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Observations from various interplanetary and other spacecraft missions evince that superthermal

distributions are omnipresent in the solar wind and near Earth’s plasma environment. These

observations confirm the presence of coherent bipolar electric field pulses. In phase space, these

electric field structures are observed as electron holes (EHs) or ion holes. Trapping of particles in a

potential well causes the formation of such structures and is generally studied using the Bernstein-

Greene-Kruskal approach. The literature on these structures encompasses the trapped electron

distribution function and physically plausible regions. In this paper, we focus on the effects of the

width and amplitude of wave potential on electron trapping in thermal and superthermal plasmas. It

can be observed that both an increase in the width and the amplitude of wave potential cause an

augmentation in the trapping of particles. The amplitude plays a dominant role in the trapping of

maximum energetic particles, whereas the width plays a role in deciding the density of particles at

the center of the EHs. We found that there exists an upper limit for the stability region of EHs

defined by the width-amplitude relation. Additionally, it is noticed that the superthermal plasma

does not impose restriction on the presence of electron holes with a width less than the electron

Debye length. Published by AIP Publishing. https://doi.org/10.1063/1.5046721

I. INTRODUCTION

In the largest space plasma laboratory, the near Earth’s

plasma environment, there are frequent detections of coher-

ent bipolar electric field structures by various spacecraft.1–6

In the literature, such electric field structures are interpreted

in terms of Bernstein-Greene-Kruskal (BGK) equilibrium.7,8

Such equilibrium is formed between the particles that get

trapped in the potential associated with these electric field

structures and the ones those pass. The particles that are

trapped will oscillate in the potential and are observed as

holes in phase space. Depending on the type of particle that

is trapped (electron/ion), the holes are interpreted as electron

holes (EHs) or ion holes (IHs).9

When the solar wind plasma with high-energy particles

in abundance impinges on the Earth’s magnetosphere, a large

amount of energy is transferred to the magnetosphere, forc-

ing the plasma to deviate from thermal equilibrium. As the

density of plasma is very low in the magnetosphere, the one-

to-one binary collisions are rare. Thus, the system is less

likely to attain thermal equilibrium. Thus, the distribution

function of the plasma itself changes, and this ends up in dif-

ferent equilibriums generally called superthermal distribu-

tion.10 The spacecraft observations suggest that the kappa

distribution function is best fitted to such observations.11

Some of the studies proposed that the nonlinear wave-

particle interactions can lead to the electron kappa velocity

distribution function in space plasma.12–15 Such distributions

have non-vanishing tails representing the class of energetic

particles. The one-dimensional isotropic kappa velocity dis-

tribution function for electrons has the following form:16

feðVÞ ¼
n0e

ðpjh2
eÞ

1=2

CðjÞ
Cðj� 1=2Þ 1þ V2

jh2
e

" #�j

: (1)

In the equation above, C is the gamma function, and n0e and

V are the density and velocity of the electrons. h2
e ¼ ½ðj

�3=2Þ=j�v2
th;e is the most probable speed or characteristic

speed, where vth;e ¼ ð2kBTe=meÞ1=2
is the thermal speed of

the electrons and kB is the Boltzmann constant. Te and me are

the temperature and mass of the electrons. The spectral index

j decides the slope of the tail of the distribution function,

and it is always greater than 1.5. The smaller values of j
enhance the superthermal population in the system, which

lead to a decrease in the slope of the tail. As the kappa index

tends to infinity (j!1), the kappa distribution function

converges to the Maxwellian distribution function. For the

space plasmas,10 the kappa index is observed in the range of

2< j< 6. The presence of superthermal particles in space

plasmas indicates the need to explore the existence domain

and characteristics of electrostatic solitary waves (ESWs),

which is confirmed by different fluid models.17–20 The

kinetic aspects of these solitary wave structures in superther-

mal plasmas are not explored so far using either theory or

simulations. Some seminal works have done resorting to the

assumption of the background plasma to follow the thermal

distribution.21–26 However, often, it is not a feasible assump-

tion as non-thermal distributions (like kappa) are widely

observed in space plasmas. Recently, Aravindakshan et al.27

have developed the BGK theory of EHs by incorporating the

superthermal plasma distribution. They have given a lower
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bound for the allowed region of the width and amplitude

combinations for the existence of physically plausible EHs

in the superthermal plasmas.

In this paper, we investigate the behavioral change in

the equilibrium solution by varying the wave potential

parameters such as width and amplitude. The parametric

analysis leads us to propose an upper bound for the width-

amplitude combinations for the existence of stable EHs in

the thermal and superthermal plasmas. In addition, we have

also studied the effects of the superthermal index, j, on the

equilibrium solutions by comparing it with the thermal

plasma. This paper is organized as follows: Section II dis-

cusses the mathematical formulation of the BGK theory for

superthermal plasmas. Section III includes results and dis-

cussions, and concluding remarks are given in Sec. IV.

II. MODEL

We consider a one-dimensional collisionless two-

component unmagnetized plasma consisting of electrons and

ions. The ions are assumed not to take part in the dynamics,

and hence, they form the uniform background density. In

order to study the equilibrium solution, we go to the wave

frame, where our fundamental equation, Vlasov equation,

loses its time dependence.28 Hence, the time independent

coupled Vlasov and Poisson equations, respectively, take the

following forms:

v
@feðv; xÞ
@x

þ 1

2

@/
@x

@feðv; xÞ
@v

¼ 0; (2)

d2/
dx2
¼
ð1
�1

feðv; xÞdv� 1: (3)

Here, / is the wave potential formed as a result of some wave

processes in plasma, which is normalized by kBTe/e. The

trapped electrons in this potential form the equilibrium solu-

tion. In Eq. (3), we have used ne ¼
Ð1
�1 feðx; vÞdv as the total

number of electrons. Also, in the above equations, v is the

normalized electron velocity in the frame co-moving with the

wave potential and fe is the electron distribution function,

which is assumed to be the kappa distribution function that

fills the entire system. The normalizations used here are such

that the energies are normalized by ambient electron thermal

energy, 2kBTe. x is normalized by the electron Debye length,

kDe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTe=�0n0e2

p
. The velocity is normalized with elec-

tron thermal velocity vth;e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTe=me

p
. Here, we assume

that the electrons follow the kappa distribution. We trans-

formed the equations to energy frame w such that

2w ¼ v2 � /. In this frame, the time dependence vanishes,

and the entire calculation is done in a steady state. In such a

frame, Eq. (3) can be rewritten as

d2/
dx2
¼
ð1

0

fpðwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2wþ /
p dwþ

ð0

�/=2

ftrðwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2wþ /
p dw� 1; (4)

where fp(w) and ftr(w) are the passing and trapped particle

distribution functions in the energy frame. Many spacecraft

observations have observed the localized bipolar electric

field structures in the Earth’s magnetosphere.1,29,30 Mostly,

these bipolar pulses can be associated with the wave poten-

tial structures of the Gaussian form.29,30 The numerical sim-

ulations shed light on the generation mechanism of these

potential structures in plasma. The streaming instabilities

such as two stream instability and electron beam instability

can provide a great source of free energy, resulting in the for-

mation of such potential structures.31,32 Here, we assume a

positive Gaussian type wave potential given by

/ðxÞ ¼ w exp � x2

2d2

� �
; (5)

where w is the amplitude of the perturbation and d is the

width of the wave potential. The expression for trapped par-

ticle density can be obtained by rearranging Eq. (4) given by

ntr ¼
ð0

�/=2

ftrðwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2wþ /
p dw ¼ d2/

dx2
�
ð1

0

fpðwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2wþ /
p dwþ 1:

(6)

The second term in the RHS of the above equation is the

passing electron density and is given by

np ¼
ð1

0

fpðwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2wþ /
p dw

¼ ABjffiffiffi
B
p B1=2�j

A
� 2B�k/1=2

2F1 j; 1=2; 3=2;�/=B½ �
� �

;

(7)

where

A ¼ CðjÞ
Cðk � 1=2Þ

ffiffiffi
p
p ;

B ¼ j� 3=2;

np is the passing electron density, and 2F1½a; b; c; z� is the

Gauss hypergeometric function.

Substituting Eq. (7) into Eq. (6), we get the trapped elec-

tron density given by

ntr ¼
ð0

�/=2

ftrðwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2wþ /
p dw ¼ x2/

d4
� /

d2
þ 1

� ABjffiffiffi
B
p B1=2�j

A
� 2B�k/1=2

2F1 j; 1=2; 3=2;�/=B½ �
� �

:

(8)

Now, our aim is to find the trapped electron distribution func-

tion. For that we need to solve the integral equation given by

2

ð0

�/=2

ftrðwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2wþ /
p dw ¼ ntrð/Þ: (9)

The solution of such an integral equation results in the

expression of ftr(w) given by27

ftrðwÞ ¼
2
ffiffiffi
2
p ffiffiffiffiffiffiffi

�w
p

pd2
½1� 2 lnð�8w=wÞ�

þ Affiffiffi
B
p 2F1 1=2; j; 1; 2w=B½ �: (10)
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This is the distribution function for trapped electrons. A

close look at the expression will reveal the fact that it has

two parts: the first part containing the logarithmic term

stems from the total charge density and the other term

results from the passing electrons. In the energy frame, the

negative energy (ranging from �/ to 0) is associated with

trapped electrons and the positive energy (ranging from 0 to

1) is associated with passing electrons. Hence, the bound-

ary that separates passing and trapped particles is at w¼ 0.

It can be noticed that the trapped electron distribution func-

tion takes the indeterminate form at the boundary. We know

that to be a legitimate probability distribution function rep-

resenting a physical system, it should be continuous and an

element of real space whose range is confined in [0, 1].33

Hence, we redefine the domain from [�/, 0] to [�/, 0).

This implies that the trapped particles are not present

exactly at the boundaries of the potential. Thus, it can also

be inferred that the turning points of particles trapped inside

the potential are mostly occur at lower energies and not

exactly at the boundaries.

As mentioned above, the trapped particle distribution

function should be positive to form a non-vanishing BGK

mode. This condition is used to derive the lower bound of

the width-amplitude relationship. This relationship pro-

vides us the set of width and amplitude of wave potential

which results in physically plausible BGK solutions. The

width-amplitude relationship for the superthermal plasma

is given by27

d2 � 2
ffiffiffi
B
p

pA

ffiffiffiffi
w

p
2ln4� 1ð Þ

2F1 1=2; j; 1;�w=B½ � : (11)

We closely analyze this expression and observe that for a

specific w, there is a critical value of d below which a stable

BGK solution fails to exist. In other words, we can say that

there exists a lower bound in d for a specific w. This equation

manifests that if the generated potential structure has the

width and amplitude from the area where this inequality is

satisfied, we get a positive ftr(w). Such solutions are physi-

cally realizable, and we term them as stable BGK solutions;

else, the trapped electron distribution function will be nega-

tive which is physically unrealizable. Such solutions are

termed as unstable BGK solutions.

III. RESULTS AND DISCUSSION

As mentioned earlier, the kappa distribution is quite

common in the near Earth’s plasma environment. The bipo-

lar electric field pulses often observed in such regions1 are

studied using the BGK theory developed for thermal plas-

mas.22,34 The details of the development of BGK theory for

superthermal plasmas, discussed in Sec. II, are given by

Aravindakshan et al.27 These authors have shown the differ-

ences in the existence domain of physically plausible BGK

solutions for thermal and superthermal plasmas. We focus

on the detailed study of wave potential effects on EHs

formed in these kind of plasmas, which is discussed in Secs.

III A–III C.

A. Effects of the amplitude and width of wave potential
on EHs

A charged particle moving in the vicinity of a potential

well can have two kinds of orbits: passing particles, those

particles with open orbits executing an infinite motion, and

trapped particles, those move in closed finite orbits.

Therefore, trapping is decided by the wave-potential that is

encountered by these particles. Thus, the width and ampli-

tude of the potential structure can influence particle trapping,

which is investigated here. It may be noted that the wave

potential [Eq. (5)] considered in the theoretical development

of the aforementioned BGK theory gives the potential struc-

ture which has achieved a stability after trapping. So, the

amplitude and width of wave potential represent the ampli-

tude and width of the potential structure associated with

EHs. We first examined the effects of the amplitude of wave

potential on the thermal and superthermal plasmas by taking

the constant width of the wave potential, which are shown in

Fig. 1. The top panels show the effects of w on trapped and

passing particle densities defined by Eqs. (7) and (8). These

equations show the distribution of trapped and passing elec-

trons in Euclidean space. In Fig. 1, the solid (dotted) lines

limn the superthermal (thermal) plasma case. The entire real

space ranges from two ends of the real axis, and the passing

population exists everywhere except in some regions where

we expect to see global minima for the passing density.

However, in such regions in the real space, the trapping pop-

ulations will be a finite positive value other than zero. In Fig.

1, it is interesting to note that at the center, x¼ 0, we see a

local minimum in the trapped density profile. In addition,

this local minimum vanishes as we decrease the amplitude of

wave potential. This phenomenon suggests that the probabil-

ity for the existence of trapped electron density is compara-

tively high at the center of the potential for a shallow

potential. Physically, the congregation of particles near the

center of the potential will be low for a deeper potential as

they oscillate with high amplitude. This is delineated as the

local minima in the trapped density profiles.

We have now discussed about the trapped electrons in

real space. The oscillatory motion of such electrons inside the

potential will result in a vortex type structure in phase space.

Such a structure can be obtained by solving Eq. (10). The

middle and bottom panels of Fig. 1 discuss the variation of the

phase space structure with the amplitude of wave potential, w,

for highly superthermal (j¼ 2) and weakly superthermal

(j¼ 20) plasmas, respectively. We see from Fig. 1 that as we

increase the amplitude of wave potential, there is not much

change in the distribution of particles in the position (x) axis,

but there is definitely a redistribution of particles in the conju-

gate space. Thus, as we increase w, the hole bulges out verti-

cally. Also, if we see the effects of w on the determination of

particles at the center of the electron hole, we can see that it

has a monotonic decrease. Moreover, the analysis shows that

the holes in superthermal plasma swarm with the electrons at

the center of the potential than the thermal plasma. This is pre-

dicted as we have seen that the superthermal plasma requires

a large number of electrons to form a physically plausible

BGK solution than its thermal counterpart.
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As a corollary, it can also be noticed from the trapped

density profiles of Fig. 1 that the superthermal plasma shows

higher trapping than the thermal plasma. This indicates that

trapping is more efficient in the case of superthermal plasmas

and the superthermal plasma requires a larger trapped popu-

lation to form a physically plausible BGK solution. The rea-

son for this is the average thermal energy or velocity of

particles which follows the superthermal distribution

(h2
e;j ¼ ½ðj� 3=2Þ=j�ð2kBTe=meÞ) that is far less than that of

the thermal plasma (vth;e;M ¼ ð2kBTe=meÞ1=2
). As the kappa

distribution function is steeper than the Maxwellian, they

possess lower thermal velocity for a maximum number of

particles as compared to that of Maxwellian.16 In the case of

particle trapping, particles with lower energy are likely to be

trapped, whereas those with higher energy will escape from

the potential. For superthermal plasmas, the number density

of particles with lower thermal energy is more; hence, they

should be trapped more as compared to that of thermal plas-

mas. We also observe that the full width at half maximum

(FWHM) for superthermal plasmas is higher compared to

that of thermal plasmas. The physical significance that

FWHM provides is that it gives a quantified picture about

the length at which the maximum trapped population is con-

fined. Thus, for the same wave potential, the superthermal

plasma will have a higher confinement length than the ther-

mal plasma. This contradicts the current belief that the con-

finement length solely depends on potential applied. In

addition, it is also interesting to see that (middle and bottom

panels of Fig. 1) the phase space volume occupied by both

thermal and superthermal plasmas is the same for a fixed

wave potential. However, there are a lot more electrons

trapped for superthermal plasmas. Hence, we could infer that

phase space holes in superthermal plasmas are denser. In

addition, they show another interesting behavior that in

FIG. 1. The effects of amplitude of

wave potential on the trapped elec-

trons. The two plots in the top panel

show the spatial distribution of trapped

electron density in thermal and super-

thermal plasmas for different w. The

dissemination of trapped electrons for

thermal and superthermal plasmas is

illustrated using dashed and solid lines,

respectively. Here, we use d¼ 2 for all

plots and w¼ 0.5 for all plots in the

left panel and w¼ 1 and d¼ 2 for all

plots in the right panel. For the same

values of wave potential, the penulti-

mate panel displays the phase space

description of highly superthermal

plasma (j¼ 2), and the bottom panel

shows for weakly superthermal plasma

(j¼ 20).
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comparison to the holes in thermal plasmas, holes developed

in superthermal plasmas have more particles at the center.

Next, we study the effects of the width of wave potential

on the EHs formed in the thermal and superthermal plasmas

in Fig. 2. The top panels show the effects of d on the trapped

and passing electron densities defined by Eqs. (7) and (8),

for a fixed value of w. These equations exhibit the distribu-

tion of trapped and passing electrons in Euclidean space. In

Fig. 2, the solid lines symbolize the case of superthermal

plasmas and the dashed lines indicate the case of thermal

plasmas. As mentioned above, the trapped particle density

shows a positive slope as the effect of potential begins, and

at the same point, the passing density has a negative slope.

In Fig. 2, it is unforeseen to note that at the center, x¼ 0, we

see a local minimum in the trapped density profile. In addi-

tion, this minimum vanishes as we increase the width of

wave potential. This means that the trapped electron density

is comparatively low near the center of the potential.

Physically, these trapped particles oscillate inside the poten-

tial. If we increase the width by keeping the amplitude con-

stant, the trapped particles oscillate at a smaller amplitude.

Hence, the probability of finding them at the center of the

potential becomes high. Therefore, it is certain that we see a

swarm of the trapped density at the center of the potential.

We have now discussed about the trapped particles in real

space. In phase space, the oscillations of these trapped par-

ticles are depicted as the vortex type structure or phase space

hole. The middle and bottom panels of Fig. 2 discuss the vari-

ation of the phase space structure with the width of wave

potential, d, for highly superthermal and weakly superthermal

plasmas. We have used Eq. (10) to obtain the phase space

plot for highly and weakly superthermal plasmas. The middle

panels of Fig. 2 correspond to the case of highly superthermal

plasmas (j¼ 2). The case of weakly superthermal plasmas

FIG. 2. The effects of the width of

wave potential on the trapped elec-

trons. The two plots in the top panel

show the spatial distribution of trapped

electron density for thermal and super-

thermal plasmas. The dissemination of

trapped electrons for thermal and

superthermal plasmas is illustrated

using dashed and solid lines, respec-

tively. Here, we use w¼ 0.5 and d¼ 1

for all plots in the left panel and

w¼ 0.5 and d¼ 2 for all plots in the

right panel. For the same values of

wave potential, the penultimate panel

displays the phase space description of

highly superthermal plasma (j¼ 2),

and the bottom panel shows for weakly

superthermal plasma (j¼ 20).
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(j¼ 20) is shown in the bottom panel. We see from Fig. 2

that as we increase the width of wave potential, there is no

distinct change in the distribution of particles in the conju-

gate axis, but there is definitely a redistribution of particles

in the position space. Thus, as we increase d, the hole

bulges out horizontally. Also, if we analyze the effects of d
on the determination of particles near the center of electron

holes, we observe that it has a monotonic increase. It can be

clearly seen that the number of particles near the center of

electron holes is much less for thermal plasmas. Physically

speaking, potential with the larger width will have less

steepness of its associated potential well, and hence, the

restoring force on trapped electrons will be less. The

trapped electron population near the center is determined by

the restoring force, which is introduced by the steepness of

the potential. If the restoring force is low, the amplitudes of

the oscillation of trapped particles inside the potential well

will also be lower. Hence, we see that the electrons reside

mostly at the center undergoing a small simple harmonic

oscillation. This could be a possible reason for the dominant

electron population at the center electron holes having

larger wave potential widths.

Other important feature is that trapping is higher for the

EHs with larger widths. To investigate this feature in detail,

we estimated total trapped particle density ntr by varying d
in the range of 60–4000 for different values of w ranging

from 1 to 500 in an interval of 2. As an example, the results

obtained from this numerical analysis are shown in Fig. 3,

where the top panels show ntr as a function of d for four dif-

ferent values of amplitude, w¼ 1, 10, 100, and 500. The top

left and right panels portray the case of highly and weakly

superthermal plasmas, respectively. This total trapped den-

sity is obtained by integrating the trapped particle density in

x-space numerically. The integration length is taken as the

system length. The slope and intercept of each curve are given

in the plot. The subscripts 1, 2, 3, and 4 of m and c indicate

the slope and intercept of the curves red, magenta, blue, and

green, respectively. It may be noted that the intercept for all

curves is very small (10�12 to 10�11) and can be neglected.

Thus, we can say that ntr ¼ mðwÞd, where m is the slope of

each curve and it is a function of w. However, we do not

know the functional form of m(w). It is evident that even

though the total trapped density (ntr) linearly increases with d,

the slope of the curve has a strong dependence with w. This

dependence is perused and presented in the bottom panels of

Fig. 3. The dependence of the slope as a function of w is

shown by red dots, and the black line represents the nonlinear

fit of the form y ¼ a� logðxÞ þ b, which fits the best to the

data. The error in fitting is around 5%–10%. The coefficients

a and b do vary with the j index, and these constants are

given in Table I. The bottom left and right panels portray the

case of highly and weakly superthermal plasmas, respectively.

Finally, we can represent ntr as follows:

ntr ¼ aðjÞ þ bðjÞ � logðwÞ½ � � d: (12)

The above equation is derived from the numerical fitting of

data obtained from the theoretical model. We resort to such

empirical modeling because of the difficulty in the analytical

integration of the trapped electron density, ntr. We cannot

get the analytical form of the ntr as solving these integrations

analytically is difficult. Now, we see from Fig. 3 that the

slope of the curve tends to saturate after certain w. Thus, it

becomes apparent that for a given d, there exists a maximum

value of w after which the amplitude of wave potential

affects less significantly to ntr.

FIG. 3. The total trapped density per system length plotted as a function of the width of wave potential d for different amplitudes, w, is given. The four panels

show this variation for different superthermal indexes, j. Here, red, magenta, blue, and green represent w¼ 1, 10, 100, and 500, respectively. The subscripts 1,

2, 3, and 4 of m and c indicate the slope and intercept of the curve red, magenta, blue, and green, respectively.
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We know that the maximum value of ntr can reach up to

one. It means for a given w, there exists a d such that ntr is

one, above which all the values of d result in non-physical

values of ntr. Thus, this imparts an upper bound for the

width-amplitude relationship.

Now, we have evinced that there exists an upper

bound also for the width amplitude relationship. From the

maximum value calculated from the analysis of the depen-

dence of ntr with d, we saw that it has a linear dependence

with the intercept to be zero. As we mentioned, the upper

bound occurs when ntr becomes unity, i.e., the case of

maximum trapping. When we use this condition in Eq.

(12), we get

1 ¼ ½aðjÞ þ bðjÞ � logðwÞ� � d: (13)

Thus, the upper bound of the width amplitude relationship

turns out to be

d ¼ ½aðjÞ þ bðjÞ � logðwÞ��1: (14)

For a highly superthermal plasma, the values of a and b are

5.98� 10�5 and 7.19� 10�6, respectively. The values of a
and b for different values of the superthermal index are given

in Table I. Hence, the upper bound of the width amplitude

limit turns out to be

d ¼ ð5:98� 10�5 þ 7:19� 10�6 � logðwÞÞ�1: (15)

This is shown in Fig. 4. The first panel of this figure shows

the upper bound for various superthermal indexes. It can be

noted that as we move to the thermal regime, the upper

bound limit of the stability region increases. This is because

the stability of a BGK mode is decided by the number of

trapped particles. Also, we have derived this using the condi-

tion that ntr attains its maximum value of one. We know that

the superthermal plasma requires more trapped particles than

the thermal plasma to form a physically plausible BGK

mode. Hence, it is natural that the superthermal plasma

attains the maximum value of d for a specific w at a lower

point than the thermal plasma. The right top panel in Fig. 4

shows the total stability region for the highly superthermal

plasma. The magenta line shows the lower bound limit, and

the red line indicates the upper bound limit. The bottom

panel depicts the phase space hole at the upper boundary for

highly superthermal and weakly superthermal plasmas. It

can be observed that at their respective upper boundary, the

superthermal plasma has a larger hole and its entire particles

TABLE I. The value of constants a and b for different values of nonthermal

index j. It may be noted that a and b are functions of j and used in Eq. (12)

to estimate the total trapped electron density.

K a b

2 5.98 � 10�5 7.19 � 10�6

3 5.56 � 10�5 7.45 � 10�6

4 5.37 � 10�5 7.56 � 10�6

10 5.33 � 10�5 7.60 � 10�6

20 5.30 � 10�5 7.62 � 10�6

FIG. 4. The upper limit of the width

amplitude relation and the correspond-

ing phase space hole are depicted. The

left top panel shows the upper limit of

the width-amplitude curve for the vari-

ous values of superthermal index j.

The right top panel shows the complete

stability region for a highly superther-

mal plasma (i.e., j¼ 2). The bottom

panels show the space holes at the

maximum allowed d for a fixed w for

highly and weakly superthermal plas-

mas. The red and blue points on the

left top panel show the values for

which the phase space plot is drawn.

The red (blue) dot indicates the case of

highly (weakly) superthermal plasma

j¼ 2 (j¼ 20).
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are concentrated at the rim compared to that of the center or

the inner part of the vortex compared to the thermal plasma.

The upper bound implies that the physically plausible BGK

solutions not only have a lower limit for their size, but they

also have an upper limit.

B. Variation in the trapped particle distribution
function

Even though we have seen the effects that the amplitude

and width of wave potential introduced to get a complete pic-

ture, we need to probe their effects in conjugate space also.

Figure 5 portrays the effect of d on trapping in conjugate

space. We have numerically integrated the distribution func-

tion in x-space and found the variation in v-space. It can be

clearly noted that as we increase d, more particles of lower

velocities are trapped. It indicates that as we increase d instead

of trapping more and more higher energy particles, more and

more lower energy particles are trapped. Hence, we can con-

clude that the width of wave potential decides the trapping

density of lower energy particles. It is also interesting to note

that as we go for increasing the width of wave potential, the

effect of the superthermal index gains significance.

The effect of wave potential amplitude on trapping in

the v-domain is shown in Fig. 6. Figure 6 shows the variation

of the trapped electron distribution function in v-space for

various w. It can be clearly noted that as we increase w, the

particles of higher velocities are trapped, but the maximum

trapping still remains the same, which can be understood by

looking at the origin. It indicates that as we increase w
instead of trapping more and more lower energy particles,

more and more higher energy particles are trapped. Hence,

we can conclude that the amplitude of wave potential

decides which is the highest velocity of particles trapped.

C. Size of electron holes

We have seen that the lower bound of the stability

regions is obtained by assuming the positivity of the trapped

electron distribution function. Such a relationship is called

the width-amplitude relationship given by27

d2 � 2
ffiffiffi
B
p

pA

ffiffiffiffi
w

p
2ln4� 1ð Þ

2F1 1=2; j; 1;�w=B½ � : (16)

For a highly superthermal plasma, i.e., j¼ 2, this relation is

given by

d � 1:12

ffiffiffiffi
w

p
ð2wþ 1Þ3=2

wþ 1

 !0:5

: (17)

The above equation gives us the width-amplitude relation-

ship for the highly superthermal plasma (j¼ 2). We have

already mentioned that d is the width of the potential and w
is the amplitude of the potential. It can be observed that

inequality in the above equation [Eq. (17)] holds for arbitrary

values of w and d. It is intuitively obvious that the size of

electron holes will be less than or equal to the width of the

potential. Hence, the superthermal plasma supports EHs of

arbitrary size. Figure 7(a) shows the trapped density plots for

both superthermal and thermal plasmas with d¼ 0.1 and

w¼ 2� 10�5. The solid line delineates the trapped density

of superthermal plasmas, and the dashed lines delineate the

trapped density of thermal plasmas. Figure 7(a) also shows

FIG. 5. The variation of the trapped electron distribution function of thermal and superthermal plasmas in velocity space for different d is shown here. The

superthermal index, j, is set to 2, and the amplitude of the wave potential, w, is set to 1. Blue and red colors show the case of thermal and superthermal plas-

mas, respectively.
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that the entire charge density is confined within one kDe.

This demonstrates that the superthermal plasmas also support

EHs of arbitrary size theoretically. It is well known that the

Debye length has a direct dependence with the superthermal

index.35,36 Hence, a positive core is screened out at a shorter

distance than the thermal plasma. The electrons trapped

inside the potential oscillate inside the potential well about

the positive core. The spatial scale length in the phase space

plot or the trapped density profile clearly shows that the size

of the hole is less than one kDe. As the combination of w and

d, i.e., the amplitude and width of wave potential, respec-

tively, is chosen from the allowed region, it is explicit that

like thermal plasmas, superthermal plasmas also support

EHs of size less than the Debye length and the positive core

is screened by the oscillation of trapped electrons as

suggested by Chen.34 This again substantiates the fact that

more particles will be trapped in the superthermal plasma.

As we go on increasing the wave potential, the confine-

ment length also increases. This is shown in Fig. 7(b), where

d¼ 2 and w¼ 1. The solid line delineates the trapped density

of superthermal plasma, and the dashed lines delineate the

trapped density of thermal plasmas. It can be observed that

the trapped particle density in this case is not confined within

one kDe.

IV. CONCLUDING REMARKS

This paper laid down a detailed and comprehensive

study of BGK theory for superthermal space plasmas by

investigating the role of each physical parameter in the

FIG. 6. The variation of the trapped electron distribution function of thermal and superthermal plasmas in velocity space for different w is shown here. The

superthermal index, j, is set to 2, and the width of the wave potential, d, is set to 4. Blue and red colors show the case of thermal and superthermal plasmas,

respectively.

FIG. 7. The trapped particle density for small and large wave potentials. (a) The case of small wave potential with the amplitude of wave potential,

w¼ 2� 10�5, and the width of wave potential, d¼ 0.1, for thermal and superthermal plasmas. (b) The case of large wave potential with the amplitude of wave

potential, w¼ 1, and the width of wave potential, d¼ 2, for thermal and superthermal plasmas.
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theory. The main outcome of the study is that we obtained an

empirical relation for the total density of trapped electrons

associated with a wave potential formed in the superthermal

plasmas. We found that there exists an upper bound limit for

the physically plausible region of EHs in width—amplitude

(w� d) space. It was believed earlier that the parametric

space of w and d will have a lower bound above which the

physically plausible BGK solutions can exist. However, we

have found physically that plausible BGK solutions do have

an upper boundary in the w – d parametric region. As there

is an upper limit on d associated with physically plausible

BGK solutions, it implies that there is a limit on the maxi-

mum size of EHs as well.

Second, we have studied the effect of wave potential

and superthermal index on particle trapping and its distribu-

tion function. We have observed significant differences in

the existence and the characteristics of EHs in thermal and

superthermal plasmas. One of the most important differences

is that superthermal plasma requires a higher number of

trapped particles to form physically plausible BGK solutions

compared to the thermal plasma. The superthermal index

plays an important role in trapping as it controls the abun-

dance of lower thermal energy particles which makes the

interaction between the plasma and the wave potential stron-

ger. We also find that the total trapped electron density is

predominantly determined by the amplitude of the wave

potential. In addition, the number of particles present at the

center of the EHs asymptotically decreases with the ampli-

tude of the wave potential. The reason behind this seems to

be clear. As the potential has a high amplitude, it will cause

the trapped electrons to oscillate faster with very high ampli-

tude. Hence, the probability of observing the particle at the

center of the EH becomes low. In contrast, the width of the

potential has a negative dependence on the probability of

finding particles at the center. It is also interesting to find

that the amplitude of the wave potential decides the trapping

of higher energy particles and the width of the wave poten-

tial decides the trapping of lower energy particles.

In a linearized theory, the minimum wave length is the

Debye length37,38 for which the plasma cannot shield out dis-

turbances for scales smaller than the Debye radius. From the

detailed analysis, we arrive at a conclusion that superthermal

plasmas add no restriction on the size of EHs theoretically

formed. In fact, the generation of physically plausible EHs

with size less than or equal to one electron Debye length is

theoretically allowed. It is known that the Debye length of

the superthermal plasma is smaller than that of the

Maxwellian plasma.35,36 Chen has conjectured in her thesis34

that the size of EHs can be less than the Debye length for

thermal plasmas. They suggested that the oscillation of

trapped electrons in the potential well screens out the posi-

tive potential. As the Debye length of the superthermal

plasma itself is small,35 we expect the size of electron holes

to be smaller than that of the thermal plasma. In addition, we

have seen that ntr for superthermal plasmas is higher com-

pared to that for thermal plasmas, so the potential will be

screened out at a lower length. Thus, the minimum size of

EHs which is supported by the superthermal plasmas is less

than that of thermal plasmas.
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