numerically obtained profiles of amplitude variation for
g̃s (ξ), θ̃(ξ) and M̃ (ξ) in the k- and ξ- spaces clearly imply
that the self-solar gravity fluctuations dominate over the
other two fluctuations by many orders of magnitude. The
fluctuation level of g̃s (ξ) remains almost constant within or-
der of magnitude in the ξ- space and falls down in the k-
space. Furthermore, the form of the M̃ (ξ)-profile [Fig. 9(c)]
in the SIP is identical with that in the SWP [Fig. 16(b)].

In Figs 10(a, b, c), we depict the SIP fluctuation param-
eters [g̃s (ξ), θ̃(ξ) and M̃ (ξ)] in the extended k- space. It is
found that θ̃(ξ) dominates over the g̃s (ξ) for k ≥ 105, which
implies an interesting spectral mode transition from the
gravito-electrostatic to pure electrostatic acoustic regimes.
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Figure 10. Same as Fig. 9, but in the extended k- space (high-k)
on the logarithmic scale.

Figure 11. Profile of the normalized (a) real and imaginary parts

of frequency (Ωr , Ωi), (b) phase velocity (Vp), (c) group velocity

(Vg), and (d) unnormalized time period (τ) of the oscillations
(in minute) associated with the SIP fluctuation dynamics with

normalized wave number (k) for uniform planar plasma approxi-
mation. The significance of different lines is self-explanatory. Dif-
ferent input and initial values used are the same as in Fig. 4.

A set of Figs 11(a, b, c, d) are also constructed to depict
the real and imaginary frequency parts of the usual Jeans
dispersion relation along with the phase velocity, group ve-
locity and time period for uniform plasma under the plane-
geometry approximation. These plots should be helpful to
understand the effect of non-uniform plasma background on
the dispersion properties of the Jeans mode.

4.1.1 Salient features of the GES fluctuations

1. Logically speaking, the GES-oscillator mode is an out-
come of the self-gravitational condensation, wherein, the in-
finitely longer wavelengths of the linear acoustic modes get
condensed during the Jeans collapse itself. The condensation

of the acoustic waves occurs through the cascading process,
via which the long-wavelength wave energy gets transferred
to shorter scales. Finally, the shortest possible wavelength
is reached, where, the gravito-electrostatic coupling is max-
imum, as defined by αk2 = 1. From this condition, we find
k = 1/

√
α ≈ 0.8, which in turn, results in λ ∼ 2RΘ. Al-

though, we start with k = 10−4, but the frequency remains
constant up to k = 0.8. At this specific k-value, both the
GES-forces are in almost complete balance, and hence, the
GES-Sun globally oscillates with the frequency decided by
this k-value. Thus, the validity condition for the plane-wave
analysis should be assessed for k = 0.8. The plane-wave ap-
proximation (kξ ≥ 1) will be satisfied in the radial domain,
ξ = 1.5− 3.5 (r = 0.4− 1RΘ) only. It covers the radiative and
convective zones in the standard terminology. The equilib-
rium inhomogeneity drives the GES-oscillator unstable.

2. The frequency of the GES-oscillator increases [Fig.
4(a)] in between ξ = 1.5 − 3.5. This is due to the in-
crease of the restoring force produced by the electrostatic
sheath-driven rebounding force as discussed earlier. The
GES-oscillation mode causes the whole GES-Sun to oscillate
globally with variable oscillation frequency in the ξ-space.

3. In the k-domain, k = 0.8− 100 (λ ≈ 2.4× 106 − 1.9× 104

km), the dispersive branch of the GES-wave mode exists
[Fig. 8(a)]. The plane-wave approximation for these eigen-
modes is ξ-dependent and all the wave-modes emanate with
almost zero-velocity in the core. Then they propagate out-
ward with increasing phase velocity, achieving supersonic
speed of vp ≈ 1.7cS ∼ 510 km s−1 at ξ = 1.5 (r = 0.4RΘ), and
thereafter, decreases almost to zero near the SSB.

4. In the k-domain, k = 100 − 105 (λ ≈ 1.9 × 104 − 19
km), the non-dispersive branch of the GES-wave modes exist
[Fig. (8a)] in the entire SIP. For such modes, the plane-wave
approximation will be valid in the entire solar interior. Thus,
these waves can form the global standing wave-patterns.

5. In the k-domain, k = 105 − 106 (λ ≈ 19 − 1.9 km), the
usual p-mode exists, as is clear from Figs 10(a, b). These
wave modes propagate independently without any hindrance
from the proposed wall boundary of the GES-Sun. Such
modes are weakly dispersive with phase velocity variation
in the k- and in the localized ξ-domains with maximum
vp = 510 km s−1 at ξ = 1.5. At this location, the polar-
ity of the net GES-force changes from negative to positive,
and the curvature effect also loses its effective role to play.

6. In the domain, k = 0.8−104 (λ ∼ 2.4×106−190 km), the
group velocity [Fig. (8b)] of the GES-wave modes remains
sub-sonic in the whole SIP ξ-domain. Beyond this k-domain,
the p-mode character dominates and its group velocity suf-
fers a sudden increase to supersonic regime with maximum
vg = 360 km s−1 at the SSB for k = 106 (λ ∼ 1.9 × 105 cm).

7. Lastly, the oscillation time periods are in good agree-
ment with the frequency profiles of our calculations. It is
noted that the time periods for the entire calculated k-
domains of the identified GES normal modes lie in the
range of 3-10 minutes at the SSB, and interestingly, this
matches with the observed ones (Christensen-Dalsgaard
2002; Alerts, Christensen-Dalsgaard & Kurtz 2010; Priest
2014)! Of course, the observed 5-minute peak is attributed
to the usual p-mode with variation of the time period in
between 3-10 minutes. This is not the case here, and the
5-minute oscillation links to the dispersive GES-wave mode!
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Stability of the GES Sun 11

Figure 12. Profile of the normalized (a) real part (Ωr ), (b) imag-
inary part (Ωi), and (c) imaginary-to-real part ratio (Ωi/Ωr ) of

the fluctuation frequency associated with the SWP flow dynam-
ics with normalized position (ξ) and wave number (k). Details of

input and initial values are presented in the text.

4.2 SWP scale description and discussion

We have used the same computational methods for eval-
uating the dispersion relation (eq. [37]) of the SWP fluc-
tuations and their amplitude variations (eqs. [35] - [36])
as described before in subsection 4.1. In Figs 12(a, b, c),
we depict the 3-D profiles of real and imaginary frequen-
cies along with the ratio of the imaginary and real parts
of the frequency in the numerically explored k-domain of
k = 10−4−10 (λ ≈ 2×104−0.2RΘ) and ξ- space of ξ = 3.5−750
(r = 1 − 215RΘ). Here, r = 750λJ = 1 A.U. defines the mean
distance from the Sun to the Earth. The 3-D profiles of the
phase velocity, group velocity and time period of the SWP
fluctuations in the same k- and ξ-spaces are portrayed in
Figs 14(a, b, c). Lastly, Figs 16(a, b) describe the 3-D pro-
files of θ̃(ξ) and M̃ (ξ) in the same k- and ξ- spaces.

The dispersion characteristic features of the SWP fluc-
tuations, as shown in Figs 12(a, b, c), clearly match with that
of the well-known plasma acoustic mode. Weak dispersion is
noted in a short range of k = 10−4 − 4 (λ ≈ 2 × 104 − 0.5RΘ)
in the inhomogeneous plasma medium that persists up to
r = 750λJ = 1 A.U. The equilibrium non-uniformity in the
SWP flow and the electrostatic sheath potential are found to
act respectively as a free source of kinetic and potential en-
ergies to drive the acoustic mode unstable. The effect of ge-
ometry, i.e., deviation from plane-geometry approximation
appears to suppress the instability. However, as a whole, the
sound mode is unstable in the SWP. The linear theory (vali-
dated by Ωi/Ωr < 1) is effective within a reasonable domain
of the explored k- and ξ-spaces [Fig. 12(c)].

Figs 13(a, b, c) display the above dispersion properties
in the extended space of k = 10−4 − 108 (λ ≈ 2 × 104 − 2 ×
10−8RΘ). Like in the SIP, the SWP fluctuation frequency
increases towards the shorter wavelength (few hundred me-
ters) thereby exhibiting analogous dispersive mode features
and becoming almost constant in the k-space.

The propagation speeds (phase and group velocities) in

Figure 13. Same as Fig. 12, but in the extended k- space (high-k)
on the logarithmic scale.

the range of k = 10−4 − 10 and ξ = 3.5 − 750 are displayed in
Figs 14(a, b). From Fig. 14(a), it looks, as if, the acoustic
modes are divided into two groups as follows.

The first group of waves, which looks dispersive in
nature, is localized in the domain, k = 10−4 − 6 (λ ≈
2× 104 − 0.75RΘ). The phase velocity of this group increases
radially outwards and acquires supersonic value with sub-
sonic transition beyond about k = 6. The second group of
waves, which is almost non-dispersive in nature within a
wide-range of the ξ-space, is localized in a wide-range of k-
domain [Fig. 14(a) and Fig. 15(a)]. The propensity of weak
dispersion is reflected near the SSB. These waves are found
to travel within sub-sonic range of flow speed. From Fig.
14(b), it is clear that the group velocity is almost constant
in the k-space. Moreover, no distinction is noted between the
two groups. However, the group velocity increases radially
outwards with the asymptotic sonic speed value at 1 A.U.

In Fig. 14(c), we depict the time period plot in the k-
and ξ-spaces. The categorization of the two distinct groups
of waves is clearly visible. The time periods of the dispersive
mode group are found to be larger than those of the non-
dispersive wave group, but at different ξ. It also reveals that
discreteness in the low k-value of the fluctuations results in
discreteness in the oscillation period peaks. In the range of
relatively high k-value and beyond, such discrete peaks in
the oscillation period are not observed.

In Figs 15(a, b, c), we depict the phase velocity, group
velocity and time period in the extended k-space. Also, the
time period decreases towards shorter wavelength. Figs 16(a,
b) depict that the electrostatic potential fluctuation level,
being higher, dominates over the SWP flow fluctuations. One
more thing, to say, is that the amplitude profile of the flow
fluctuations is the same as that of the SIP.

Finally, Figs 17(a, b) show the SWP fluctuation pa-
rameters [θ̃(ξ) and M̃ (ξ)] in the extended k-space. The elec-
trostatic potential fluctuations increase towards the shorter
wavelength regime. The flow fluctuations are not affected
much in the shorter wavelengths. This is in conformity with
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12 P. K. Karmakar et al.

Figure 14. Profile of the normalized (a) phase velocity (Vp),
(b) group velocity (Vg), and (c) unnormalized time period (τ) of

the oscillations (in minute) associated with the SWP fluctuation

dynamics with normalized position (ξ) and wave number (k).
Different input and initial values used are the same as in Fig.

12. In Fig. 14(c), discreteness in the low k-value results in the
τ-discreteness as period peaks.

Figure 15. Same as Fig. 14, but in the extended k- space (high-k)
on the logarithmic scale.

the flow-pattern phenomena as observed in the SIP as well.
Some specific features in addition, are enlisted as below.

1. The phase velocity of the non-dispersive p-modes, as
identified and discussed above in Fig. 14(a)-15(a), varies in
the sub-sonic range only. But, that of the dispersive branch
of the p-modes, varies from sub-sonic to supersonic regime
with maximum vp ∼ 200 km s−1 at 1 A.U.

2. The phase velocity plot in the extended k-domain [Fig.
15(a)] exhibits a similar type of behavior of sub-sonic and
supersonic speeds. The corresponding group velocity [Fig.
14(b) and Fig. 15(b)] acquires sonic speed, vg ≈ 100 km s−1,
at 1 A.U in all the k-domains.

Figure 16. Profile of the normalized fluctuating (a) electrostatic
potential [θ̃ (ξ )], and (b) Mach number [M̃ (ξ ) ] associated with

the SWP flow dynamics with normalized position (ξ) and wave

number (k). Different input and initial values are as in Fig. 12.

Figure 17. Same as Fig. 16, but in the extended k- space (high-k)

on the logarithmic scale.

3. The time period plots [Fig. 14(c) and Fig. 15(c)] exhibit
strong radial dependence with two distinct peaks, τ ≈ 20
minutes each, lying at ξ ≈ 30 (r = 30λJ ≈ 10RΘ away from
the SSB) and ξ ≈ 130 (r = 130λJ ≈ 37RΘ). The time period
varies in between τ = 1 − 5 minutes at 1 A.U.

4. From Fig. 13(a) of the frequency plots in an extended
k-domain, one can notice that the frequency suddenly in-
creases to quite large value of Ωr = 30 − 35 (Ωphys =

30 − 35ωJ ) in the k-range within k = 106 − 108 (λ ≈ 2 km -
20 m) of the acoustic wavelength. From Fig. 15(a), one can
notice that the phase velocity decreases to sub-sonic values
towards the shorter wavelengths. The group velocity exhibits
sonic transition at about ξ = 450 (r = 450λJ ≈ 130RΘ) and
achieves maximum value of vg ≈ 100 km s−1 at 1 A.U.

5. It is now clear that the phase velocity variation from
the SSB to 1 A.U. ranges in between about vp = 10−200 km

s−1. Recently, Vranjes (2011) studied the EIT waves [named
after the Extreme-ultraviolet Imaging Telescope (EIT), on-
board the SOlar and Heliospheric Observatory (SOHO)].
These are described in the literature as Fast Magneto-
Acoustic (FMA) modes. However, the observations show
that a large percentage of these events propagate with very
small speeds, that may be as low as 20 km s−1. This is far be-
low the FMA wave speed which cannot be below the sound
phase speed, the latter being typically larger than 100 km
s−1 in the corona. Then, the idea of internal gravity modes
is provoked to explain these events. Nevertheless, our model
calculations demonstrate the possibility of the low-phase ve-
locity acoustic modes. Thus, even without invoking the idea
of internal gravity modes, the observed phase velocity range
for the EIT waves can be explained in terms of the p-modes!
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5 COMMENTS AND CONCLUSIONS

5.1 Brief comments

It is recognized that the findings of our non-local linear per-
turbation analysis for the GES fluctuations springs up as a
first approximation. Our theoretical-cum-computational ap-
proach for non-local linear perturbation analysis is general in
nature, and consistently, accounts for any arbitrary inhomo-
geneity in the background plasma equilibrium. We recognize
that the plane-wave approximation becomes invalid in the
core region (ξ ≤ 1.5) of the GES-Sun in certain domain of the
k-space as discussed in the text. Probably, the consideration
of spherical wave may be required to describe the proper na-
ture of collective plasma dynamics, specifically, within the
core region. To improve the present perturbational analy-
sis to incorporate the effect of inhomogeneity on the wave
vector, a better approach based on the quasi-classic WKB
or eikonal methods (Elmore 1969; Ostashev & Wilson 2016)
would be needed. These methods could be useful to find out
analytical solution of the GES wave fluctuation level. The
effect of magnetic field on the GES equilibrium and fluctua-
tions could be included within the framework of the Chodura
sheath formalism with proper care of geometrical boundary.

5.2 Conclusions

Based on our theoretical and numerical analyses in detail,
we identify three distinct branches of the radial GES natural
normal modes as described below.

1. GES-oscillator -This mode is purely oscillatory in na-
ture and has finite linear temporal growth. It is localized in
the k- space (k = 10−4−0.8, λ ≈ 2×104−2RΘ) and globalized
in the ξ- space with constant oscillator frequency (Ωr = 1.2)
up to a radial point, ξ = 3. Beyond it, the frequency increases
linearly up to Ωr = 1.5 at ξ = 3.5, which defines the radial
position of the GES-SSB. Its time period is τ ≈ 10 minutes
at the solar surface for all k = 10−4 − 0.8. Its origin and
physics could be understood in terms of the initial scenario
of the Jeans collapse of self-gravitating matter fluids.

Let us argue that the long-wavelength acoustic pertur-
bations condense along with the collapse as because these
waves cannot move away from the collapsing mass. As
time progresses, the acoustic waves in the collapsing plasma
medium will change and readjust in the presence of time-
varying equilibrium inhomogeneity till the collapse is ar-
rested thereby establishing a new equilibrium configuration.
In the final stage, the long-wavelength wave energy will be
transferred to the shorter ones till the gravito-electrostatic
sheath coupling becomes maximum at some specific value of
k = 0.8 (λ ≈ 2.4 × 106 km ≈ 2RΘ).

The constant oscillator frequency in the specified k-
domain (k = 10−4 − 0.8) implicates that the constant fre-
quency corresponds to the trapping of only one particu-
lar acoustic wavelength within the SIP causing thereby the
global surface oscillations observable at the SSB. In other
words, we can say that the whole global wall oscillates like
swelling and contraction of the SSB. The self-solar gravi-
tational wall-produced electrostatic sheath force field, which
we call as the electrostatic sheath rebounding force, acts as
a restoring force field to drive the GES-oscillator.

Quasi-linear effect, i.e., coupling of the equilibrium with

linear normal modes acts as a source; and the curvature
effect, as the sink. The linear growth of the oscillator am-
plitude implies that the source is dominating over the sink,
and hence, the GES-oscillator mode is driven unstable. This
is unique in nature and different from the other known
modes, like g-mode, gravito-acoustic mode, etc. Dispersion
relations of these familiar modes have been derived and well-
studied under constant-gravity approximation in the litera-
ture (Leighton, Noyes & Simon 1962; Frazier 1968a,b; Ulrich
1970; Leibacher & Stein 1971; Deubner 1975; Christensen-
Dalsgaard & Gough 1976). In fact, the self-solar gravita-
tional fluctuations are the property of the Jeans mode,
which convert themselves self-consistently by acoustic trap-
ping process into the GES-oscillator mode.

2. GES-wave - Its fluctuating features are the same as
those of the GES-oscillator, but it has propagatory char-
acter, too. All the GES-waves start propagating with zero-
phase velocity and acquire some maximum value of sonic
speed-order at around r = 1λJ = 0.3RΘ, as discussed in
the text. Finally, the phase velocity again terminates into
almost the zero-level near the defined gravitational sheath
boundary located at ξ = 3.5 (r = 1RΘ). This wave mode
exists over a wide-range of k-domains within k = 0.8 − 105

(λ ≈ 2.4×106−19 km). Typical time period of the dispersive
GES-wave (k = 0.8−4, λ ≈ 2.4×106 −5×105 km) at the SSB
is τ = 5 minutes and that of the non-dispersive GES-waves
(k = 4 − 105, λ = 5 × 105 − 19 km) is τ ≈ 3 minutes. This
mode is also different from the usual gravito-acoustic modes
existing in the literature.

3. Electrostatic acoustic wave - For the larger values of k =
105 − 106 (λ = 19− 1.9 km), the self-solar gravity fluctuation
levels are quite reduced and are eventually converted into
electrostatic fluctuations called as the usual p-modes.

These normal modes are linearly unstable, and hence, can
drive the nonlinear turbulence which is a quite important
subject for astrophysical problems. It is beyond the scope
of our present study. According to our model approach, the
solar surface oscillations should consist of the GES fluctua-
tions as an intrinsic property. The SWP fluctuations are of
pure plasma acoustic mode in origin, that is, the p-modes
in conventional helioseismic terminology. Consideration of
spherical harmonics is the only remedy for depicting the core
plasma dynamics, which may be quite complicated to han-
dle, theoretically as well as numerically. We would like to
comment that the experimental measurements of the self-
solar gravity fluctuations will be required to ascertain the
reality of these GES-associated modes.

5.3 Future scopes

Further improvements and necessary refinements of the
GES-theory for both the equilibrium as well as the fluctua-
tions are to be implemented so as to make it more realistic.
Our proposed GES model offers a wide scope of future in-
terdisciplinary research work for Plasma Physicists and As-
trophysicists both. Nevertheless, we would like to pinpoint
a couple of research problems to be undertaken in imminent
course of our study.

1. It is intuitively felt that relaxing the constant tem-
perature approximation, and by using the energy transport
equation invoking thermal energy minimization for the SIP
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14 P. K. Karmakar et al.

and SWP both; the solar chromospheric T-valley problem
is likely to be resolved under the proposed GES model.

2. Study of parametric coupling of the GES-oscillator
with the SWP bulk acoustic modes forms another interest-
ing problem in astrophysical plasmas. This may give the
possible signatures of the GES effect on the SWP mode at
heliosesmic distances.
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APPENDIX A: PROOF FOR
CHARGE-CONSERVATION PRINCIPLE

Under the Boltzmannian electron density distribution, the
electron continuity equation becomes redundant as because
the basic set of equations (eqs. [1], [2] & [4]) forms a closed
set. However, we will use it to estimate the electron current
flowing across the spherical concentric surfaces at varying
radial positions relative to the helio-center. Thus, one can
write the normalized form of the total electron flux conser-
vation in spherical geometry with conventional notations as

Ne (ξ)Ve (ξ)ξ2 = NeiVeiξ2
i . (A1)

Let us now consider Vei as the initial equilibrium electron
velocity, equal to the Maxwell-Boltzmannian mean thermal
velocity, Vei = (mi/me)1/2eθ , as derived and discussed by
kinetic approach in the context of the plasma sheath physics
and probe theory (Bellan 2004, Ch. 2). Now, the normalized
form of the electron current density can be expressed as

Je = −Ne (ξ)Ve (ξ) = −Nei

(
mi

me

)1/2 (
ξi
ξ

)2
eθ . (A2)

The role of spherical geometry in electron flux density vari-
ation now appears in this expression (eq. [A2]), which was
indeed missing in our earlier expression. So, the present form
offers a correction to the earlier one (Dwivedi et al. 2007;
Karmakar & Dwivedi 2011). The normalized ion current
density due to inertial motion of the ions is now given as

Ji = M . (A3)

The net current density, J, flowing across the spherical sur-
faces of the GES plasma can be expressed as

J = Ji + Je = M −
(

mi

me

)1/2 (
ξi
ξ

)2
eθ, (A4)

where, the normalized initial densities, Nei = Nii = Ni = 1 at
ξ = ξi . The first term in equation (A4) corresponds to the in-
ertial flow velocity produced by gravito-electrostatic sheath
forces, which is written in splitted form in our previous pub-
lication (eq. [26] in Dwivedi et al. 2007). The second term
in equation (A4) arises due to exponential electron current
as discussed and estimated in the case of the basic sheath
physics and probe theory (Bellan 2004). As a consequence, in
the steady-state, the charge conservation equation in spher-
ically symmetric geometry is expressed as

∂J
∂ξ
+

(
2
ξ

)
J = 0. (A5)

This is obtained by combining the electron and ion con-
tinuity equations in spherically symmetric geometry. This
equation (eq. [A5]) has been solved numerically using the
expression of the net current density (eq. [A4]) and the plots
are shown in Figs. 1(f) & 2(f). The net current density pro-
file in the SIP, as shown in Fig. 1(f), differs from that shown
in Fig. 4(a) of Karmakar & Dwivedi (2011). This difference
could be attributed to the present consideration of the role
of geometry in the calculation scheme of the electron ther-
mal flux (eqs [A1]-[A2]). The SWP current profile is not
much affected as shown in Fig. 2(f). The charge conserva-
tion equation (eq. [A5]) is well-satisfied both in the SIP as
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Stability of the GES Sun 15

well as SWP for the net current density given in equation
(A4) as shown in Figs. 1(f) & 2(f).

It is, thus, inferred that a finite non-zero current, with
sign reversal beyond the SSB, does indeed exist under the
plasma sheath formalism of the Sun without violating the
basic charge conservation principle.
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