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The phase portrait analysis of super solitary waves has revealed a new kind of intermediate

solution which defines the boundary between the two types of super solitary waves, viz., Type I

and Type II. A Type I super solitary wave is known to be associated with an intermediate double

layer while a Type II solution has no such association. The intermediate solution at the boundary

has a flat top structure and is called a flat top solitary wave. Its characteristics resemble an

amalgamation of a solitary wave and a double layer. It was found that, mathematically, such kinds

of structures may emerge due to the presence of an extra nonlinearity. Although they are relatively

unfamiliar in the realm of plasma physics, they have much wider applications in other physical

systems. Published by AIP Publishing. https://doi.org/10.1063/1.5033503

I. INTRODUCTION

“Supersolitons” or Super Solitary Waves (SSWs) are a

new class of nonlinear coherent structures which are charac-

terized by a bipolar electric field structure with wiggles.

Compared to the solitary wave, they have larger amplitudes,

widths, and velocities. The existence of such structures in

plasma was first proposed by Dubinov and Kolotkov1 and

later it was developed by others assuming different plasma

models.1–11 Our recent works revealed that, apart from an

SSW, there exist other kinds of solitary structures, like the

Curve of Inflection (CoI), or the generalized Variable

Solitary Wave (gVSW). The Sagdeev pseudopotential of a

CoI involves a point of inflection while a gVSW is the most

general kind of solution associated with a fluctuating charge

separation, along with a secondary increase in the charge

separation near its maximum amplitude.12

Structures like SSW, CoI, or gVSW are all associated

with an extra-large amplitude and eventually emerge out of

an RSW through a jump condition, characterized by a sud-

den shooting up of the amplitude over a very small change

of the initial parameters.12,13 They may thus, together, be

identified as Extra-Nonlinear Solitary Waves (ENLSWs) or

Other Solitary Waves (OSWs).14 Previously, Dubinov and

Kolotkov1 worked in detail on various such extra large

amplitude structures where, beside the Sagdeev pseudopo-

tential, they also incorporated a phase portrait analysis to

identify their solutions. While the pseudopotential represents

the nonlinear wave as a trajectory of the pseudoparticle, its

phase portrait analysis in the pseudo-space further helps to

identify the true characteristics of the associated nonlinear

dynamics. Here, the potential represents the pseudo space

while the actual space coordinate, or, alternatively, the gen-

eralized coordinate of the steady state solution, plays the role

of the pseudo-time. The trajectory of the pseudo particle is

then analyzed through its phase portrait. Sagdeev himself

used the phase portrait analysis to identify the solitary wave

solution associated with the pseudopotential.15 A phase

portrait analysis has also been routinely used for SSWs by

other authors.1,4,5,16 In our previous works, we have distin-

guished two types of SSWs which emerge via two different

routes from an RSW, viz., the Type I and Type II transitions,

respectively. The first one emerges out of a Double Layer

(DL) while the other one is associated with a gVSW without

having any intermediate DL solution. In this paper, we have

focused on their phase portrait analysis. We have found that,

between these two types of transitions, there exists a new

kind of solitary structure which combines both the character-

istics of a Solitary Wave (SW) and a DL. The structure looks

like a square potential instead of the usual bell shaped profile

and hence we called it a “Flat Top Solitary Wave (FTSW).”

We have found that, for an ideal condition, an FTSW will

turn to a Triple Root Structure (TRS) where its maximum

amplitude merges with a “point of inflection.”17,18 The limi-

tations and ambiguities related to an FTSW have been ana-

lyzed in detail vis �a vis a TRS or traditional DL. The present

work will complement our current understanding of the tran-

sition of an RSW to SSW in the parameter space.

The paper is organized as follows: Section II gives the

analytical formalism of the Sagdeev pseudopotential for our

model (Sec. II A) and the upper and lower bounds of the

Mach number for the corresponding solitary wave solution

(II B). In Sec. III A, we have explored the phase portrait

analysis for the Type I (Sec. III A 1), Type II (Sec. III A 2),

and intermediate solution (Sec. III A 3). In Sec. III B, the

FTSW has been compared with other traditional or analo-

gous kind of solutions, like DL or TRS, while Sec. III C

reviews the existing understanding of similar kinds of solu-

tions in other physical systems. The overall discussion and

conclusion have been given in Sec. IV.

II. FORMULATION

A. Sagdeev pseudopotential

The model has considered that the plasma is infinite,

homogeneous, collisionless, and unmagnetized, comprising

two temperature electrons and warm multi-ions. The ions are

considered as fluids and the electrons obey Boltzmann distri-

butions. The Sagdeev pseudopotential is derived as12
a)steffystephan28@gmail.com
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where l ð�Þ and b denote the normalized ambient cooler

(warmer) electron densities and the cooler to warmer elec-

tron temperature ratio while the ionic parameters consist of

al ðahÞ; rl ðrhÞ, and Q ¼ mil

mih

� �
, representing normalized

ambient lighter (heavier) ion densities, normalized lighter

(heavier) ion temperatures, and the lighter to heavier ion

mass ratio, respectively. The subscripts i, e, l, h, c, and w rep-

resent ions, electrons, lighter and heavier ions, and cooler

and warmer electrons, respectively, and M is the wave Mach

number. To incorporate the contribution of both the elec-

trons, we have defined the effective electron temperature

Teff ¼ TecTew
lTewþ�Tec

; TecðTewÞ being the cooler (warmer) electron

temperature, respectively. We have also determined the

effective linear ion acoustic speed of the system cisl ¼
ffiffiffiffiffi
Teff
mil

q
,

accordingly. The usual normalization scheme has been fol-

lowed where all the temperatures are normalized by Teff,

velocities by cisl, the potential / is normalized by
Teff
e , space

by the effective Debye length, and time by the inverse of the

plasma frequency which is determined from the total ambi-

ent density n0. The set of fluid equations are closed by the

equation of state for the pressure. More details of the deriva-

tion of the Sagdeev pseudopotential and the normalization of

the parameters are given in Ref. 17. In order to obtain the

solitary wave solution and to ensure the recurrence of the ini-

tial state, WðUÞ of Eq. (1) must satisfy the following bound-

ary conditions:

WðU ¼ 0Þ ¼ @W
@U

				
0

¼ 0; (2a)

@2Wð0Þ
@U2

< 0; (2b)

WðU0Þ ¼ 0; (2c)

@WðU0Þ
@U

6¼ 0: (2d)

This also implies that, WðUÞ < 0 for 0 < U < U0, where U0

is the amplitude of the solitary wave. In case of a DL, there

is no recurrence of the initial state. The last boundary condi-

tion of Eq. (2) thus modifies to the following:

WðUdÞ ¼ 0;
@WðUdÞ

@U
¼ Dnd ¼ 0; (3)

where Ud is the amplitude of the DL and Dnd is the charge

separation at Ud.

B. Mach number (M) limit

For a linear wave, it is the linear dispersion relation of

the wave which determines the regime of the wave propaga-

tion and its phase velocity. Analogously, it is the Eq. (2b),

which describes the boundary condition for the nonlinear

solitary wave, determines the lower limit of the correspond-

ing Mach number. Using Eq. (1) in Eq. (2b), one thus obtains

the following inequality:

al
M2 � 3rl

þ ah
M2

Q
� 3rh

< 1: (4)

Solving Eq. (4) for M, one may quantify the lower

limit of the Mach number for given plasma conditions. In

the present model, we have considered a plasma which

consists of Hþ, with a minority component of Heþ, having
Q ¼ 1

4
and al ¼ 0:9. We have further assumed that both the

ions have an equal temperature, viz., rl ¼ rh ¼ 0:033.
Putting these values in Eq. (4), we obtain the following

condition:

Mn ¼ 1:011; M � Mn; (5)

where Mn defines that minimum value of the Mach number

which supports solitary wave solutions of our model.

Apart from the aforementioned conditions, viz, Eqs.

(2a)–(2d) and Eq. (5), it requires an additional condition

for the existence of a compressive ion acoustic solitary

wave which is generally known as the energy condition for

the solitary wave.19,20 The condition arises due to the phys-

ical requirement that any number density should be a real

quantity. For our warm, multi-ion plasma model, the fol-

lowing is the appropriate energy condition for a solitary

wave:

Uo <
1

2
ðM �

ffiffiffiffiffiffiffiffiffiffi
ð3rlÞ

p
Þ2: (6)

This condition, together with Eqs. (2c) and (2d),

implies that, for its maximum Mach number Mx, the

Sagdeev pseudopotential should satisfy the following

condition:

W U ¼ 1

2
ðMx �

ffiffiffiffiffiffiffiffiffiffi
ð3rlÞ

p
Þ2

� �
> 0: (7)

This together with Eq. (1) gives
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For appropriate electronic and ionic plasma parameters,

this fixes the upper limit of M, beyond which the solitary

wave solution ceases to exist and the wave breaks due to the

excessive steepening. Both Eqs. (5) and (8), together, deter-

mines the corresponding existence domain of the solution.

III. RESULTAND DISCUSSION

A. Phase portrait analysis

It is now well known that the electronic parameters,

viz., l and b, play pivotal roles to determine any ENLSW

solution. To find out the adequate range of these parameters

supporting SSWs, we have plotted the variation of Ux with b
in Fig. 1, where Ux is the amplitude of the solitary wave at

its corresponding maximum Mach number, i.e., M¼Mx [Eq.

(8), Sec. II B]. For our convenience, we have kept all the

ionic parameters constant. In the entire analysis, the cooler

electron concentration l (¼ 0:00151) has also been remained

constant. Figure 1 readily reveals two distinct phases, or

regions, viz., A and B, where the limiting solutions for A are

DLs and that for B are SWs. Phase B is further divided

between two subregions, viz., B1 and B2. For both regions A

and B1, the amplitude increases with b but for B2, it

decreases. The largest amplitude has been attained for the

intermediate region B1 which also governs the ENLSWs.

This in turn determines the range of b values supporting the

said solutions. The onset of B1 is marked by a sudden and

discontinuous jump in the amplitude vis �a vis region A and it

terminates with an abrupt change in its slope.

Figure 1 establishes the range of b supporting ENLSWs,

which is determined by region B1. Since SSWs are a subset of

ENLSWs, they too are confined by the same range of b. We

recall that the SSWs may further be characterized by their pro-

cess of onset from an RSW, viz., the Type I and Type II tran-

sitions, where the latter occurs for a larger value of b. We

have chosen two distinct b values from both the lower and

upper end of B1 representing Type I and Type II transitions,

respectively. For each b, we have varied M to carry out the

phase portrait analysis. For each of the cases, the ionic param-

eters and the cooler electron concentration (l) remain constant

which, along with the fixed value of b, ensures the invariance
of the background plasma parameters. The variation of the

solution thus solely caused by the variation in the initial per-

turbations, leading to the present steady state solution.

1. Type I transition

A Type I transition has been defined as one where an

RSW transforms to an SSW through an intermediate DL.

Figure 2(a) shows a typical set of solutions following Type I

transition. The dashed curve (curve 1) represents an RSW

and the dashed-dotted curve (curve 3) represents an SSW

while the intermediate solid curve (curve 2) is a DL. For the

FIG. 1. Variation of Ux with b.
FIG. 2. (a) Sagdeev pseudopotential profiles correspond to Type I transition

(1) RSW, (2) DL and (3) SSW and (b) corresponding phase portrait.
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current analysis, we have chosen our b ð¼ 0:05Þ at the onset
of region B1 and varied the Mach number. Figure 2(b) fur-

ther represents the corresponding phase portraits. The saddle

point of both the inner close curves (dashed) and outer ones

(dashed-dotted) at zero ensures solitary wave solutions while

the solid curve represents the separatrix associated with the

DL. The extension of this solid curve in the phase portrait is

shown by the dotted curve [Fig. 2(b)], which is non-physical.

The presence of the separatrix indicates differences in the

nonlinear dynamical processes involved in an RSW (inner

curves) and SSW (outer curves) and justifies the attribute

“super” for the latter as it appears beyond the separatrix and

engulfs, or envelopes, all the inner curves, including the sep-

aratrix. It also shows the “wiggle,” or deformations, near the

maximum amplitude, which is the hall mark of an SSW solu-

tion. Dubinov and Kolotkov2 have previously defined an

SSW in terms of the separatrix which was further supported

by others.4,5 The present result thus agrees well with the pre-

vious findings.

2. Type II transition

Here, we have considered a b (b ¼ 0:051) value near

the middle part of region B1 and we keep all the other

parameters same as before. Figures 3(a) and 3(b) show the

respective Sagdeev pseudopotentials and phase portraits for

the M variation, respectively, where the dotted curve repre-

sents the p-CoI (curve 3), the solid curve represents gVSW

(curve 2), and other curves (curves 1 and 4) follow the same

as in Fig. 2 legend. The most striking result in Fig. 3(b) is

that it has no separatrix. Instead, there is a gradual deforma-

tion of the trajectory (curve 2) leading to a fully grown

“wiggle,” or “fold,” of the SSW (curve 4). In the absence of

a separatrix, the attribute “super” loses its significance for

the SSW. Instead of a DL, a gVSW (solid curve) initiates the

minor deformations which in turn mark the onset of the

ENLSW in general. A p-CoI (curve 3) further marks the

onset of an SSW beyond the gVSW. This particular transi-

tion we have called as Type II which does not involve any

DL or separatrix. This may also call for the modification of

the definition for an SSW where it may best be defined by its

extra fold in the otherwise bipolar electric field (a folded sol-

itary wave or FSW) rather than its “super nonlinearity”

beyond the separatrix. While the actual nonlinear dynamical

processes may well differ between Type I and Type II, the

potential and electric field profiles remain indistinguishable

for both the cases.

3. The intermediate solution: FTSW

The previous analyses in Secs. III A 1 and III A 2 ask for

the limiting value of b which marks the boundary of these

two kinds of transformations. We have found that, for our

chosen set of parameters, b ¼ 0:0507 is that maximum value

of b beyond which no Type I transformation occurs. We

defined this particular b value as br and explored the corre-

sponding Sagdeev pseudopotentials and phase portraits in

Figs. 4(a) and 4(b), respectively. Figure 4(b) recovers the

separatrix ensuring a Type I transition. The corresponding

solution has been presented by a solid line (curve 2) while

other legends remain the same.

Curve 2 immediately raises the question whether it is a

DL, due to its association with a separatrix (Type I transi-

tion), or a no-DL, since it lacks a local maxima at its maxi-

mum amplitude. According to Eq. (3), a DL should have a

charge neutral point (i.e., Dn ¼ 0) at its maximum ampli-

tude. To ascertain this condition, we have incorporated the

derivative analysis of curve 2. Figures 5(a) and 5(b) show

the variations of the 1st and 2nd derivatives of curve 2 with

U. Particularly, the former shows a 99% drop from its maxi-

mum value giving rise to a charge separation of the order of

Dn (¼ @W
@U) �10�5 at U0 while its maximum value lies within

the order of 10�3 [Fig. 5(a)] for the selected range of U, viz.,
0 � U � U0. This surely makes the solution DL like, ensur-

ing a separatrix and a Type I solution. However, it also

assures a remaining charge separation at the maximum

amplitude which is 1% of its maximum value. Figure 5(b)

further shows that the 2nd derivative drops to a value of the

order of 10�4 at its maximum amplitude which is though

small compared to its maximum value @2W
@U2 � 10�2

 �

, yet

remains a finite and non-zero positive quantity. With these

two values together, the ideal charge neutrality condition at

its maximum amplitude for the DL is not satisfied for the

said solution. On the other hand, the small but positive non-

zero value of its 1st derivative ideally satisfies the condition

in Eq. (2) which enables the pseudoparticle to retrace its

reflected trajectory fulfilling the recurrence condition.

FIG. 3. (a) Sagdeev pseudopotential profiles correspond to Type II transition

(1) RSW, (2) gVSW, (3) p-CoI, and (4)SSW and (b) corresponding phase

portrait.
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Following the above argument, we have plotted the potential

in Fig. 6. The left side of the figure represents the reflected

part of the solitary structure. Together, they reveal a Flat

Top Solitary Wave (FTSW) whose morphology differs from

their usual bell shaped profiles. The solution is a perfect

amalgamation of a SW and DL and it represents the interme-

diate solution between the Type I and Type II SSWs for the

chosen set of parameters.

Following Eqs. (2) and (3), we may now find an analo-

gous condition for FTSW which will state that

WðU0Þ ¼ 0
@W
@U

				
U0

¼ �
@2W

@U2

				
U0

¼ d �; d 6¼ 0; (9)

where both � and d are small and real numbers. To comple-

ment our findings, we have also plotted Ux and b for region

B1 in Fig. 7 which ascertains three subregions, viz., a, b,

and c, marked by the dashed lines. The b value associated

with the FTSW, namely, b ¼ br, determines the boundary

between first two subregions, viz., a and b, representing

Type I and Type II transitions, respectively, while beyond b,

(i.e., subregion c), there is no SSW solution.

B. Comparison between FTSW and DL: Triple Root
Structures (TRS)

Arguably, the FTSW solution obtained in Sec. III A 3

needs further attention. For this, it is necessary to revisit a

true, or ideal DL solution vis �a vis FTSW. Generally, a DL

solution obtained by Sagdeev pseudopotential is a numerical

approximation of the true or ideal DL. Figure 8(a) highlights

the general trend of the pseudopotential around Ud, the

amplitude of DL. The local maxima ideally satisfies the sec-

ond part of Eq. (3) ensuring the point of charge neutrality.

The trend shown in Fig. 8(a) further ensures the existence of

a true DL between curves 1 and 2 for which, ideally,

WðUÞ ¼ 0 at U ¼ Ud . This is further validated in Fig. 8(b)

which shows the variation of Wm with M. Here we have

defined Wm as W at its maxima near Ud which implies that
@W
@U ¼ 0 for each Wm [Fig. 8(b)]. Since the curve crosses the

zero axis, it further ensures the existence of a true DL with

Wm ¼ 0 for certain M¼Md where 1:0572 < Md < 1:05725.

FIG. 7. Variation of Ux Vs b for region B1 in Fig. 1.

FIG. 4. (a) Sagdeev pseudopotential profiles correspond to the transition at

the boundary of Type I and Type II (1) RSW, (2) flat-top solitary wave, and

(3) SSW and (b) corresponding phase portrait.

FIG. 5. (a) First derivative of the Sagdeev pseudopotential of an FTSW. (b)

Second derivative of the Sagdev pseudopotential of an FTSW.

FIG. 6. Potential profile corresponding to an FTSW.
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We have previously noticed that, for the range of our inter-

est, i.e., 0 � / � /d; jWj remains within the order of around

<10�4 [Fig. 2(a)]. Given that, we have chosen a vanishingly

small jWmj, (jWmj < 10�11), as the required DL solution.

This provides a reasonable accuracy for the present case

within the range of 0 � U � Ud . The condition for a true, or

ideal DL may thus be modified from Eq. (3) as

WðUdÞ ¼ @W
@U

				
Ud

¼ 0;
@2W

@U2

				
Ud

< 0: (10)

So far the last condition for the 2nd derivative was never

considered possibly because it was assumed obvious, since

the pseudopotential is already a negative, and may also

partly because anything beyond Ud is supposed to be non-

physical. Therefore, Eq. (10) should better be considered as

the more complete condition for a true DL.

Recent discoveries of SSW and other associated

ENLSWs, like gVSWs and CoIs, establishes the possibility of

finding more and more special and composite structures

beyond the classical solitary waves. Let us assume a Sagdeev

pseudopotential for which its point of inflection coincides

with its amplitude. The required condition would then be

WðU0Þ ¼ @W
@U

				
U0

¼ @2W

@U2

				
U0

¼ 0: (11)

Since all the three quantities vanishes at U ¼ U0, they may

rightly be called as a Triple Root Structure (TRS). It means

that, ideally, the reflection point for the pseudo particle now

lies at infinity. Leaving U¼ 0 at rest, it will reach its reflec-

tion point after an infinite fictitious time, and then it will

again oscillate back to U¼ 0 with an infinitely long time

period. In reality, this may well be considered as a DL-like

solution with amplitude Ut, satisfying Eq. (3), where Ut is

that first, or minimum value of U which ideally satisfies Eq.

(3). Beyond Ut, everything else will be discarded as non-

physical. A TRS solution was first identified by Hellberg

et al.,17 and later have been analyzed by Verheest18 in their

recent works.

A comparison between Eqs. (9) and (11) readily reveals

that, for � ! 0; d ! 0, an FTSW turns to a TRS. This raises

the question whether an FTSW solution can be considered or

approximated as a TRS. To resolve this ambiguity, we have

highlighted the trend of the Sagdeev pseudopotential near

the maximum amplitude of an FTSW in Fig. 9(a). While it

satisfies the first part of the conditions in Eq. (3) and (11),

i.e., WðU0Þ ¼ 0, trivially, the trend in Fig. 9(a) itself does

not ensures remaining two conditions for the derivatives. In

order to ascertain this, in Fig. 9(b), we have plotted the varia-

tion trend of @W
@U at U ¼ U0 with Mach number (M). From

Fig. 9(b), it is well evident that, as M increases, @W
@U jU¼U0

reaches a minimum value and then it again starts to increase

abruptly. This trend strikes out the possibility of obtaining
@W
@U ¼ 0 at U ¼ U0. In other words, unlike Fig. 8(b) which

represents a true DL, Fig. 9(b) does not ensure the existence

of a true TRS satisfying the condition of Eq. (11) ideally. On

the contrary, our analyses have indicated that both � and d
are bounded by some minimum value and any minor change

in the initial parameters increases their values drastically

pushing the solution abruptly away from any possible TRS

kind of solution. Conversely, the accuracy for a DL, solution

can be increased seamlessly by a fine modulation of any of

the parameters which justifies its aforementioned approxima-

tion. A similar justification could not be found for the FTSW

and hence we opine that it should be considered as a separate

kind of solitary wave rather than a TRS solution.

For our current model and analyses, we were unable to

find any solution which can be judiciously approximated as a

TRS, satisfying the condition of Eq. (11) with a reasonable

accuracy. This certainly does not exclude the possibility of

finding a TRS in future. We, however, opine that, for any

such cases, the accuracy of both � and d should be taken care

of so that the conditions in Eq. (11) can be justified.

Otherwise, in spite of its strong DL like properties, the

boundary conditions for the solution will still fall in the cate-

gory of a solitary wave and should better be called as an

FTSW rather than a TRS.

C. FTSW in plasma and other fields

It is well known that the solutions of a class of integra-

ble Non-Linear Partial Differential Equations (NLPDEs)

exhibit localized nonlinear structures like solitons or DLs.

The former has a typical bell shaped profile of sech2 while

the latter has a step like structure with a tanh profile and

often known as the kink soliton. As the subject starts evolv-

ing with time, it has become more and more evident that

FIG. 9. (a) Trend of the Sagdeev pseudopotential near the amplitude of an

FTSW and (b) variation of @W
@U jUt

with M.
FIG. 8. (a) Trend of Sagdeev pseudopotential around Ud and (b) Variation

ofW value at the peak with M.

062302-6 S. V. Steffy and S. S. Ghosh Phys. Plasmas 25, 062302 (2018)



there exist far reacher varieties of integrable and non-

integrable NLPDEs, governing many other kinds of organized

nonlinear structures which differ significantly from their

aforementioned classical counterparts.21 Some examples of

these new kinds of structures are the forced, or accelerated

solitons,22,23 dissipative solitons,24,25 multi-solitons, or multi-

peak solitons,26 breathers, Flat Top Solitons (FTSs),27 and

kink-antikink pairs,28 to name a few. They, together, not only

opened a new gamut of nonlinearities but also found an wide

range of applications in different physical systems, like pho-

tonics,29,30 nonlinear optics,31 lattice dynamics,32,33 hydrody-

namics,34 acoustics,33,35 biophysics,36 chemical physics,37

high energy physics,38 Bose-Einstein condensates,39 cosmol-

ogy,40 metal alloys,41 and so on. Among all others, particu-

larly, the FTS and the kink-antikink pair are found to have a

good resemblance with our own FTSW solution and need a

closer look. We have mentioned some of those relevant works

in the next sections (Secs. III C 1 and III C 2).

1. Flat top solitons

Flat top solitons are mostly studied in nonlinear optics31

and photonics,29 both theoretically and experimentally.

Comparatively we could find fewer applications in the

plasma physics. They are spatially extended solutions having

a flat spatial profile at the center and hence are called Flat

Top Solitons. Mathematically, they have been obtained as a

special solution of a modified form of the NLPDEs. A few

such examples are the extended Korteweg–de Vries (eKdV)

equation, nonlinear Schrodinger (NLS) equation, cubic-

quintic nonlinear Schrodinger (CQNLS) equation, or

Gardner equation. Grimshaw et al.42 studied the extended

version of the K-dV equation (eK-dV) which is different

from the usual K-dV equation in having an extra cubic term

of nonlinearity. This equation is alternatively called as

Gardner equation. This extra nonlinearity leads to many dif-

ferent kind of solutions, including FTS. Specifically, for a

large amplitude initial perturbation, the system supports

“table top soliton” with a flat centered potential profile,

instead of the usual bell shaped one. Later, Tribeche et al.27

analyzed the nonlinear Quantum Dust Ion Acoustic (QDIA)

solitons by adopting a quantum hydrodynamical model for

three species quantum plasma. Under certain parametric con-

ditions, they obtained a broad centered Flat Bottomed

Soliton, which is the rarefactive counterpart of an FTS.

They, however, interpreted their solution as a kink-antikink

pair rather than a soliton. Relativistic electromagnetic FTS

solutions have been obtained numerically for a laser pulse

propagating through the plasma medium.43 The structures

are essentially a large amplitude one, appearing at the bound-

ary of the bright and dark solitons and satisfy charge neutral-

ity conditions at its center.43 FTS solutions obtained from

eK-dV or Gardner equation are found to be appropriate in

explaining large amplitude internal waves in the ocean.21

The study of the FTS has also been extended to a multi-

dimensional hydrodynamical system.34 Recently, multipeak

and flat top solitary waves have been presented for an elec-

tron-positron-ion (e-p-i) plasma with an implication of laser-

plasma interactions.26 Overall, these flat top structures imply

a richer and new kind of nonlinear dynamical behaviors

which not only have a strong mathematical foundation but

may also have more realistic applications in different physi-

cal systems.

It is evident that structurally an FTS is identical with the

FTSW obtained from the present Sagdeev pseudopotential

analysis. We already know that a soliton is, eventually, an

idealized subset of solitary waves where the latter is physi-

cally more realistic and need not be bounded by any strict

mathematical formalism.44 In the same light, an FTSW pre-

sented here is a more generalized representation of an FTS

which is not associated with any specific NLPDE but repre-

sents all its relevant physical characteristics.

2. Kink-antikink pair

In literature, there are many mentions of kink-antikink

pairs for different physical systems which includes as diverse

topics as phase transitions in metal alloys,41 high energy

physics,38 or biophysics.45 Like an FTS, they, too, are

obtained from the solutions of NLPDEs.28,46,47 Within our

present formalism, a kink-antikink pair basically represents

the coexistence of two DLs with opposite polarities which

are ideally apart by an infinite time duration. Recently, the

coexistence of both positive (compressive) and negative (rar-

efactive) amplitude DLs have been studied in detail by Ali

et al.48 assuming the same Sagdeev pseudopotential tech-

nique for an e-p-i plasma.

Unlike the present formalism of the Sagdeev pseudopo-

tential technique, an NLPDE may well possess a multi-

soliton solution. A kink-antikink pair is also a class of multi-

soliton solution where a kink, or DL, may come back to its

initial state through an antikink, thus preserving the net

energy of the system. A judicial combination of kink-

antikink pair may thus resemble an FTS solution, giving rise

to a similar, overall top-hat kind of potential.28 Sometimes

an FTS has thus been interpreted as a kink-antikink pair.27

Although there is an apparent similarity between the two, an

FTSW should better be interpreted as an amalgamation of an

SW and DL, rather than a kink-antikink pair. The structure

goes very near to a DL-like solution attaining an almost

quasi neutrality condition, but bounces back to its initial state

retaining the characteristics of an SW. The prolonged susten-

tation of a very low charge separation causes the flat and

wide central part of the structure which may be associated

with a greater degree of dispersion. Results obtained from an

eK-dV or Gardner equation42 suggests a “secondary insur-

gence in the nonlinearity” which balances the excessive dis-

persion maintaining the solitary structure. They may also be

visualized as a composite structure vis �a vis the usual classi-
cal solitary waves which defines the boundary between the

two “phases” of SSWs.

IV. CONCLUSION

In this paper, we have presented the phase portrait anal-

ysis of the SSWs. It reveals a novel structure with a flat top

profile at the boundary of the two types of SSWs. Although

they appear to be “new” at its first glance, similar types of

profiles have already been identified for a QDIA plasma,27 or
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the relativistic laser-plasma interaction.43 The current profile,

which we named as an FTSW within the framework of

Sagdeev pseudopotential, is nothing but a generalization of

already known flat top solitons which, like their classical

counterpart, i.e., the regular soliton with a sech2 profile,

emerge as a solution of a class of NLPDEs.

Although the morphology of the potential profile of an

FTSW is apparently similar to that for a kink-antikink pair,

their boundary conditions differ [Eq. (8)]. An FTSW has a

finite time duration and arises due to the reflection of the

pseudoparticle which is physically different from a kink-

antikink pair. The small but finite @W
@U (�10�5) at its maxi-

mum amplitude allows us to consider them as a solitary

wave solution rather than a DL. It is to be noted that the cur-

rent formalism of Sagdeev pseudopotential essentially pro-

vide a “single,” “steady state” solution and does not support

any multi-soliton structure. However, for an ideal condition

where @W
@U ¼ 0 at its maximum amplitude, an FTSW will turn

to a TRS which may be interpreted as an infinitely apart pair

of kink and antikink.

Although we have rediscovered FTSW during our

course of study of SSWs, it appears to have a much richer

nonlinear dynamical properties and is fairly interdisciplinary.

Appearing as a special class of solutions for the Sagdeev

pseudopotential, it also has a robust mathematical foundation

by its own. The solutions further appear to define a boundary

between two distinct nonlinear dynamical processes and may

play significant roles in particle acceleration and transport.
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