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Space plasmas provide abundant evidence of a highly energetic particle population that results in a

long-tailed non-Maxwellian distribution. Such plasmas can be effectively modeled with kappa dis-

tribution. The superthermal population in the tail of kappa distribution can have significant effects

on the wave dynamical processes. We perform the fluid simulations to examine the effects of super-

thermal populations on the breaking of the electrostatic ion-acoustic (IA) wave, which is the most

fundamental mode, existing in the unmagnetized plasmas. We construct a fluid model for exciting

IA waves by employing a kappa distribution function for the superthermal population of electrons

along with inertial cold ions (protons). We focused on the nonlinear excitations; in the form of ion

acoustic solitary wave (IASW) structures formed through the process of wave breaking, and inves-

tigated the role of superthermal electron population in the initiation of the steepening, wave break-

ing, and propagation characteristics of the IASWs in plasma. From the output of the simulation, we

established the criteria for the steepening time based on the variations in the phase velocity of the

IASWs. Furthermore, we examined the maximum ponderomotive potential and ponderomotive

frequency during the wave breaking process. We found that the time corresponding to the peak

in the maximum ponderomotive potential is the time of the initialization of the wave breaking

process. We present a detailed investigation of the role of the ponderomotive forces acting on the

plasma at each time step, which explains the physics of the wave breaking in nonthermal plasmas.

Published by AIP Publishing. https://doi.org/10.1063/1.4991467

I. INTRODUCTION

One of the most obvious features of the plasma in the

Earth’s or any other planetary magnetospheres is the exis-

tence of the rich variety of waves in it. The wave modes

depend upon the plasma properties, which makes their study

in plasma very important. The nonlinear propagation of these

waves in plasma has a fundamental limitation given by the

wave breaking threshold. The study of breaking of large

amplitude plasma waves in plasma is a subject of both funda-

mental as well as practical interest as it is one of the impor-

tant mechanisms for heating and acceleration of the plasma.

In many practical situations like, in particle accelerator

experiments, wave breaking limits the maximum achievable

accelerating electric field. In this situation, a pertinent issue is

the maximum magnitude of the wave electric field that can

be attained without wave breaking. Wave breaking analysis

goes back to classical papers by Dawson,1 and Davidson and

Schram.2 Waves in a uniform plasma were found to be stable

below the critical amplitude. For a larger amplitude, it was

shown that the elements of the plasma electron fluid that

started out in different positions overtake each other while

moving back and forth during the passage of the wave. For

non-relativistic plasmas, this overtaking happens when the

peak fluid velocity equals the phase velocity of the plasma

wave. Most of this wave breaking models use the fluid

approach, which in electrons and ions are treated as a fluid3,4

or one of them is considered as Maxwellian distributed.

However, the plasma generally follows non-Maxwellian type

distributions in the regions of space where plasma accelera-

tion is prominent.

The nonthermal particle distributions are ubiquitous in

various space plasmas, and their presence being widely con-

firmed by spacecraft measurements in planetary magneto-

spheres (e.g., plasma sheet,5–7 magnetosheath,8 radiation

belt,9,10 solar wind11,12), and laboratory13,14 plasma. Such

plasma supports the existence of highly energetic particles

(electrons, in principle) at velocities exceeding the thermal

speed. The presence of this excess superthermal component,

which may be due to various acceleration mechanisms, gives

rise to a long-tailed velocity distribution, which deviates,

substantially from the Maxwellian. One approach to demon-

strate the non-Maxwellian plasma is provided by the kappa

distribution,15–19 which was introduced by Vasyliunas16 to

fit phenomenologically the power law-like dependence of

electron velocity distribution functions observed in space.

Such distributions have high-energy tails deviated from a

Maxwellian, which can incorporate the superthermal popula-

tion. The three-dimensional isotropic kappa velocity distri-

bution function has the following form:16,17,20

fjðvsÞ ¼
n0s

ðpjh2
s Þ

3=2

Cðjþ 1Þ
Cðj� 1=2Þ 1þ v2

s

jh2

� ��ðjþ1Þ

: (1)

In the equation above, C is the gamma function, and n0s and

vs are the density and velocity of plasma species s. h2
s ¼

½ðj� 3=2Þ=j�v2
th;s is the most probable speed or characteristic
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speed, where vth;s ¼ ð2kBTs=msÞ1=2
is the thermal speed of

the plasma species, kB is the Boltzmann constant. Ts and ms

are the temperature and mass of the plasma species. The

spectral index j decides slope of the tail of the distribution

function, and it is always greater than 1.5. The smaller value

of j enhances the superthermal population in the system,

which leads to a decrease in the slope of the tail. As the kappa

index j!1, the kappa distribution function converges to

the Maxwellian distribution function. For space plasma, the

kappa index is observed in the range,20 2 < j < 6. The one-

dimensional form of the kappa distribution function can be

obtained by integrating Eq. (1) over two velocity space coor-

dinates as17

fjðvsÞ ¼
n0s

ðpjh2
s Þ

1=2

CðjÞ
Cðj� 1=2Þ 1þ v2

s

jh2

� ��j

: (2)

Most of the plasma wave phenomena seen in the laboratory

plasmas exist in space plasmas as well. However, detecting

breaking of any wave in space plasmas is technologically diffi-

cult, because of the requirement of multiple spacecraft to track

the evolution of the wave breaking process. Consequently, per-

forming computer simulation is the best way to tackle such a

problem in space plasmas. Recently, Kakad et al. performed

the fluid3,4 and particle-in-cell21,22 simulations of the breaking

of ion acoustic solitary waves (IASWs). They proposed that

the long wavelength perturbation in the equilibrium electron

and ion densities gives rise to two long-wavelength IASWs,

which later breaks and evolves into multiple coherent solitary

wave pulses. These pulses are like the solitons as they retain

their shape during propagation in the system. They have shown

that the initiation of the breaking of the wave depends on the

amplitude and width of the perturbations, and on the plasma

temperature.

Wave breaking is one of the components responsible for

heating/acceleration of the charge particles in plasmas. As

spacecraft observations show the presence of superthermal

plasmas in the regions, where the particle acceleration pro-

cesses are prominent, the simulations of the wave breaking

process incorporating the superthermal population in the

model are of great interest. Such simulation studies were not

carried out in the past. In view of this, we perform a fluid

simulation of the breaking of IASWs in the presence of

superthermal electrons. The major achievement of this study

is that we have been able to give a detailed understanding of

the driving mechanism responsible for the wave breaking

process in plasmas. The remaining flow of the paper is as fol-

lows: the plasma simulation model is discussed in Sec. II,

the simulation results identifying initiation of the steepening

and breaking in terms of various criteria are discussed in

Sec. III, and in Sec. IV, we conclude the main results of the

present study.

II. PLASMA MODEL

We consider two-component unmagnetized collisionless

plasma, which consists of cold ions and superthermal elec-

trons.23,24 The dynamics of ions is governed by the continu-

ity and momentum equation as follows:

@ni

@t
þ @ðniviÞ

@x
¼ 0; (3)

@vi

@t
þ vi

@vi

@x
¼ � qi

mi

@/
@x

; (4)

where ni and vi are the density and velocity of the ions in the

x-direction, respectively. / is the electrostatic potential in

the system, and mi and qi ¼ þe are the mass and charge of

the ions, respectively. In the model, superthermal electrons

are regulated by the kappa velocity distribution function

given by Eq. (2). The electron density is obtained by taking

the first moment of the one-dimensional kappa velocity dis-

tribution function. It is written as

ne ¼ ne0 1þ qe/
ðj� 3=2ÞkBTe

� ��jþ1=2

: (5)

In the equation above, Te is the temperature of the electrons

and qe ¼ �e is the electron charge. The electron and ion

fluids are coupled by the Poisson equation

@2/
@x2
¼ � qini þ qeneð Þ=�0: (6)

At the equilibrium, plasma follows quasi-neutrality, under

which the equilibrium ion density is equivalent to the equi-

librium electron density, i.e., ni0 ¼ ne0. Here ni0 and ne0 are

ion and electron density at the equilibrium. For simplicity,

we normalized Eqs. (3)–(6) with appropriate scaling quanti-

ties. So, Eqs. (3), (4), and (6) can be written as

@Ni

@tn
þ @ðNiUiÞ

@xn
¼ 0; (7)

@Ui

@tn
þ Ui

@Ui

@xn
¼ � @U

@xn
; (8)

Ne ¼ 1� U
j� 3=2

� ��jþ1=2

; (9)

@2U
@x2

n

¼ �Ni þ Ne: (10)

The ion fluid velocity vi, the ion density ni, the electron den-

sity ne and the electrostatic potential / are normalized as

Ui ¼ vi=CIA; Ni ¼ ni=ni0; Ne ¼ ne=ne0, and U ¼ e/=kBTe,

respectively. The space is normalized by the electron Debye

length kDe ¼ ðkBTe�0=ne0e2Þ1=2
, and the time is normalized

by inverse of the ion plasma oscillation frequency x�1
pi

¼ ð�0mi=ni0e2Þ1=2
. It gives xn ¼ x=kDe, and tn ¼ xpit. The

characteristic ion acoustic sound speed used in the velocity

normalization is CIA ¼ ðkBTe=miÞ1=2
.

In the fluid code, we solve Eqs. (7)–(10) numerically to

obtain the electrostatic potential for different initial conditions

and plasma parameters. The spatial derivatives in the model

equations are computed numerically by using the fourth order

finite difference method. We integrate equations in the time by

using the leap-frog method with the time step Dt, which is sec-

ond order accurate. The discretization in the space may gener-

ate the small wavelength numerical instability. Hence to
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compensate that error, we use the fourth order compensating

filter which has the expression as follows:3,25

F�h ¼
5

8
Fh þ

1

4
ðFh�1 þ Fhþ1Þ �

1

16
ðFh�2 þ Fhþ2Þ; (11)

where Fh represents physical quantity defined at grid point

“h”. This one-dimensional fluid simulation is performed over

the periodic boundaries.

In the present simulation study, we assume that the flow

velocity of the ion at t¼ 0 is zero, i.e., viðxÞ ¼ 0. The equi-

librium densities are set to be one, i.e., ni0 ¼ ne0 ¼ 1 and the

initial electrostatic potential, / ¼ 0. We perturbed these

background densities by superimposing the Gaussian shape

perturbation such that ns ¼ ns0 þ dn. The form of the density

perturbation is given as follows:26,27

ns ¼ ns0 þ Dn exp � x� xc

l0

� �2
" #

: (12)

Here, s ¼ e; i for electrons and ions, respectively. In the

equation above, Dn is the amplitude of the perturbation, ns0

is the equilibrium density of plasma species. xc is the center

of the simulation system, and l0 controls the width of the per-

turbation. We use the equal amplitude of perturbation in the

density of the plasma species to satisfy the quasi-neutrality

condition at xpit ¼ 0. All simulation runs are performed for

the grid spacing Dx ¼ 0:2kDe and time interval xpiDt ¼ 0:1.

The system length, Lx is considered as per the requirement to

achieve stability before the pulse reaches to the boundaries

of the system after breaking of the wave.

The algorithm of the fluid code works in the following

fashion. We define the initial plasma parameters, such as the

equilibrium density and velocity of each plasma species,

the perturbation parameters (l0 and Dn), and the value of the

superthermal index, j. We initiate the code with the identical

perturbations in the equilibrium densities of the electrons

and ions as defined by Eq. (12). By using the initial values of

the variable Ni, Vi and U, the next time step values of Ni and

Ui are obtained with the help of the time varying Eqs. (7)

and (8). The main concern here is about the electron density,

for which there is no time dependent equation to upgrade its

value to the next time. We have Eq. (9) for the electron den-

sity, which is a function of the j-index and U. Hence, the

electron density can be obtained for a given j-index and the

electrostatic potential at that time step. In this way, the j-

index is incorporated into the code through Eq. (9).

It may be noted that the electrostatic potential depen-

dency of the electron density in Eq. (10) makes the Poisson

solver numerically unstable with an implication of the

method used by Kakad et al.3,4,26,27 Hence, we use the itera-

tive approach with the successive-over-relaxation (SOR)

method for such a kind of Poisson equation.23,28,29 The dis-

cretized form of the Poisson equation with the implication of

the SOR method is as follows:

�U
rþ1

j ¼ Ur
j þ f Urþ1

j � Ur
j

h i
¼ ð1� fÞUr

j þ fUrþ1
j : (13)

Wherein the discretized equation of Urþ1
j is as follows:

Urþ1
j ¼1

2
Ur

jþ1þUrþ1
j�1 þDx2 Ni� 1� Ur

k�3=2

� ��kþ1=2
" #

j

8<
:

9=
;:

(14)

In the equation above, j is the grid point number, r is the iter-

ation number which can be any integer, and f is the prede-

fined constant which is known as the relaxation parameter.

We considered f ¼ 1.7 for all our simulation runs. In the

SOR method, the approximate value of the solution is impro-

vised to �U
rþ1

j by taking a weighted mean of Ur
j and Urþ1

j ,

which are the previous and current iteration value of poten-

tial, respectively. To terminate these iterations, we have used

following termination criteria in the simulation:

maxjUr � Urþ1j < s: (15)

Here s is tolerance. We have taken s ¼ 10�10 for all simula-

tion runs. In solving the Poisson equation with the SOR

method, initially, the value of / at the previous time step is

used as the initial guess. By using this guess value, the elec-

tron density calculated, which is substituted in Eq. (10), and

then Eq. (10) is solved for the electrostatic potential. After

every iteration, the newly calculated value of / will be used

for a new guess, and the procedure will be repeated. The iter-

ations will stop after reaching the criteria given by Eq. (15).

In this way, the kappa is incorporated in the calculation

through Eq. (9). Due to the kappa density distribution the

charge separation occurs, i.e., left-hand side of the Eq. (10)

becomes finite. This charge separation leads to the genera-

tion of a finite electrostatic potential at the very first time

step.

In order to observe the breaking phenomenon, selection

of the width of the perturbation (l0) is crucial in the simula-

tion.3 To discuss the role of l0 in the wave breaking, we

derive the linear dispersion relation of the IA waves from

Eqs. (3)–(6) as23

x2 ¼
k2k�2Dex

2
pi

1þ k2k�2De

: (16)

Here, k�De ¼ ð
j�3=2
j�1=2
Þ1=2kDe is the kappa dependent Debye

screening length or modified Debye length. Equation (16) can

be converged to the ion plasma frequency for k2k�2De � 1.

This condition is possible only, when k� k��1
De i.e., when the

wavelengths of the wave modes associated with the perturba-

tion are less than the kappa dependent Debye screening

length. This indicates that such a wave mode would contrib-

ute to the ion plasma oscillations, which are dispersive in

nature. Furthermore, the wave modes with the wavelength

greater than the kappa dependent screening length would con-

tribute to the ion acoustic waves, which are nondispersive in

nature.30

Generally, solitary waves are formed because of the bal-

ance between nonlinearity and dispersion in the plasma.

Hence, in order to have stable solitary waves, the energy

given to the system in the form of Initial Density

Perturbation (IDP) should be distributed among all the dis-

persive as well as the nondispersive wave modes. However,
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when the energy is given in the excess amount to only the

nondispersive modes, then the system has to generate the dis-

persive modes to achieve the stability. This is achieved by

disintegrating the long wavelength modes in the system into

the short wavelength modes. This process is observed as the

wave breaking in plasma. Hence, the condition k � k��1
De

i.e., the wavelength of wave modes associated with the initial

density perturbation should be greater than the kappa-

dependent screening length of the system must be satisfied

for the wave breaking phenomenon.

The power spectra obtained by taking the Fast Fourier

Transform (FFT) of the perturbation helps us to identify the

discretized power present in the different wavelengths asso-

ciated with the perturbation. Figure 1 shows the power spec-

tra of the two perturbations, which are obtained by taking the

FFT of the perturbation as given by Eq. (12) for two different

values of l0, i.e., l0 ¼ 20 (red curve) and 30 (blue curve) by

keeping fix Dn¼0.4. Each of these power spectra gives the

information of the power distributed over the wavelengths

for two different perturbations. The two vertical lines in this

plot indicate the wave numbers associated with the kappa

dependent Debye screening length for j ¼ 2 and 20. These

dash lines are used to identify the wavelengths greater

(lesser) than the kappa-dependent screening length i.e., long

(short) wavelength for specific kappa. Generally, wave num-

bers greater (lesser) than the dashed lines correspond to short

(long) wavelengths. This is due to the inverse relationship of

wave number with the wavelength. We observed that the

increasing width of the perturbation restricted the power to

the shorter k-range, which are associated with the long wave-

length wave modes of the perturbation. Hence, breaking is

expected for such values of l0. We used this kind of initial

perturbations in the present study.

We perform the fluid simulation for the different simula-

tion parameters given in Table I. We consider 8 different

values of the j index. For each value of the j, amplitude of

the perturbation is varied from 0:2–0:4 and then for each

value of perturbation amplitude the width of perturbation is

varied from 20kDe–40kDe. In this way, total 200 simulation

runs are used in this study. These simulation run are used to

get information on the onset of various stages in the wave

breaking process. This analysis will help us to understand

the role of different variables on the wave breaking process.

Also, one of the runs from this table is used to explain the

wave breaking process and the role of ponderomotive force

on it in detail.

III. SIMULATION RESULTS

A. Generation of stable IASWs

First, we undertake the discussion of the various time

stages involved in the generation of IASWs through the

wave breaking process. Figure 2 shows the schematic of var-

ious stages up to and beyond the wave breaking of IASWs.

We perturbed the system by using identical long-wavelength

standard Gaussian perturbations in the ion and electron

densities.3 Due to the identical IDPs, the quasi-neutrality

condition is satisfied, which gives zero electrostatic potential

at xpit ¼ 0. The electrons are in the nonthermal equilibrium,

which creates charge separation in the system. The charge

separation leads to the generation of finite electrostatic

potential at the very first-time step i.e., xpit ¼ t1. The gener-

ated electrostatic potential at this stage is shown in Fig. 2(a).

This electrostatic potential decreases with time. After falling

to a certain amplitude threshold, the trough formation begins

at the top of the potential pulse, which is shown in Fig. 2(b).

The time corresponds to this stage (i.e., xpit ¼ t2) is termed

as the “trough formation time”. The trough at the center

grows deeper with time. This leads to the formation of the

two indistinguishable pulses at xpit ¼ t3 as depicted in Fig.

2(c). These pulses propagate opposite to each other towards

the system boundaries. During propagation, their amplitude

grows with time. After reaching a certain threshold, the trail-

ing edges of both the pulses start to steepen. One of the snap-

shots of such pulses at time xpit ¼ t4 is shown in Fig. 2(d).

The time corresponding to the initiation of the steepening,

we termed it as “steepening time”. At the maximum

FIG. 1. The power spectra of the long-wavelength perturbation with Dn ¼
0:4 and l0 ¼ 30 and Dn ¼ 0:4 and l0 ¼ 20. The two vertical lines in this plot

indicate the wave numbers associated with the kappa dependent Debye

screening length for j ¼ 2 and 20.

TABLE I. The input parameters used in the 200 simulation runs. We con-

sider Dx ¼ 0:2kDe; Dt ¼ 0:1x�1
pi , and the system length Lx ¼ 20 000kDe for

all simulation runs. The information of the specific simulation run is read as,

e.g., Run-1(Ia). In this simulation run number, the number “1” specifies the

j value, which is 2. The roman number I00 represents the perturbation ampli-

tude i.e., 0.2 (20% of the equilibrium density), and the alphabet “a” is for

the width value, which is 20. Hence, Run-5(IVe) has input j¼ 10,

Dn ¼ 0:35, and l0 ¼ 40.

Amplitude Width

Run No. j Sub run No. Dn Sub run No. l0

1 2

2 4 I 0.2 a 20

3 6 II 0.25 b 25

4 8 III 0.3 c 30

5 10 IV 0.35 d 35

6 13 V 0.4 e 40

7 17

8 20
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steepening, the amplitude of the pulses reaches a critical

amplitude after which the IASW pulses break. One of the

schematics closed to the initiation of the wave breaking is

shown in xpit ¼ t5 in Fig. 2(e). The time step at which the

initiation of the breaking starts is referred to as the “wave

breaking time”. The breaking of both pulses leads to the for-

mation of two chains containing two or more coherent

IASW pulses. Subsequently, on the trailing edge of the

smallest pulse, small amplitude oscillations are formed.

These are ion acoustic oscillations. The ion acoustic oscilla-

tions generally move with speed vs0, which is less than the

speed of any solitary wave pulse in the chains. Each of the

solitary pulses in the chain propagates with a different speed.

It is observed that the solitary pulse amplitude is directly

proportional to the pulse velocity. Hence, after some time,

these pulses and IA oscillations are well separated from each

other. This leads to the stable propagation of the IASW

pulses after some time. A schematic of the chain of stable

IASW pulses along with IA oscillations propagating towards

the right-side of the simulation boundary at xpit ¼ t5 is

shown in Fig. 2(f).

B. Spatio-temporal evolution of coherent IASWs

To get more insights into the evolution and propagation

of the IASW structures in strongly (smaller j) and weakly

(larger j) nonthermal plasmas, we examine the spatial and

temporal evolution of the IASWs in two simulation runs.

Figure 3 shows the spatio-temporal evolution of the electro-

static potential (/) for (a) Run-1(Vc) (l0 ¼ 30; Dn ¼ 0:4
with j¼ 2) and (b) Run-8(Vc) ðl0 ¼ 30; Dn ¼ 0:4 with

j ¼ 20Þ. We used 20 000kDe as the system length for both

simulation runs, however, for the better visualization the spa-

tial window in the figure is restricted as per the requirement.

Here, x� xc ¼ 0 represents the center of the system. The

inset plot in each panel of Fig. 3 shows a zoomed portion of

FIG. 2. Schematic of the evolutionary

stages of the electrostatic potential

involved in the generation of a chain

of stable IASWs through the wave

breaking process. IA oscillations (IA

osc) following the chain of stable IA

solitons are marked in panel (f).

FIG. 3. The spatial and temporal evolution of the electrostatic potential in the system for the case Run-1(Vc) (l0 ¼ 30; Dn ¼ 0:4, j ¼ 2), and Run-8(Vc)

ðl0 ¼ 30; Dn ¼ 0:4; j ¼ 20Þ. The inset shows the zoomed portion of the right side propagating pulses. In this, the dark red and yellow bands correspond to the

IASW pulses, whereas the alternate dark and light blue bands are due to the IA oscillations. The black and white horizontal dashed lines indicate the steepening

ðxpitSTÞ and breaking ðxpitBRÞ time of the wave, respectively. The numbers represent the IASW pulse number in the chain. It may be noted that in panel-(a),

the pulses 7, 8, and 9 are not yet evolved to form distinct solitary pulses. Hence, they are shown by just a single arrow. At the final stage, 9 and 6 number of sol-

itons are formed in Run-1(Vc) and Run-8(Vc), respectively.
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the main figure for better visualization of the separated

IASW pulses and IA oscillations. The red and yellow color

bands in these insets are due to the evolving IASW pulses,

whereas the alternate dark and light blue bands represent the

IA oscillations. In both runs, there are two sets of red and yel-

low bands, which represent the presence of two sets of evolv-

ing IASW pulses. One group propagates toward the right side

boundary, whereas the other propagates toward the left side

boundary. The inverse of the slope of these color bands gives

the phase velocity of the respective pulses. The pulses propa-

gating toward the right side boundary has positive slopes,

whereas those propagating toward the left-side boundary have

negative slopes. This is due to one chain of pulses moving in

the opposite direction of the other. In Fig. 3(a), the slope of

the red and yellow bands is higher than the slope of the red

and yellow bands in Fig. 3(b). This indicates that the IASW

pulses have smaller propagation speed in plasma with higher

superthermal population ði:e:; j ¼ 2Þ in comparison with the

plasma with lower superthermal population ði:e:; j ¼ 20Þ. In

Figs. 3(a) and 3(b), the horizontal dashed black lines are drawn

at the steepening time, and the white lines are drawn at the

wave breaking time. The criteria adopted to identify steepening

and wave breaking time of IA pulses are discussed in

Subsection III E. From Fig. 3, we observed that the steepening

and breaking occur early for the system with the less superther-

mal population (larger j). The time interval between the steep-

ening and breaking of the wave is also found less for such a

plasma system. The amplitude of the IASWs found to be

smaller in the system with a more superthermal population

(i.e., j ¼ 2Þ than the system with a less superthermal popula-

tion (i.e., j ¼ 20Þ. However, the number of pulses formed

after breaking of the long wavelength IA pulse are more (i.e.,

9) in the highly superthermal populated system than the lower

superthermally populated system (i.e., 6).

C. Dispersion characteristics before and beyond wave
breaking

In general, the free energy given to the system in the

form of the IDP gets transferred to the different wave modes

in the system. From the dispersion characteristics of the

evolving system, we can understand the existing wave modes

and their strength at different stages of the evolution. We

obtain the x� k diagram by taking the Fast Fourier

Transformation (FFT) of the electrostatic potential in space

and time. Figure 4 shows the dispersion diagram of

Run-1(Vc) (l0 ¼ 30;Dn ¼ 0:4 with j¼ 2) and Run-8(Vc)

ðl0 ¼ 30;Dn ¼ 0:4 with j ¼ 20Þ during two phases, namely

before, and after wave breaking. In these plots, the grey and

white dashed lines, respectively, represents the linear disper-

sion relation obtained with ðNi ¼ NeÞ and without ðNi 6¼ NeÞ
the plasma approximation.23 Figure 4(a) is the dispersion

diagram of the Run-1(Vc) for the time xpit ¼ 0� 178,

which is for the time up to which the formation of two pulses

takes place, i.e., before the breaking time. In this figure, we

can see that the energy given in form of the IDP is trans-

ferred to the long-wavelength modes; hence the maximum

power is restricted to the shorter k range. A similar disper-

sion trend is observed for the Run-8(Vc) during the time

xpit ¼ 0� 109:2, (i.e., before breaking time) except the

power distributed among the k range, which is more for

j¼ 20 than j¼ 2. To understand the distribution of free

energy in the modes after wave breaking, we plot FFT after

breaking of the wave. Figures 4(c) and 4(d) are the respec-

tive FFTs of the Run-1(Vc) for the time xpit ¼ 900� 1078

and Run-8(Vc) for the time xpit ¼ 600� 709:2. The disper-

sion characteristics show that the energy which was

restricted to the shorter k range before wave breaking is now

shared among the large k range. This indicates that the break-

ing of the wave generates shorter wavelength modes in the

system, and thus induces the dispersive effects in the plasma

system.

D. Evolution of the energies during the generation
of stable IASWs

We compute the maximum kinetic energy of ions

ðKEÞimax ¼ 1
2
ðU2

i Þmax, and the maximum electrostatic poten-

tial energy Esmax ¼ 1
2
ðE2Þmax in the simulation runs. As an

FIG. 4. x-k dispersion diagram for

before and after wave breaking time

for the Run-1(Vc) and Run-8(Vc). The

upper (lower) two panels show FFT

before (after) wave breaking.
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example, the evolution of the Esmax and ðKEÞimax for the

Run-1(Vc) and Run-8(Vc) is shown in Fig. 5. The dashed

vertical lines in this figure indicate the timing of the different

evolutionary stages that we have discussed in Fig. 2. The

evolution of ðKEÞimax for Run-1(Vc) and Run-8(Vc) is dem-

onstrated in Fig. 5(a). In this figure, the red curve is for the

run with k¼ 20, and the blue curve is for the run with j¼ 2.

For the both cases, we observe the similar trend of the evolu-

tion of the kinetic energy. The ðKEÞimax is initially zero

because there are no ion motions, and then it gradually

increases with the increase of the finite electrostatic potential

in the system and achieves first maxima at the trough forma-

tion time, t2. After the trough formation, ðKEÞimax further

remains constant for a long time, and then it starts to increase

again with the initiation of the IA pulse steepening. This

increase in the ðKEÞimax continues until the IA pulses become

stable. After achieving the stability by the IA pulses, the

ðKEÞimax observed was almost constant. In Fig. 5(b), the time

evolution of the maximum of electrostatic potential energy

Esmax is depicted. At the very first time step, the finite poten-

tial is generated in the system, hence Esmax starts with the

finite value. The Esmax remains constant until the wave steep-

ening, and thereafter it starts increasing. This increase in the

Esmax is continued until the stability of the pulses. The Esmax

remains almost constant after achieving the stability by these

pulses.

E. Wave speed and ion acceleration during steepening
and wave breaking

To understand the effects of the wave breaking on the

ion fluid, and IASW propagation velocity (Vp), we plotted

the variation of the phase velocity of the waves and maxi-

mum ion fluid velocity. Figure 6(a) demonstrates the phase

velocity of the IASW pulse in the high and low superthermal

population systems. We calculate the phase velocity after the

trough formation time, as the wave propagates only after the

trough formation. We can see that the phase velocity reaches

the finite value after some time of the trough formation. The

Vp remains approximately constant until the formation of

the two long-wavelength IASW pulses. The phase velocity

increases thereafter, and it reaches the maximum. We con-

sider this particular time as the time of the steepening of the

IA pulse (i.e., xpitST). Later it decreases, and this decrease

continues until the breaking of the IA pulse. As the pulse

break, Vp slightly increases thereafter. It should be noted

that, after wave breaking, the maximum phase velocity is

calculated for the leading pulse in the chain. The phase

velocity of each pulse in the chain becomes almost constant

after achieving the stability.

In Fig. 6(a), we observed that the magnitude of phase

speed (Vp) is smaller for small kappa index as compared to

the large kappa. This is identical to the results obtained from

the nonlinear fluid theory by Saini et al.24 and the fluid simu-

lation by Lotekar et al.23 This kappa dependence can be

explained on the basis of understanding given by Hapgood

et al.31 and Kourakis et al.19 As mentioned in Sec. II, the

kappa dependent screening Debye length ðk�DeÞ is a function

of kappa index, and it decreases with a decrease in the kappa

value. This happens because when we decrease the j-index

by keeping mean energy constant in the particle velocity dis-

tribution, there will be an increase in the lower and higher

energy electron population and a decrease in the middle

energy electron population.31,32 The Debye length of the

plasma system is defined by the energy of major population

in the system. Since for smaller (larger) kappa, major popu-

lation in the system is low (middle) energy population, so

the Debye length is shorter (longer). In this case, the ion

acoustic speed ðCIAÞ in superthermal plasma changes to the

modified ion acoustic speed ðC�IAÞ, which is defined as

C�IA ¼ xpik
�
De ¼ CIA

j� 3=2

j� 1=2

� �1=2

: (17)

This manifests that the ion acoustic speed decreases with the

decreasing of the kappa index. Hence, our observation of the

decreasing phase speed of the wave with the decreasing

kappa index in the simulation is justified.

Figure 6(b) shows a variation of the maximum of ion

fluid velocity for Run-1(Vc) and Run-8(Vc). The ion fluid

responds to the growing perturbation in plasma. Hence,

Uimax gradually increases with time. At the time of the for-

mation of the trough, the Uimax reaches its first local peak.

There after Uimax remains constant until the steepening time.

After the steepening time, the Uimax starts to increase again.

This increase in Uimax stops after the formation of the stable

FIG. 5. Time evolution of the (a) the maximum kinetic energy of the ions

(KEimax), and (b) maximum electrostatic potential energy (Esmax) in the sys-

tem for Run-1(Vc) and Run-8(Vc).

FIG. 6. The time variation of the (a) maximum phase velocity (Vp) of the

IASW pulse and (b) maximum ion fluid velocity (Uimax) for Run-1(Vc) and

Run-8(Vc).
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IASW pulses. The trends of Vp and Uimax profile are

observed to be same for the system with j¼ 2 and j¼ 20,

except their magnitudes.

F. Ponderomotive force in the course of evolution of
the stable IASWs

Ponderomotive force is a nonlinear force that a charged

particle experienced in an inhomogeneous oscillating electric

field. In our plasma model, the dynamical ions experience

this force when they are in an inhomogeneous oscillating

electric field. The ponderomotive force acting on the ion

fluid is given by the following expression:

Fp ¼ �
1

4

e2

miX
2
p

@

@x
jEj2: (18)

In the equation above, Xp is the oscillating frequency of the

electric field. The above equation can be rewritten for the

ponderomotive frequency Xp as follows:

X2
p ¼

1

4

Es

KEi
x2

pi; (19)

where KEi and Es are the ion kinetic and electrostatic energy,

and xpi is the ion plasma frequency. By using the normaliza-

tion used in Sec. II, Eqs. (18) and (19) can be written as

Fpn ¼ �
1

4

1

X2
pn

@

@xn
jEnj2; (20)

X2
pn ¼

1

4

Es

KEi
: (21)

In the equation above, the ponderomotive force (Fpn) is nor-

malized by the factor ðkBTe=kDeÞ, whereas the ponderomo-

tive frequency (Xpn) is normalized with the ion plasma

frequency ðxpiÞ. Here, the normalized ponderomotive poten-

tial is given by

Wpn ¼
1

4

1

X2
pn

jEnj2: (22)

Recently, Kakad et al.4 have studied the variation of the pon-

deromotive frequency and the ponderomotive potential in

the course of wave breaking of IASWs. We have performed

a similar kind of exercise for the superthermal plasma. The

time variation of the normalized ponderomotive maximum

potential (panel-a), the ponderomotive frequency (panel-b),

and the maximum ponderomotive force (panel-c) for Run-

1(Vc) and Run-8(Vc) is given in Fig. 7. The vertical blue

(red) dashed lines in this figure indicate the time of the

various stages of the breaking process for Run-1(Vc) [Run-

8(Vc)] as discussed in the schematics shown in Fig. 2. In

Fig. 7(a), we can see that the ponderomotive potential gradu-

ally increases with time, and has the first peak at the time of

the trough formation. This indicates either increase in the

electric field amplitude or decrease in the ponderomotive

frequency as per Eq. (21). In both the simulation runs, we

observe that the amplitude of the potential pulse decreases

(i.e., the initial amplitude of the electric field decreases),

initially. During this time, the ponderomotive frequency also

decreases with time. We understood from this that the

increase in the Wpn is due to the decrease in the Xpn. The ini-

tially given perturbations in the electron and ion densities

setup the finite electric field that drives the IA waves in the

simulation. The ions are effectively accelerated by the field

of IA waves during its propagation as seen in Fig. 6. This

resulted in increasing kinetic energy of the ions. At the same

time, the potential energy decreases due to decrease of the

electrostatic potential. The increasing kinetic energy of the

ions and the decreasing potential energy reduce the pondero-

motive frequency, which ultimately enhances the pondero-

motive potential, and attains the peak at the trough formation

time, xpit ¼ t2. After time t2, the Wpn starts decreasing due

to increase of the Xpn. However, this decrease in the Wpn

does not sustain for a long time. The Wpn started increasing

gradually again at the time somewhere around t3, i.e., the

time at which the formation of two long-wavelength IA

pulses occurred. The ponderomotive potential grows faster

after t3, and then attains again maxima at the time of break-

ing of the long-wavelength IASW pulses. This increase of

ponderomotive force is due to the steepening (around t4) that

leads to an increase in the amplitude of the long-wavelength

IA pulse. The electric field associated with the IA wave is

the maximum at the breaking time (t5). Therefore, the pon-

deromotive potential has peaked at the wave breaking time.

After breaking of the IA pulse, the ponderomotive potential

decreases. The amplitude of the broken IASW pulse

increases ahead of its breaking. However, instead of grow-

ing, the ponderomotive potential decreases. This is due to

the increase of ponderomotive frequency at the wave

breaking that leads to the decrease in the ponderomotive

potential. This decrease of the ponderomotive potential

continues until the formation of the chains of stable IASW

wave structures. The ponderomotive potential remains

almost constant after the IASW pulses attain stability. This

is due to the constant amplitude of the stable pulses in the

chain. It should be noted here that, after breaking, we con-

sidered the amplitude of the leading (faster) pulse as the

maximum amplitude in the system. In this way, we can use

the maxima of the ponderomotive potential as proxies to

identify the trough formation and initiation of the wave

breaking in the system.

FIG. 7. The evolution of the (a) maximum ponderomotive potential ðwm
pnÞ,

(b) average ponderomotive frequency ðhXpniÞ, and (c) the maximum ponder-

omotive force ðFm
pnÞ for Run-1(Vc) and Run-8(Vc).
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Now the main question arises from our simulation study

is that how the ponderomotive force drives the breaking of

the long-wavelength IA pulse. To address this, we obtain the

variation of ponderomotive force over the space for each

time step for the simulation Run-8(Vc) ðl0 ¼ 30;Dn ¼ 0:4
with j ¼ 20Þ. The evolution of electrostatic potential along

with the spatially varying magnitude of the ponderomotive

force on it is shown in the multimedia Fig. 8 (Multimedia

view). The snapshots at various stages during the evolution

of the stable IASW structures are shown in this figure. The

arrows in this figure show the direction, and its length repre-

sents the magnitude of the ponderomotive force acting on

the ion fluid. The length of the directional arrows is normal-

ized by the maximum ponderomotive force amplitude pre-

sent at that time. The red color arrows indicate the direction

of the force towards the right side, and the green arrows

indicate its direction towards the left side. Figure 8(a)

(Multimedia view) shows the finite potential pulse generated

after introducing the perturbation in the system. During this

stage, we can see that the ponderomotive pull on the ion fluid

does not balance. Especially, the pull on the bottom-side of

the pulse is magnitude wise greater than the top side of the

pulse. Hence, bottom-side ion fluid pulled apart due to these

left and right side forces, which reduces the ion fluid density

at the center of the pulse. As a result, the amplitude of the

pulse decreases with the increase in the pulse width. This

change in the shape of the potential pulse decreases the pon-

deromotive force magnitude. In the panel (b), we can see the

decrease in the ion fluid density at the centre due to the

spreading of the fluid at the bottom of the pulse. In Fig. 8(b)

(Multimedia view), the amount of fluid dispersed by the top

side ponderomotive force towards the right is almost equal

to the fluid dispersed by the right top side ponderomotive

force. Due to the bottom side opposite pull of the pondero-

motive force, the fluid density at the center further decreases

which leads to the formation of two indistinguishable pulse

forms. The two indistinguishable pulses along with the mag-

nitude and direction of the ponderomotive force on the

pulses are shown in Fig. 8(c) (Multimedia view). Since these

pulses are identical, it is expected that the dynamical behav-

ior of the ponderomotive force on each of this pulse will be

the same. Therefore, among these two pulses, we further

show the dynamical behavior of the ponderomotive force on

the pulse that propagates to the right-side boundary of the

system. In Fig. 8(d) (Multimedia view), we can see that the

top side ponderomotive force pushes the ion fluid toward the

left side, whereas, the bottom side force pulls the fluid

towards the right side. Due to this configuration of the force,

the ion fluid starts dispersing toward the trailing edge of the

pulse that increases the ion density over there. This increase

in the ion density changes the electrostatic potential due to

which the trailing edge of the potential pulse is stretched,

which is depicted in Fig. 8(d) (Multimedia view). The left-

ward ponderomotive force continues to disperse the ion fluid

on the left side, due to which the pulse trailing edge spreads.

As a result of the transportation of the fluid, the density just

FIG. 8. The static figure shows snapshots of the electrostatic potential at various time steps of the evolution of stable IASW structures. The magnitude and

direction of the spatially varying ponderomotive force acting at different locations on the shape of evolving potential pulse are shown with the arrows. A

detailed animation of the variation of magnitudes of the ponderomotive force during the evolution of stable IASW structures is illustrated in the multimedia

version of this figure. Multimedia view: https://doi.org/10.1063/1.4991467.1
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beside the left side of the maximum potential decreases. This

leads to the initiation of the wave breaking, which is pre-

sented in Fig. 8(e) (Multimedia view). As the breaking ini-

tialized, the rightward pull of the ponderomotive force on

the top side fluid (shown on the right side of the potential by

the red arrows) starts becoming stronger. This force then

helps to sustain the Gaussian-like shape of the pulse as it

will try to conserve the fluid in that region by pushing it

back, which is drifted by the leftward ponderomotive force.

Hence, wave breaking continues until the formation of the

perfect Gaussian shaped pulse. This process leads to the for-

mation of the stable solitary pulses that moves with constant

speed and amplitude. One of the snapshots of this stage is

shown in Fig. 8(f) (Multimedia view). In this figure, we can

see the perfect balance between the ponderomotive force on

the left and right side of the pulses. The animation of the

evolution of stable IASW pulses along with the dynamical

behaviour of the ponderomotive force acting spatially on it is

given in the multimedia file.

G. Effects of perturbation and superthermal
population on the onset of steepening and breaking of
the long wavelength IASW

To understand the effects of the width and amplitude of

the IDP on the steepening and breaking of IASWs, we per-

form simulations for various combinations of Dn and l0 for

small (j¼ 2) and large (j¼ 20) values of j. We plotted vari-

ation of the breaking time (panel-a) and steepening time

(panel-b) with respect to the width of the Gaussian perturba-

tion for fix Dn ¼ 0:2 in Fig. 9. From panels (a) and (b), we

understand that the breaking and steepening time increases

with increase in the width of the perturbation. Figures 9(c)

and 9(d), respectively, illustrate the variations of the break-

ing and steepening times with the amplitude of the perturba-

tion at a constant width, l0 ¼ 30. These figures demonstrate

that the breaking and steepening time decreases with increas-

ing perturbation amplitude. To understand the effects of the

superthermal populations on the onset time of the breaking

and steepening, we plot the breaking and steepening time for

the different j for the same perturbation parameters, i.e.,

Dn ¼ 0:4 and l0 ¼ 30. This is shown in Fig. 10. We conclude

from this figure that the increase of the superthermal popula-

tion (i.e., decrease of j) delays the onset of the steepening

and breaking of the IASW in superthermal plasmas.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we perform the fluid simulation to under-

stand the dynamics of the wave breaking of IASWs in super-

thermal plasmas. We identified the time of onset of

steepening and wave breaking for IASW by using some stan-

dard proxies, and then studied their dependence on the kappa

index (j), which limits the superthermal population in the

plasma system. Our simulation demonstrates that the excess

superthermal population in the plasma delays the steepening

and breaking of the long-wavelength IASWs.

The perturbation in the equilibrium electron and ion

densities creates a small charge separation that drives the

generation of positive amplitude IA structures. This positive

potential sets up the bipolar electric field. Due to the gradient

FIG. 9. The variation of the breaking

and steepening time with respect to the

perturbation width (l0), and the pertur-

bation amplitude (Dn) for the runs dis-

cussed in Table I.

FIG. 10. Breaking and steepening time of the long-wavelength IASW as a

function of the superthermal index. For this profile, we consider the fixed

perturbation form with l0 ¼ 30 and Dn ¼ 40 in all simulation runs.
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of the electric field, the ponderomotive force acts differently

on the ion fluid. This ponderomotive force drives the ion

fluid towards the system boundaries. The magnitude of the

ponderomotive force is higher for j¼ 20 than j¼ 2.

Furthermore, the amplitude and phase velocity of the IASW

pulses in the plasma with j¼ 20 is higher than j¼ 2. The

superthermal population has a prominent effect on the ion

acceleration. The smaller superthermal electron population

favours more ion fluid acceleration than the plasma with the

larger superthermal population.

It is seen that the wave breaking transfers energy to the

shorter wavelength modes. This energy transfer happens due

to the imbalanced ponderomotive force during the propaga-

tion of the long-wavelength IASWs. We have seen that the

ponderomotive force is not balanced before the wave break-

ing. The Fpn acts more on the front side of the pulse than the

trailing side. Whenever the oscillating ion fluid comes to this

region, the amplitude of the fluid oscillation altered by the

Fpn in such a way that the wavelength of fluid oscillation

decreases. In this way, short-wavelength modes are gener-

ated in the system. As the Fpn on both sides of the pulse per-

fectly balances, the generation of the short-wavelength stops,

and they will not be spread in a larger k range after that.

The increase in the phase velocity of the long-

wavelength IA pulse after their generation can be used as a

proxy to identify the steepening of the IA wave. In other

words, it indicates the acceleration of IASWs before the ini-

tiation of wave steepening. The increase of the ion fluid

speed at the breaking of the wave indicates that the wave

breaking process accelerates the ion fluid. We have observed

that the acceleration depends on the superthermal population.

The wave breaking in the weakly superthermal plasma sys-

tem (i.e., with j¼ 20) accelerates ions more as compared to

the breaking in the highly superthermal populated system

(with j¼ 2).

Our simulation confirms the maximum ponderomotive

potential at the onset of breaking of the long-wavelength

IASWs. This is identical to that of Kakad and Kakad,4 who

proposed this criterion as one of the proxies to identify

breaking of the IASWs. The ponderomotive potential

reaches the maximum due to the growing amplitude of the

pulse that reaches to the wave breaking amplitude threshold

because of the steepening of the trailing side of the pulse.

Since, the ponderomotive potential is directly proportional to

the square of the electric field amplitude, the ponderomotive

potential increases with the increase of the electric field.

From the ponderomotive force analysis, we conclude

that the Fpn plays an essential role in the formation of the sta-

ble IASW pulses. For the formation of the stable IASWs, Fpn

needs to be in balance like shown in Fig. 8(f) (multimedia

view). The breaking of the long-wavelength IASW pulse

continues until the perfect balance of the ponderomotive

force on each side of the newly formed short wave length

IASW pulse in the chain.

In conclusion, our simulation demonstrates that the ini-

tial density perturbation, the superthermal population, and

the pondermotive force on the plasma species play an impor-

tant role in the initiation of the steepening and breaking of

the IASWs. This study may be useful in explaining the chain

of solitary wave structures observed in the space plasma

regions where the superthermal plasma exists.
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