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Many geophysical phenomena change with time and any
collection of data measuring some aspect of such phenomena
d ordered with respect to increasing time comprise a
physical time series. If we have a reading for every
ent of time we izet a continuous . series such as the
torraphic registration of variation in some component
earth's magnetic field. A plot of the time series shows
i@dirtely that mostly they nre not nerely strings of
evendent data; that wost of the fluctuations are not
iviolent and in general one can decipher constant fluctuate
don with set Heriod sueh as tlo 11-year cyole in sunspot
fnunoer. However, tle weasurenent or recording of a time
facrics can only cover a finite portion and any gignal in
‘the duration vill gererally appear noisy because of fluc-
lations either inlizrent in the signal or introduced by
ne gcasurirg apoaratus or the suriroundings. Time series
re not unecedsarily coumposed of a finite number of oscillat~
on3 each with a discrete wavelensth but of virtually
1finite nunber of small oscillations spanning a continucus
igtribution of wavilen;tus. Spectrum is therefore a
ergure or the dictribution of variance in a time series
over a continuous domain of all poseible wavelengths each
i2rbitrarily close to the next ranging from an infinite
wvelensth (linear trend) to “he Nyquist frequency (Y2 at).
- is now widely recognized that Spectral Techniques are
10idly becomin,: one of the most important statistical tools
1 the physical sciences. The moat comnon reason for
idesiring a power spectral estimate is the supposition that
the datu night cortain 'nidden' periodicities which would
be more reedily obsurvevie if the data were transformed to
& spectral representation,

. . Many methods ol aidden periodicities were susgested
)Y workers such as Iagrange, Bugys-Ballot and Whittaker but
:he best known was the Periodogram method made famous by
irthur Schuster. % congista of the function

Ln('.r)= %[(Z Xj cos ?_2,-}_)2 & (ijginlg)zj

&h(w) will have a peak 2t w=wo if the data xt t=1,... .n
Containg a periodic teri. of period wy and there will be
3uhgidiary peaiks at w = wg & 2w,/n called side lobes. Ve
1111 refer to these pide lobes iater in the discussion,
Becavse of the enommous eouputation time needed to obtain
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> advent in sixties of the Fast Fourier Transform
utines.

In the next few sections we describe two of the
Bdely used methods of spectral analysis and mention in
Beief about a radically different and new approach using
fhe concept of Entropy in Information Theory.

gae Fourier transforms this approach was shelved i(ill
e

fhe Blackman - Tukey Spectrum (Also called Correlation -
Bosine Transform Procedure).

This method can be briefly described as Follows:

Given a series of N equally spaced values 'Auto-
sorrelation Coefficients' which are the quantities pro-
Portiounl to the ordinary linear correlation coefficients
petween o time series and the same time series after an
interval of time, are computed for 'lags' of O to M units
where M4AN. ILag is the interval of time mentioned earlier.
The cosine transform of these M + 1 lag correlation values
are computed analogous to finding the Fourier transform
of a cortinuous variable. The cosine transform yields
Mo+ 1 'Raw Spectral Bstimates', the i-th value of which
iis a rough measure of the total variance in the original
lseries that is contributed by wavelengths near tne i-th

harmonic of the fundamental wavelength of the analysis.
The period P in the units of data interval is given

by 2 I1/Mt+i. The raw estimates are then smoothed by a
3-term weighted moving average with weights equal to
0,25, 0.5, 0.25 in case of ‘'Haniing' and 0.23, 0.54 and
10,23 in the case of 'Hamming' method. The autocorrelat-
ion functions, also known as the mean lagged products,

Cr are calculated as

1 X X - 1 X x
Crl=mZii+r (—n:z-_jzi-(;l_g-}——i-br

Mhe second term in the R.H.S. is for adjustment of the

mean which makes the autocorrelation function proportional
to the linear correlation coefficient. These autocorrelat-
ions may be considered the time-domain counterpart of the
spectra in frequency domain. Valuable information regarding
the time series can be obtained from the plot of auto-
correlations with lag.

The 'Raw Spectral Estimates' are obtained as
M-1
1 1
B, = oy € +Cy) + -4~ LG
: r=1
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Eoth Spectral Estinates are then obtained from
3 Wer Hy)
L (Moo + Hetos)

So
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finotend of smoothing the raw s.cctral estimetecs as above,

Blie autocorrelation funrtions can be nultiplied by a 'Lag
Window', These two operctions can be sliown to be equivalent.
Lor e.5. the lag window VY2 (1 + cogTXk/) and the

}aectral windov wita weignts 0.25, 0.50 azd 0.25 are

fourier Trans®orus orf e.ch other.

_ It will De 2Ppro rinte, at this stage, mentioning
e necessity of 'Smootuin.,' ths svectra Ly application
L spectral windows or lag windows, to reduce leakage

'om side lobes. <The effect of leakage is to smear the
ower Spectral Density (PSD). It is easiest to visualise
eakage in the form it t2kes in the continuous domain.

Let Cx (7T) be the autocorrelation of x(t). Then
Ehe PSD, Sy ?f) is obteined from

oo
-2Trf
6. 08 = ]czm') T ar
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Egppose now a PSD is computed with only a finite segment
fc_ (7 T
L (M A e
Sx(f) = jcx(’?’) i
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this is the type of cualculation done in standard orocedure.

(£) can be written as -zrf?‘

OB j U (1) Ca () €

X

where
|s 4bhe box (anh

= B ¢T<T} 6!..!.?1(.‘[’.'.0“-'
I >7T

l-\.

Ur'-"-
Ur =



Ld

a1
P

jthe convolution theorem, if two functions are
Qtiplied in the timne domain, then their Fourier
ansforms are convolved in the frequency domain. Thuc-

éx () = Gu(F)n Ur(£)

ere Un(f) = 2 (6m 214T/ams), the Fourier transform of

e box car function. ¥or a sire series which is trun-
ted, the vower spectral density will be as shown in
g1

§5' T becomes larger the peak becomes narrower and

figher. Because of the finite value of T, what would
have baen a delta function fcr infinite T haa become a
#in x / x function centred about f,., Thus the power
which was concentrated at a single point has spread out
over a much broader range. It is this spreading of the
power which isftermed Leakage. The significant non-zero
portions of the sin x/x function on either side of the
Epin peak are referred to as Side Lobes. These will appear
in one form or the other in all finite PSD calculations.
The main purpose of the Windows (Lag or Spectral) is for
the sugireasion of these side lobes. The windows
genarally broadens the main peak to a width of 4Af while
4t suppresses the side lobes, PBubstantially reducing
‘eakage the effect of application of a Hann window on raw
hpectrai estimate is shown in Fig.2. Considerable efforts
Ljve been expended in design of these windows. Their
iproperties vary depending on the weights used. Hann,
Hamning, Bartlett, Parzen are some of the most common
Lindowa in B.T. apectral analysis. The clioice of a

a In the spectrum, various kinds of non-randomness will
b¢ revealed differently. For e.g., the spectrum of purely
randoin variation tends to be rectangular in shape (all
8pectral estimates tend to have the same amplitude). This
8hare of the spectrum is often referred to as that of
*White Noise'. If a pure sine wave is contained in the
L‘_jm.ie series, the spectrum will contain a relatively sharp
keak at its appropriate wavelenbth. If a regular periodi-
ity having non-sinusoidal shape is contained in the series,
the spectrum will contain not: only a peak at its basic
¥avelength but other peaks at wavelengths corresponding to
one or more higher harmonics of its basic wavelength. If

8 quasi-periodicity or irregular rhythm is contained in

%he time series, the spectrum will indicate it by a
Felatively broad hump spanning an appropriate wide range

of wavelengtns. 27-day oscillation of the nagnetic field
mreaanta itself as a good example. Finally, if the time
series contains peraistence, that is, if each value of the
S8eries is influenced by its immediately preceding value, the



jectrum will be distorted across all wavelengths. 1In
ticular, the amplitude of the spectrum will tend to
rease from the longer to the shorter wavelengths and
the spectrum is.then said to resemble that of 'Red Noise'.

From the manner of calculations of the autocprrelation
Finction, it is evident that we cannot calculate arbitrarily
arge nunber of them as the number of terms to be -multiplied

sumned becomes progressively small. Hence an optimum
imum lag (M) for each set of N data points must be
eferred. The spectral resolution is directly proportional
M and the stability of each snectral estimate is inversely
portional to M. The degrees of Freedom (DF) is approxi-
ely given by 2N/M. Thus a trade-off vetween resolution
rge M) and stability of estimates (small M) must be -
Gchieved. The generally adopted criterion is M=N/4 or N/5.
This aspect of the Blackman-Tukey spectrum is considered -
one of its drawbacks.

e
3 By -
Tegt of Sicnificance of Spe al Bstimate:

As in other statistical techniques, we should be in
a position to say with certain degree of confidence that
@ spectral peak is significant or in other words, the peak
is not due to random variation in the time series but is
due to a genuine periodicity present. According to Tukey
(1950) each spectral estimate is distributed as chi-square/
P¥. From a Chi-Square table the value of chi-square/DF
€an be computed for any confidence level (usually 95% or
99%). A spectral peak is then considered significant at a
particular confidence level if thE spectral density at
that frequency is in excess of (X /DF) times the continuum
devel in the neighbourhood of the peak. Since the estimate
0f the continuum level here is not derived mathematically
but is to be estimated for each supposed spectral peak, WMO
?ﬁnel of experts in Climatology gave a mathematical derivat-
fon of the continuum aud the confidence levels for cases
hen the spectrum of is of 'White Noise' or the 'Red Noise'
type, referred to earlier. (WHO Technical Note No. 79).
The 'White Noise' spectrum is characterised by the faCt
that the lag-one serial correlation coefiicient does not
differ from zero by a statistically significant amount and
the latter is characterised by the relation

. fae AL 5 Ay A ek

?he continuum can be evaluated apyroximately from the
relation - Q. }L;‘") ] .

= 8t
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Phere B is the average of all the M 4+ 1 'raw' spectral
Metimates. An illustiration of application of this tech-
que is given in Fig.J. Of course, by far the easiest

d surest test regarding the significance and reality of
spectral peak and its corresponding periodicity is to
flook for its presence in different samples of the data
tained from different epochs of the geophysical pheno-
LON.

ﬁiﬁital Filters in Spectral Analysis:

Since any spectrum spans the region Zero to Hyquist
ffrequency it is evidently futile to expect much useful
information from both ends of the spectrum simultaneously

inless very large number of lags are used, which in turn’
mean? a large input of data. Alternatively, one can study
ithe spectrum by choosing appropriate bands of interest and
leliminating or reducing the effects of significant periodi-
lcites present outside the band. The appropriate remedy is

to filter out the undesired frequencies at an early stage.

ﬁhe digital filters which serve such purposes can be
broadly clasgsified into (1) IOW PASS (2) BAND PASS and
(3) HIGH PASS Filters. Each functions what the name
implies. The first passes all low frequencies upto the
desired frequency, second allows a preset band of frequen=—
cies only and the third allows all from a stipulated
frequency to the Nyquist frequency. The filtering is
usually achieved by means of 'sliding' a series of weights
which determine the actual transfer function of the filter
along the data. Behannon and Ness_(1966§ discuss in detail
‘the design and application of numerical filters for

‘geophysical data analysis.

Spectral Analysis via Fast Fourier Transform.

In the Blackman Tukey approach, the infinite set of
which the sample formed a part, is- essumed to be zero out-
side the sample i.e. the autocorrelations were truncated
and assumed zero beyond the lag M. The magnitude of
error caused by this truncation is somewhat reduced by
smoothing the spectral estimate but the error increases
as the data length becomes shorter and the relative power
of any apparent periodicities become larger due to the
problem of leakage. It is usually necessary that the
length of data be many times longer than the greatest
period of interest. The principal reason for popularity
of this approach has been its computational simplicity.
This has now largely been superceded by the DFT scheme
which is generally considered more accurate but this was



i)

B2 computationnlly feasible till the advent of the fasty
ier transfori routines. Here the infinite get is cowsi-
d periodic with one period equal to the available leagth
ata. When tnis scieme is coabined with osroper tapering
moothing it usually yields spectral estimates which zre
" accurate except in the low frequency portion of the
‘trum when periods become comparable to the original

th of data. Thus the segment of data should be long

gh so that seri%s errors occur well below tne frequency
‘e of interest. Still the required data lenxth is less
~that neecded for comparable results using B8.T. approach.
¢ the data length is nornally an order of magnitude

ter t.an the maximum lag in 3.T., FFT can compute

tpra wnich are more reliable at low frequencies.

- If £(3) =0, 14e......  N-1 is a sequence of X
-?*}te value complex nuabers, its Discrete Fourier Transfora

}is defined as pie 4

\ o
i _aTi(n) /N v
A= L ) x()e anini/ b
N J=o QTTE/H
Wn= €

R
= ‘,T!.LZ.XCJ) Wn

liist Fourier Iranuform (Fi0) is a method for efficiently
lculating the VP of a time series. It takes advantose of
fact that tae cileculation of the coefiicients of LT can
) arried out iteratively which results in considerable
savin: of computer time. Specifically if the tiwe series
15ints of W = 20 gamyles, then about 2nN = 28 log2 N
hietic operations will be required to evaluate all the
issocinted DIT coefficients. In comparison with the.

roer of onerations gpequired for calculating DFT coefficients
1 direct method (..+*) this nuaber is very asmall. IFig.d
strates the drastic reduction in operation as the

cr of samples inc¥eases. About 5 scconds only are

ed to get 8192 (2'2) DFT coefficients through an average
ﬂfuter as compared to about half-an-hour for the naive

et lOd . ) 1

_ FFT not only reduces computational time but also
duces the round-off errors associated with such computat-
ns. Vivid descriptions of how this speed is achieved in
¢ comouter memory using the symmetries of the sine and

ne functions are given in a series of papers which
8ppeared in IEKE Trans. AU-15 and AU-17 in 1967 and1969.

If A(n) is the DFT of X(j) given as
-t -nJ
AGY = L 5 xaw”
i J'—O
ﬁ%en, the raw power spectrum is computed as

P(n) = A(n)a :’%mag.

real + A(n)
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pe direct calculation is an elternative to the common auto-

covariance approach but the two wethods cin be shown to be

cquivalent. The direct calculation using FFT is, however,.
nuch faster for long data sequences.

In practical application of FFT routines for. power
sgoectrum, we adopt certain smoothing of the original data
lperies and again smooth the raw spectra.

fpata Window:

i This is a function of discrete time series by which
ithe time series is multiplied before Fourier transformavion.
Bince we use only a finite segment of the time series, the
discontinuities at ‘the end of the measured segment introduces
a8 rapid signal change that 1is not consistent with the band-
i?dth of the measurement. The difficulties at the data
ilstring vecome apparent as oscillations or Gibbs phenomena if
latteupts are made to interpolate or filter the signals.

In order to lessen the efrects of these discontinuities

iwe meke the end regions have a smooth transition to the

mean of the measured value by multiplying the sequence of
data with weights of Data window. The choice of the window
function is somewhat arbitrary but generally the tapering
lachieved by use of a cosine bell over the first and last

104 of data string is adequate.

s

9 The Alow diazrams given in Figs. 5, 6 and 7 describe
?riefly the three common methods of snectral analysis
using F¥T routines. '

i
8

@v It may be seen that in the last method -~ Seguental

Averaging - the stability -of the spectral estimates 1is
achieved not by application of spectral window but by averag-
inc. The advantage of this method is that it can be used
with vlocks of data that are not necessarily consecutive,

1t affords an opportunity to test the. stationarity of the

tine series as we consider many samples from different

epochs and one can combine the estimates in such a way that
ithe 'best' estimate is not biased by noilse and confidence
limits for the 'best' estinates may be obtained. In an
4{1lustrative paper, Black (1970) has discussed in detail

the two approacnes of power spectrum analysis, the B.T.

and FFT, and has given a method of obtaining the 'Signal’
amplitude from the 'Total’ amplitude which includes 'Noise'

contribution. ( see f19. 8)

v A particular periodicity in the time series generally
Will give a significant signal at gseveral adjacent frequen-
cies, The $mplitude of the periodic oscillation is then taken
gga (16w )" where the sum is taken over the estimates .

i

A5

i
%.‘
"n".
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BSnprising the peak. Tue stendard devintion of each
“tinate is xnown and the srouvable error of the amplitude

‘:'I;-__.-then taken as 2 3 ‘/2-
ds= [ 2% ]
IS¢

Bross Spectra, Coherence and Phase Difference

L The discussion so f.ur hLas heen related only to a .
§ingle tinme series. Very often it is illuminating and
iteresting to study simultaneously two time series of
@ophysical phenomena which may be related. The spectra

ijved from single time series may be tirmed Auto Spectra,
analogous to Autocorrelations computed from the same time -
Beries. We cen also derive spectra and discuss two time.
series say Xy and Y¢. It is by use of cross-spectra that
we can measure the extent to which a frequency component of
Y+ is correlated to the same frequency of Y4 and how much
the two components are out of phase. :

Let  C(0-= <7ext‘-t>a < Z‘:ﬁyl?uﬂ? -
DO - <X 7&-£>¢- '

@gnote tl.e positive and negative parts of the cross-corre-
lations between the two tine series. The Transforms

0+c(V 7 TN
ZI?. " 5]?' (‘D( +2( )(]_f.Cos_r_".)Cos‘_N_ /i Siged B

W, : 6k<(]>(£);-€(0)<]+ co;;%;‘)'s..;jl_i;}>ﬁ éﬁ;.}:?:.,;se

- ~wnere k is the freguency and Y is, the lag are
called the Co-spectrum oud Quadrature spectrum respectively.
lhe cross spectrua then, is delined as the complex quantity

Cs3 = 2 +i"ﬂ"

k. k e
\ measure cf the correlation between the frequency components
of the two processes is given by Y
2. kS 2-
R, - Z (k) + Wik ]
k- (YR

@his R(k) ia called the Coherence at frequency k, which is
%imilar to the square of the correlation co~fficient
@etween the two samples and is interpreted in a similar
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ay 1.0, larger the value more close is the relation
Eétueen the two components.

The angle ®, defined by

ives the phase lead of the Y-record relative to the X-
record.

If the coherence is small at frequency k then both
Z(k) end W(k) will be small and the egtimate of W(k)/Z(k)
is lixely to have very large variance. Thue points in
the phase diagram corresponding to frequencies with low
loherence will generally contain less useful information
fhan points corresponding to points with high coherence.
It may pe noted, however, that tluctuations in coherence
ldonot affect the interpretation of the phase diagram but
merely aiters the variance of the estimate of the phasey

Cross spectra coherence and phase difference ror
‘two time series can also be obtained using the FFT
‘routines. The following descripes the steps involved:

Let (aj + ibj) and (cy + idj)'be the Fourier

transforms of the two time series which have been modi-
fied by ampplication of a data window. Then the raw cross=—
‘apectrum ny j is obtained as

’

Gay,) = Fay,j + ¢ Sy,
=[(aj¢j + bjdy) +! Ch; G - ajd;)]

where R ie the Co-spectrum and 9 is the quadrature spectrun.
The coherence and phase differences are defiped similar

to that described earlier, It should be noted that R

and S must be smoothed along with auto-spectra before

the coherence and phase differences are computed. It

is also important that the two series mpst be aligned and
must of the same length for meaningful results.

Maximum Entropy Spectral Analysis

In discussing about the spectrum derived using B.T.
approach or FFT routines, we mentioned about the nature
of extension of the data outside the sample considered _
and said that both the assumptions were not truly realis-
tic. While we cannot say that either of the schemes
yields 'erroneous' results, or "incorrect' spectral esti-
mates, we can recognize the objections concerning the
ganner in which the data has been extended outside the
domain. What is required is an entirely different approach
in which it 18 not necessary to presume the extension of
data outside the sample.
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_ The most interesting characteristic of the spectral
Bsity function is the amount of information it contains.
concept of inforuantion has been shown to be equivalent
the concept of statistical entropy. Entropy is useful
statistical mechanics where it is a measure of the rando-
gs of a system or the uncertainty of our knowledge about
‘gtate of the'system. In Information Theory, ‘it neasures
average information content in a message.

Since thne extension of data outside the sample is

% defined, the anbiguity associated with the unknown
oints should have no effect on the information displayed
'the spectrum i.e. no change in entropy should accompany
iations in the unknown values. Any variations in the
nown would cause a varigtion in the auto-correlation
efficients. Hence a sultable scheme requires that the’
tropy does not change with respect to variations in a.c.
efficients which is equivalent to maximizing the entropy
r.t. these autocorrelation coefficients. This is the
ilosophy which was given shape to by Burg (1968) and

ter by Ulrych and others. Apart from the inconsisten-
es regarding extension of data outside the sample, the
other problems tnat beZset B.T. and FFT techniques are
Gheir inadequacy when record length equals the longest
period of interest, necessity for window functions to
avoid leakage and the independence of these window tunct-
fons from the spectral estimates and commonly observed
frequency shifts when the recording length is less.

Entropy B = f/fgj_ P({de where _'fo'— 1 Nﬁ?uist-

24t 7 on
fo -afitfrak '!)"”U" 4
Bo o [ log Zb@E YL
¥ H is made stationary w.r.t. the unknown autocorrelat-

ons, then
" oH _ 5 for IRIZNH
24,
$o -2t fpat
g D
PS5

~$o =1
ie. the gpectral density P(f) must be such that P(f) and
L o- "3R8 nyst be orthogonal in the interval -fo to fo.
The condition is in terms of the inverse of the spectral
density tunction. Since the inverse function is directly
gociated with the concept of mean square error predict-
ion it is natural to expect a useful computing algorithm
o be couched in terms of prediction error filter. We ~2an
8lso say that Maximum Entropy spectrum is formulated by
determining P(t) that maximizes H subject to the constraint
hat the autocorrelation C(7 ) is given by
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The constraint is that the autocorrelation must be given
by the Fourier transform of the power spectrunm.

The spectral density wahich gives an entropy 8tationary
with reference to the unknown autocorrelations and which is
also consistent with the known autocorrelations can be
shown to be given by

Sn ti the
PN-” HyazuI‘SP 'F"ﬁ
SG)- f’_,, _Cal$j4E | 2
QJ‘N(’*Z"JG "
RET |
‘where V: = Vi ws s eeen n and Yo = 1 are the. (N+1) prediction
‘error fllter coefficients and Py +1 is the mean output

power when the filter is applied in both the forward and
‘backward direction over the data. This is necessary to
iensure statistical accuracy, even though theoretically
such a procedure is simply redundant because the mean out-
put power is independent of the direction in which the
filter is applied. The finiteness of the data could cause
the filter coefficients to exceed unity, whereas all should
‘be less than or equal to one only. The problem of MESA
‘then reduces to finding the Prediction Error Filter and
the mean output power for the Filter. ‘' This is achieved
by means of a recursive solution of the equation

— Frc] -_— P R
Rt ] [t 3
& H- #wh e It o
= B R B Yoo | = |
w e e e G S : [
;4_9,7' c#;f—'t","_'c.#_a. __..TN"L _b_.n

Essentially the method consists of two gteps. PFirst, the
coefficients of successively longer filters are estimated
by applying the equation in a recursive fashion to the
data. Then, :after the desired number of coetficients
have been estimated, they are substituted in the equation

to obtain the corresponding power spectral estimate.
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The recurrent relations can be shown to be

7;0 - L

Y
Yok ' = Y e ‘YNN (v-1) (N-¥) 2
N (N‘)R- W'Mm,thj PN

P.—. l,'l,-"”'i

ohere Yy 15 Comjonled '{fom ; 1)
B el %N [ Yne xew-k’-] 2 [YNR IHM] J
:F)" T oa(T-w) E=1
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. Advantages and disadvantages of Maximum Entropy
‘Spectral Analysis (MESA): Y

1) The procedure does not make any unrealistic assum-
ption about data outside the sample domain.

2) The method can be used with success when data
length is comparable to longest period of interest
in contrast to the other two approaches.

3) The metihod eliminates bandwidth constraints because
the frequency response of a digital filter can be
computed for arbitrary values of frequency which is
specially advantageous when analysing short records.

4) The method provides an unbiaged estimate of spectrum
shape because no fixed smoothing windows are applied.

5) In contrast to an unsmoothed BFT spectrum which gives
good resolution but is very ragged, this method
yields spectra which are smoother.and more stable.

b) MESA is much more effective in detecting weak signals
due to its high resolution capability.

Although the potential superiority of MESA over other
spectral estimators in particular for short data lengths is
well recognized, the usefulness of this approach is marred
by the lack of criterion for choosing the length of the
grediction error filter. Too short a length results in a

ighly smoothed estimate, obviating the resolution advantages
of MEM whereas an excess{ve length introduces spurious detail

into the spectrum.

In contrast to FFT 4  ESA routine will be computa-
tionally expensive.

The spectral peaks in MESA are not directly proportional
to the square of the amplitude as is the case with the other
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Pig. 1 Power speotral density of a sinusoid having @
sin x/x form due to truncation.
(after Otnes and Bnochson, 1972)
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Pilg. 2 Power spectral density of a sinusoid (broken line)
smoothed by a Hann Windowv (continuous line).
(after Otnes and Bnochson, 1972)
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Pig. 1 Power speotral density of a sinusoid having @
sin x/x form due to truncation.
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smoothed by a Hann Windowv (continuous line).
(after Otnes and Bnochson, 1972)
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Pig. 3 Power spectrum of horizontal intensity during
disturbed conditions. The continuous line ies the
'Null® continuum. The broken line representing
the 95 percent confidence level for the null
continuum.
(after Sen, 1970)
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Fig. 4 The number of operations required for computing
. DPT using FFT algorithm compared with that needed

for direct calculation (after Bergland, 1969).
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Fig. A flow diagrem for spectral analyeis of the
& 3 combined modification and lag window smoothing
process using FFT.
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Pig. 6 A flow diagram of the combined modification and
direct smoothing method.
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¥ig. 7 A flow diasgram of the segmental averaging technique
for smoothing power spectra using FFT.
{Pigs. 5, 6 and 7 after Brault and White, 1971).

Pig. 8 Curves of Var yz(R)/R and 3/R where R is the
"Signal + Noise"™ amplitude and S is the signal
amplitude. These are useful in isolating "noise"”
contribution in the measured amplitudes (after
Black, 1970).



~]
bt

[=]

a

‘1h

(=]

[=]

';.
o HJ
g
ch._a ‘:
s () | )l

1

g ' T l

o

il
]

[=]

<

b4 + t t ; — t
'9.0 40.0 80.0 120.0 160.0 200.0 240.0

OBSERVATION NUMBER

Pig. 9 Trace of the ideal signal sampled at 257 equally
spaced points consisting of four equi-amplitude
8ine wave plus a small amount of white noise. The
four waves were such that, if the time represented
by the sampled signal shown is 1 sec, then they
have frequencies 4, 64, 65 and 124.5 Hz.
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Fig.10 Blackman-Tukey spectrum for the case of 60 lags.
It may be seen that the central doublet is still
not resolved, To resolve the central doublet one
has to go upto 98% lag case (251 lags for 257 data
points which is highly unstable.)
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Pig.11 MEM spectrum using 60 filter coefficients. The
central doublet is well resolved into its two
components. Thig clearly reveals the guperiority

of MEM in resolution.
(Figs. 9, 10 and 11 after Radoski et al., 1974)



