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ABSTRACT

We perform fluid simulations to examine the effect of ion thermal velocity on the formation and dynamics of solitary waves in an
unmagnetized two-component plasma consisting of ions and electrons. Based on the linear and nonlinear fluid theories, some of the previous
studies have reported that the plasma with the electron temperature greater than the ion temperature (i.e., Te > Ti) supports ion acoustic sol-
itary waves (IASWs), whereas the plasma with Te� Ti supports electron acoustic waves (EASWs). In this paper, we have considered a wide
range of ion temperatures (with fixed electron temperature) to examine the criteria of temperature and thermal velocities in the generation
of EASWs and IASWs in plasmas. Our simulation shows that the plasma with Ti > Te possesses two wave modes depending on the ratio of
its thermal velocities. When the ratio of electron to ion thermal velocities R ¼ Vthe/Vthi > 1, the system supports the generation of IASWs,
whereas for R < 1, it supports the generation of EASWs. The analysis of characteristics like the amplitude, width, and phase speed of these
solitary waves implies that the EASWs have a negative potential, whereas the IASWs have the positive potential. The transition from IASWs
to EASWs occurs when the phase speed of the solitary wave exceeds the limiting value of

ffiffiffi
3
p

Vthe. This simulation study presents the detailed
investigation of the evolution of EASWs and IASWs generated in plasmas having Ti > Te, which will have implications in modeling such
waves in space and laboratory plasmas.
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I. INTRODUCTION

Fried and Gould1 obtained the numerical solutions of the linear
electrostatic Vlasov dispersion equation in an unmagnetized, homoge-
neous two-component (electron and ion) plasma and showed the exis-
tence of a damped electron acoustic (EA) mode, in addition to the
well-known Langmuir and ion acoustic (IA) modes. The EA mode has
usually been ignored as it is found to be heavily damped for
Maxwellian distributions.2 Later, it was shown that in the presence of
two distinct groups (cold and hot) of electrons and immobile ions, one
indeed obtains a weakly damped EA mode, the properties of which
significantly differ from those of the Langmuir waves.3 Based on the
theoretical approach, most of the studies related to nonlinear ion- and
electron-acoustic waves show that the plasma with the ion temperature
much greater than the electron temperature (i.e., Ti � Te) supports
electron-acoustic solitary waves (EASWs),4,5 whereas the plasma with
ion temperature smaller than the electron temperature supports ion-
acoustic solitary waves (IASWs).6,7 However, the critical temperature

ratio of these species required for the existence of the EASWs and
IASWs is not known. For multicomponent plasma with one or more
ion species which are hotter than some or all of the electron species,
the necessary conditions for the generation of large amplitude solitary
acoustic modes are discussed by Verheest et al.8 They find that the
existence domain of soliton velocities is very narrow and that ions can-
not be treated as Boltzmann. Their study indicates that both inertial
and thermal effects for the ions need to be kept in such models to
study the solitary waves. In our simulation, we have considered both
inertial and thermal effects. We find that for the case of hot ion plasma
(Ti > Te), depending on the ratio of electron to ion thermal velocity,
R ¼ Vthe/Vthi, the plasma system supports either IA (when R> 1) or
EA (when R< 1) waves.

The plasma in different regions of the Earth’s magnetosphere
supports electrons and ions with distinct temperatures. The electrons
and ions with Ti > Te are common in polar cap boundary layer
region9 ring current and the magnetotail region10,11 of the Earth’s
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magnetosphere, whereas the Earth’s magnetopause and magneto-
sheath regions support plasma with Ti < Te.

12 Due to these favorable
conditions, both EASWs and IASWs are ubiquitously observed in
Earth’s magnetosphere. These waves have received a great deal of
renewed interest as they play an important role in a variety of plasma
processes in Earth’s magnetosphere, e.g., generation of broadband
electrostatic noise,13,14 particle acceleration processes,15,16 etc.

In the literature, there are many studies employing multispecies
plasma models to examine both IASWs and EASWs. Several research-
ers have studied the nonlinear IASWs17–28 and EASWs11,12,29–38 in
multispecies plasmas. But not much attention has been paid to the
modelling of the EA waves in two-component (electrons and ions)
plasma. There are just a few two-component fluid models with Ti>Te
in the literature which supports electron acoustic waves, e.g., Buti
et al.4 and Ghosh et al.5

Most of the fluid models of the IASWs and EASWs have been
studied using the Sagdeev pseudopotential analysis technique, in
which the reference frame moves with the solitary wave, for one mode
at a time.36,39 In general, these solitary waves are often referred to as
solitons even though the Sagdeev formalism excludes all discussion of
their stability and interaction properties. Recently, Kakad et al.6 per-
formed one-dimensional fluid simulations of IASWs and validated
this classical theory for the first time for two-component (hot electron
and cold ion) plasma. They have shown that the solitary wave solu-
tions obtained from the Sagdeev pseudopotential analysis are stable
and in good agreement with the fluid simulations. So far, such fluid
simulations are not carried out for EASWs to examine their evolution.
The motivation to carry out the present simulation is based on a sim-
ple thought. We intend to investigate the generation of solitary wave
structures, identify associated wave modes, and examine their evolu-
tionary characteristics in a plasma consisting of ions and electrons
obeying Ti> Te. In this paper, we discuss the evolutionary characteris-
tics of the solitary waves formed in the plasma system having different
ion thermal velocities. We examined the ion thermal velocity control
on the excitation of EASWs to IASWs in plasmas. This paper is struc-
tured as follows; the plasma model is briefly discussed in Sec. II. The
simulation parameters are discussed in Sec. III. The results obtained
from the different simulation runs are elaborated in Sec. IV. The pre-
sent work is summarized and concluded in Sec. V.

II. PLASMA MODEL

We consider a homogeneous, collisionless, unmagnetized
plasma consisting of fluid electrons and fluid ions (Hþ). Such a
plasma can either support EASWs or IASWs depending on the
thermal velocity of the electrons and ions. For the nonlinear waves
propagating parallel to the magnetic field along the x-axis, the
dynamics of the electrons and ions is governed by the equation of
continuity, momentum, and energy for both species and the
Poisson equation6 as follows:
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The electric field (E) in the equations listed above can be written in
terms of an electrostatic potential (/) with the relation E ¼ –@//@x.
In the equations listed above, the subscripts j ¼ e and i are used for
electrons and ions, respectively. The variables nj, Pj, and vj are plasma
density, pressure, and velocity of the species j, respectively. Here, mj

and Zj represent the mass and charge of the species j, respectively. The
charge Ze ¼ –e for electrons and Zi ¼ e for ions. �0 is the electric per-
mittivity. For a one-dimensional case, the allowed degree of freedom is
1. Thus, we assume the adiabatic index cj as 3 in Eq. (3).

We used the fluid code developed by Kakad et al.6 and solved the
unnormalized equations (1)–(4). All physical parameters used in these
equations are taken in MKS system. In the simulation code, the spatial
derivatives of the quantities in Eqs. (1)–(3) are computed using the
finite difference scheme,6,40 which is accurate up to the fourth order.
The Poisson equation is solved using the second-order central finite
difference method. We integrate Eqs. (1)–(3) in time by the leap-frog
method,6,40 which is accurate to the second order. The leap-frog
method gives rise to a grid separation numerical instability. To elimi-
nate small wavelength modes linked with such numerical instability,
we have used a compensated filter.41 A necessary condition for the
convergence of the explicit finite difference method used in our simu-
lation is the Courant condition,7 Vmax

Dt
Dx � 1. Here, Dx and Dt are the

space- and time-domain grid size in the simulation and Vmax is the
maximum speed considered in the simulation system. The values of
these parameters in the simulations are chosen such that the Courant
condition is always fulfilled.

III. SIMULATION PARAMETERS

We perform the fluid simulations in a one-dimensional system
with the periodic boundary conditions. For all simulation runs, we
assume an artificial electron to ion mass ratio mi/me ¼ 100. The flow
velocities of the electrons and the ions at xpit ¼ 0 are assumed to be
zero initially, i.e., ve0(x) ¼ vi0(x) ¼ 0. The background electron and
ion densities are set in such a way that ne0 ¼ ni0 ¼ 1. Thus, the ion
and electron plasma frequencies (xpj) take values of 0.1 and 1, respec-
tively. We used the localized Gaussian perturbation as an initial den-
sity perturbation (IDP) in the equilibrium electron and ion densities
given by

dn ¼ Dn exp � x � xc
l0

� �2
" #

: (5)

In the equation above, Dn and l0 are the amplitude and width of the
superimposed IDP, respectively. Here, xc ¼ Lx/2 is the center of the
simulation system. The perturbed densities at the initial time are given
by nj(x) ¼ nj0 þ dn. Although the system has quasineutrality (i.e., ne0
¼ ni0) at t ¼ 0, the gradient in density is not zero, which gets reflected
in the thermal pressure of each species. The pressure gradients (i.e.,
rPj) present in the simulation system act as a free energy source and
affect the motion of species through momentum equation (2).
Accordingly, different plasma species respond and a finite electric field
is generated in the system through charge separation, which grows
with time and evolves into solitary waves.
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It may be noted that both electron and ion temperatures play an
important role in governing the dynamics of different wave modes
formed in two-species plasma systems. For plasmas, where electron
temperature is greater than the ion temperature, i.e., Te > Ti, the ther-
mal velocity of electrons is always larger than the ions, i.e., Vthe> Vthi,
because electrons are less massive as compared to the ions. Such a
plasma supports IASWs and Langmuir waves.6 However, when Te
<Ti, we have two possibilities (i) R ¼ Vthe/Vthi> 1 and (ii) R < 1. So,
we performed fluid simulations considering Te < Ti and varied ion
temperature such that we come across both R > 1 and R < 1 plasma
conditions. We fixed Te ¼ 1 for simplicity. As me ¼ 1, we get electron
thermal velocity Vthe ¼ 1. The ion thermal velocity Vthi is considered
in the range of 2–500, and they are listed in Table I. Out of eight simu-
lation runs, runs 1–5 have R > 1 and we consider these runs under
category-I. Runs 6–8 have R < 1, and we take these simulations runs
under category-II. The same IDP is used to perturb the plasma system.
For all simulation runs, we took lo ¼ 2 and Dn ¼ 0.03 (i.e., 3% of
ambient plasma density n0) for IDP, and the system length is taken as
Lx ¼ 2 � 105. The other parameters used in the simulations are also
given in Table I. Here, the physical parameters retrieved from the sim-
ulation like density, temperature, thermal velocity, length, and time
are expressed in simulation units of [n0e], [Te], [Vthe], [kde], and [x�1pe ],
respectively. This is the standard practice used to represent the simula-
tion results.40,42

IV. SIMULATION RESULTS

In this section, we discuss one simulation run each from
category-I and II. The characteristics of generated solitary wave struc-
tures and the mode identification through their dispersion relation are
elaborated by analyzing the simulation output. We chose run-2 (Ti
¼ 5) from category-I and run-7 (Ti¼ 400) from category-II.

A. Category-I: Evolution of IASWs

In this section, we discuss the evolution of solitary waves gener-
ated in the plasma system falling into category-I. The injection of the
IDP in the equilibrium electron and ion density generated a very small
finite electric field in the system, which evolves into the solitary waves.
To get the more insights into the evolution and propagation of these
solitary waves, we discuss the spatio-temporal evolutionary character-
istics of solitary waves for run 2. It should be noted here that the iden-
tification of these generated solitary waves, i.e., whether they are
EASWs or IASWs, is verified through their dispersion characteristics

in a later part of this section. We identify this mode as IASW. Figure 1
shows the spatial and temporal evolution of the (a) electrostatic poten-
tial and (b) electric field for run 2. It should be noted that we use a
large system length (Lx ¼ 2 � 105 kde) for the simulation. However,
we show only the part of the system length, i.e., from 65000kde in Fig.
1 for the better visualization. Here, x – xc ¼ 0 represents the center of
the simulation system. This figure shows that the initial IDP generates
a finite potential pulse, which later evolves into two unstable solitary
wave pulses and two oscillatory wave packets trapped between them.
These unstable pulses become stable at a later time, i.e., their width
and amplitude remain nearly constant during their propagation for a
sufficiently longer time. The red bands in Fig. 1(a) show electrostatic
potential associated with the oppositely propagating solitary wave
pulses, whereas the distinct structures around the center of simulation
systems are high frequency oscillations that are identified as Langmuir

TABLE I. Parameters used in the simulation runs to investigate the effect of ion thermal velocity on the existence domain of EASWs and IASWs. Here, me ¼ 1 and mi ¼ 100.
Lx ¼ 2 � 105. We consider Te < Ti for all the simulation runs.

Run dx dt Ti Vthi Te Vthe kdi Category Duration for averages

Run-1 1 1 � 10–2 2 0.1414 1 1 1.41 Category-I 9000–14 000x�1pe

Run-2 1 1 � 10–2 5 0.2236 1 1 2.23 Vthe/Vthi > 1 9000–14 000x�1pe

Run-3 1 1 � 10–2 10 0.3162 1 1 3.16 9000–14 000x�1pe

Run-4 1 1 � 10–2 20 0.4472 1 1 4.47 9000–14 000x�1pe

Run-5 1 1 � 10–2 50 0.7071 1 1 7.07 9000–14 000x�1pe

Run-6 1 1 � 10–2 200 1.4142 1 1 14.14 Category-II 9000–14 000x�1pe

Run-7 1 1 � 10–2 400 2.0000 1 1 20.00 Vthe/Vthi < 1 9000–14 000x�1pe

Run-8 1 1 � 10–2 500 2.2360 1 1 22.36 9000–14 000x�1pe

FIG. 1. (a) The spatio-temporal evolution of the electrostatic potential (/) in the
system for the simulation run-2 (Vthi ¼ 0.22Vthe). In this, the dark red bands corre-
spond to the two oppositely propagating positive amplitude solitary wave pulses,
whereas the alternate light blue and yellow circular bands between these pulses
are due to the Langmuir oscillations. (b) The spatio-temporal variation of the electric
field (E) in the simulation system. The blue and red bands show largely bipolar
electric field pulses associated with the solitary waves.
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waves. The yellow and blue bands in Fig. 1(b) correspond to the bipo-
lar electric field structures of the oppositely propagating solitary wave
pulses. Both solitary pulses are the positive amplitude solitary waves.

To visualize the characteristics of IASWs, we plotted the density
and velocity of electrons and ions, and the potential and electric field
associated with these IASWs at time xpet ¼ 5000 in Fig. 2. Figure 2(a)
shows two humps in the electron and ion densities associated with the
two IASW pulses that are propagating in the opposite direction away
from the center of simulation system.We observed small negative dips
in the density at the outer edges of the IASW pulses. In this case, the
electron and ion densities are almost identical except a slight difference
in their magnitudes around the center of the peaks, where the ion den-
sity is slightly greater than the electron density. In panel (b) of Fig. 2,
we show the evolution of electron and ion flow velocities at time xpet
¼ 5000. We see a dip (i.e., negative vj) in the electron and ion velocities
associated with the IASW pulse propagating along the left direction of
the plasma system, whereas the electron and ion velocity pulses associ-
ated with the IASW pulse propagating along the right side of the
plasma system show a hump (i.e., positive vj). The dip and hump in
velocity are almost identical in shape. However, it is observed that the
magnitude of peak ion fluid velocity near the dip and hump is greater
than the magnitude of the peak electron fluid velocity. It should be
noted that a smaller amplitude velocity fluctuation seen in the electron
velocity is associated with the Langmuir oscillations. These fluctua-
tions are seen only in the electron fluid velocity and not in the ion fluid
as the Langmuir mode is the high frequency wave mode, which is car-
ried by electrons. The electrostatic potential and the electric field
evolved in the system at xpet ¼ 5000 are shown in Figs. 2(c) and 2(d),
respectively. The positive potential and the largely bipolar characteris-
tics of the electric field associated with the IASWs are evident from

this figure. The interesting feature observed here is that the positive
potential IASW structures are accompanied by the negative dip at
both the edges. Such dips are not associated with the IASWs formed
in the plasma with the electron temperature higher than the ion
temperature.6

Now, we identified the wave modes generated in the simulation.
A free energy in the form of IDP at xpet ¼ 0 in the system evolves
with time, and the energy gets transferred to different wave modes
that are excited in the plasma. A standard approach to identify these
excited waves in the simulation is to examine their dispersion charac-
teristics by obtaining the x–k diagram.We obtain the x–k diagram by
taking the Fast Fourier Transformation (FFT) of the electrostatic
potential in space and time for run-2. Figure 3 shows the dispersion
diagrams of run-2 during (a) xpet ¼ 0–200 and (b) xpet ¼ 500–700.
In this figure, the dashed white lines represent the linear dispersion
relation obtained from Eqs. (1)–(4) and the dashed black line shows
the electron plasma frequency (xpe). The slope of these slanted lines is
equivalent to the phase velocity of the IASWs estimated from the lin-
ear dispersion relation, which is Vt

ph ¼ 60:42Vthe. It is seen that the
lower dispersion curves extend far below xpe. This hints that these two
dispersion curves are associated with the oppositely propagating
IASWs. The upper dispersion curves of the parabolic shape starts at
xpe and extends above xpe. This is a typical characteristic of the
Langmuir waves in unmagnetized plasma.6 This dispersion analysis
indicates that the two solitary wave pulses are IASWs, whereas the dis-
persive oscillations between these IASW pulses are the Langmuir
waves.

We noticed that the characteristic of the Langmuir mode is not
the same as the usual Langmuir mode. Linear theory gives the group
speed of the Langmuir wave as Vg ¼

ffiffiffiffi
ce
p

V2
the=V/, where V/ is the

FIG. 2. Evolution of (a) electron and ion density, (b) electron and ion velocity, (c) electrostatic potential, and (d) electric field at xpet¼ 5000 for simulation run-2 (i.e., Ti¼ 5, Te¼ 1).
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phase speed of the wave. For higher wave numbers, the group speed
tends to be Vg ¼

ffiffiffiffi
ce
p

Vthe as the phase speed of wave approaches elec-
tron thermal velocity. Through computer simulations, it has been
demonstrated that in plasmas with Te > Ti, the higher wave number
(small spatial scale) oscillations associated with the Langmuir mode
indeed propagate with the group speed of Vg ¼

ffiffiffiffi
ce
p

Vthe, which is
much faster than the phase speed of IASWs formed in that plasma sys-
tem.6 So, generally, the Langmuir waves are found to be preceded by
the IASWs in the spatial domain. However, in the present simulation,
it is noted that the smaller amplitude oscillations in the electrostatic
potential that are identified as the Langmuir waves are mainly trapped
between two oppositely propagating IASWs. In fact, its group speed is
much smaller, not exceeding the phase speed of IASWs generated in
the system. It implies that the Langmuir wave mode associated with
the higher wave numbers is being damped rapidly. Furthermore, it is
noted that the small amplitude Langmuir wave oscillations in the elec-
trostatic potential formed in the simulation are associated with the
small wave number modes, which are propagating with a group speed
much smaller than

ffiffiffiffi
ce
p

Vthe. The x–k plots shown in Figs. 3(a) and
3(b) indicate that the wave power is limited to smaller wave numbers
(k < 0:2k�1de ) in the later stage of evolution of generated IASWs, i.e.,
xpet ¼ 500–700 as compared to that in the initial stage, i.e., xpet
¼ 0–200.

B. Category-II: Evolution of EASWs

The spatio-temporal evolution of electrostatic potential and the
electric field for the simulation run-7 is shown in Figs. 4(a) and 4(b),

FIG. 3. x–k dispersion diagrams of electrostatic potential in simulation run-2 during (a) xpet ¼ 0–200 and (b) xpet ¼ 500–700. It shows two dispersion curves at the bottom,
which are due to the IA waves. The upper dispersion curves (above x ¼ xpe) with a parabolic shape are associated with the Langmuir waves. The speed of IASWs estimated
from their linear dispersion relation is shown by white dashed-dotted lines in both panels. The electron plasma frequency is shown with the horizontal black dotted line at x ¼
xpe ¼ 1. The power associated with higher wave numbers (k) is reduced significantly during xpet ¼ 500–700 in panel (b).

FIG. 4. (a) The spatio-temporal evolution of the electrostatic potential (/) in the
system for run-7. In this, the dark blue bands correspond to the two oppositely
propagating negative amplitude solitary wave pulses, whereas the circular shaped
structures around the center of the system are due to the Langmuir oscillations. (b)
The spatio-temporal variation of the electric field (E) in the simulation system. The
red and blue bands show largely bipolar electric field pulses associated with the
solitary waves.
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respectively. The dark blue wide bands in Fig. 4(a) are due to the nega-
tive potential associated with the two oppositely propagating solitary
wave pulses. Throughout the simulation time, the wide patch around
the center of the simulation system shows the propagation of oscilla-
tions with distinct wave structures. The spatio-temporal evolution of
the electric field in Fig. 4(b) shows the dark blue and red color bands.
These bands are due to the bipolar electric field associated with the
oppositely propagating solitary wave pulses. In this case, we observe
that the oscillations disperse and their amplitude decreases with time,
which indicates their dispersive nature. On the other hand, the solitary
wave pulses evolve and closely maintain their shape and size in the sta-
bility region, i.e., after sufficient time of their generation.

To examine the density and velocity of the electron and ion fluid
during the phase when generated EASWs are nearly stable, we plotted
their profiles at xpet ¼ 2000 in Figs. 5(a) and 5(b), respectively. The
electrostatic potential and the electric field during this time are shown
in Figs. 5(c) and 5(d), respectively. The electrostatic potential shows
two negative amplitude EASW pulses propagating opposite to each
other. Small positive potential humps are seen at the left and the right
edges of the EASW pulses. Two slowly moving oscillatory Langmuir
wave packets in a direction opposite to each other are observed around
the center of the system. The electric field associated with these EASW
pulses has a largely bipolar form. However, an additional very small
amplitude negative (positive) pulse is attached to the left (right) edge
of this bipolar electric field pulse. The electron and ion density plot
shows two humps propagating opposite to each other. These humps
are associated with the EASW pulses generated in the system. The

peak electron density is slightly greater than the peak ion density,
which maintains the stable bipolar EASW pulses. The electron and ion
fluid velocities show the dip associated with the left-side propagating
EASW pulse (propagating in the –x direction), whereas the right-side
EASW pulse (propagating in the þx direction) shows a hump in the
velocity. The peak amplitude of electron velocity is slightly larger than
the peak ion velocity. The electron fluid shows smaller amplitude oscil-
lations in their velocity, and they are associated with the Langmuir
wave mode.

We obtain the x–k diagram for run-7 by taking the FFT of the
electrostatic potential in space and time. Figures 6(a) and 6(b) show
the dispersion diagram of run-7 for xpet¼ 0–200 andxpet¼ 500–700,
respectively. In this figure, the dashed black line shows the electron
plasma frequency (xpe). The phase velocity of the EASWs obtained
from the linear dispersion relation is 3.46Vthe, and it is represented by
slanted white dashed lines. In this figure, the upper dispersion curves
with a parabolic shape start at xpe and extend above it. These disper-
sion curves are similar to the dispersion curve of the Langmuir waves
observed in run-2. The lower dispersion curves extend beyond elec-
tron plasma frequency (i.e., x > xpe). Such dispersion characteristics
are associated with the electron acoustic waves. From Figs. 4 and 6(b),
we confirm that the nondispersive solitary pulses are EASWs, whereas
the dispersive oscillations between the EASW pulses are Langmuir
oscillations propagating slower than the EASWs. Linear theory sug-
gests that the maximum group speed with which the Langmuir wave
can propagate is

ffiffiffi
3
p

Vthe ¼ 1:73Vthe and the phase speed of EASW is
Vt
ph ¼ 3:46Vthe. As the Langmuir group velocity is much smaller than

FIG. 5. Evolution of (a) electron and ion density, (b) electron and ion velocity, (c) electrostatic potential, and (d) electric field at xpet ¼ 2000 for the simulation run-7
(Ti ¼ 400, Te ¼ 1).
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the phase velocity of the EASWs, the EASWs will be always followed
by the Langmuir wave mode in the spatial domain as observed in this
plasma simulation. The higher wavenumbers of Langmuir waves are
found to undergo nonlinear damping for this simulation run-7 like for
simulation run-2.

C. Characteristics of solitary waves in categories-I and II

In this section, we examine the characteristics of the solitary
waves such as their phase speed, amplitude, and width in both
categories-I and II. For the simulation runs 1–8, we have estimated
the average amplitude, phase speed, and width of IASWs and
EASWs during the time period, where these solitary waves are
nearly stable. The time periods over which these averages are com-
puted are given in Table I. The standard deviation in the average
estimates of amplitude, phase speed, and width of solitary waves is
in the range of 3%–4%, 0.1%–0.8%, and 2%–3%, respectively, over
a time span of 5000xpe. As the standard variation in these parame-
ters is small, we can consider these solitary pulses to be nearly sta-
ble. First, we plotted the average phase velocity of the solitary wave
pulses and their associated maximum electrostatic potential in Fig.
7. It is seen that the phase velocity of the IASWs decreases with the
increase in peak electrostatic potential, and the phase velocity of
the EASWs increases with the increase in peak electrostatic poten-
tial. The transition from EASWs to IASWs imposes the limit offfiffiffi
3
p

Vthe on the phase speed of these solitary waves. It means that
the EASWs (IASWs) travel with phase speed greater (smaller) thanffiffiffi
3
p

Vthe. Here, a factor of
ffiffiffi
3
p

appears because the adiabatic index

for electrons is ce ¼ 3. The EASWs evolved in the simulations have
negative potential, whereas the IASWs have positive potential. We
examine the width-amplitude dependence for both categories, i.e.,
for IASWs and EASWs. Figure 8 depicts the average width and
average maximum amplitude of the IASWs (black circles) and
EASWs (red filled dots) for different simulation runs given in
Table I. It is seen from this figure that the width of the IASWs has
tendency to increase with the increase in potential, whereas for
EASWs, it shows a slight decrease with the increase in the ampli-
tude. However, the overall effect of ion temperature on the width is
not significant.

To summarize the effects of ion thermal velocity on the existence
and characteristics of EASWs and IASWs, we plotted the phase veloc-
ity (Vs) and the maximum amplitude (/m) of these waves as a function
of ion thermal velocity in Fig. 9. The red dashed vertical line depicted
at Vthi/Vthe ¼ 1 in both panels divides categories-I and II. We can say
that (i) Vthi < Vthe even when Ti > Te supports the IASWs, whereas
(iii) Vthi > Vthe supports the EASWs. It may be noted that Ti < Te
always supports the IASWs and such plasma systems are studied ear-
lier through fluid simulations.6 When Te > Ti, the Vthi/Vthe is always
less than

ffiffiffiffiffiffiffiffiffiffiffiffiffi
me=mi

p
. In the present study, we have considered the artifi-

cial mass ratio while performing simulations and the limiting value offfiffiffiffiffiffiffiffiffiffiffiffiffi
me=mi

p
comes out to be 0.1. It is seen from Fig. 9(a) that the phase

speed of both IASWs and EASWs is directly proportional to the ion
thermal velocity. We observe that the simulation runs under category-
I support positive amplitude IASWs, whereas runs from category-II
support negative amplitude EASWs. The maximum amplitude (/m)

FIG. 6. x–k dispersion diagrams of electrostatic potential in the simulation run-7 during (a) xpet ¼ 0 – 200 and (b) xpet ¼ 500–700. It shows two dispersion curves at the bot-
tom, which are due to the EA waves. The upper dispersion curves (above x ¼ xpe) with a parabolic shape are associated with the Langmuir waves. The speed of EASWs
estimated from their linear dispersion relation is shown by white dashed-dotted lines in both panels. The electron plasma frequency is shown with the horizontal black dotted
line at x ¼ xpe ¼ 1. The power associated with the higher wave numbers (k) is reduced significantly during xpet ¼ 500–700 in panel (b).
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of the IASWs decreases with the increase in ion thermal velocity,
whereas the maximum amplitude (j/mj) of the EASW increases with
the increase in the ion thermal velocity.

Next, we have carefully examined the spatial variation of the
potential and electric field associated with solitary structures that are in
the nearly stable stage. For each simulation run, we chose the solitary
wave propagating in theþx direction during its stability, and the corre-
sponding spatial variation of the electrostatic potential and electric field
is plotted in Fig. 10. In this figure, panels (a) and (b) show the electro-
static potential of the IASWs and EASWs, respectively. The electric
fields associated with the IASWs and EASWs are shown in panels (c)
and (d), respectively. To compare their variations, each solitary pulse is
plotted in such a way that its maximum potential is placed at x¼ 0. An
interesting feature can be seen in this figure. The electrostatic potential
associated with both IASWs and EASWs generated in plasma with

Ti> Te possesses additional smaller amplitude dips and humps, respec-
tively, at the edges of these solitary structures. Such humps or dips are
generally not seen in the stable solitary structures commonly termed as
solitons. Also, the profiles obtained from the Sagdeev pseudopotential
theory for such a plasma system do not support the presence of such
humps or dips near the edges of solitary wave structures. The presence
of these smaller amplitude humps or dips at the edges of EASWs or
IASWs does not affect the stability of these solitary structures.

V. CONCLUSIONS

We have performed the one-dimensional fluid simulations of the
solitary waves propagating parallel to the magnetic field in an
electron-ion plasma by considering a sufficiently large system length.
We considered a plasma system having Ti > Te. We find that in such
a plasma system the IDP supports the generation of either IASWs or
EASWs depending on the ratio, R, of electron to ion thermal velocities.
The characteristics like the amplitude, width, and phase speed of soli-
tary waves are also controlled by the parameter R. Some of the earlier
studies have proposed that the plasma with Ti > Te supports the EA
wave mode.1,4,5 We find that the condition Ti> Te is not the sufficient
condition for the existence of the EASWs in plasma. Due to the differ-
ent masses of the electron and ion, Ti > Te does not always mean that
Vthi > Vthe (i.e., R < 1); it can also give Vthi < Vthe (i.e., R > 1). Our
simulation shows that the necessary condition for the existence is gov-
erned by their thermal velocities and it supports the generation of
EASWs only if Vthi> Vthe. In such a system, the ions with higher ther-
mal velocity provide restoring force, while electrons with lower ther-
mal velocity provide inertia to support the electron acoustic waves. In
the plasma systems having Vthi < Vthe, the electrons provide restoring
force due to their higher thermal velocity, whereas the ions provide
inertia to support IASWs in plasma. The transition from EASWs to
IASWs imposes the limit of

ffiffiffiffi
ce
p

Vthe on the phase speed of these soli-
tary waves. This means that the EASWs (IASWs) travel with phase
speed greater (smaller) than

ffiffiffiffi
ce
p

Vthe. The EASWs evolved in the two
species plasma have a negative potential, whereas the IASWs have a
positive potential.

FIG. 8. The width of IASWs and EASWs as a function of their peak amplitude for
the simulation runs 1–8. The width of the EASWs decreases with the increase in its
amplitude, whereas the width of the IASWs increases with the increase in its
amplitude.

FIG. 7. The phase speeds of IASWs and
EASWs as a function of its peak ampli-
tude for simulation runs 1–8. The transi-
tion from EASWs to IASWs takes place
at Vs ¼

ffiffiffi
3
p

Vthe. It suggests that the
EASWs (IASWs) travel with a phase
speed higher (lower) than

ffiffiffi
3
p

Vthe.
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FIG. 9. (a) The phase speed and (b) peak amplitude of IASWs and EASWs as a function of ion thermal velocity for simulation runs 1–8. The vertical dotted line represents the
limit where the ion thermal velocity equals the electron thermal velocity, i.e., Vthi ¼ Vthe. When Vthi < Vthe, we observe IASWs, whereas Vthi > Vthe supports EASWs.

FIG. 10. (a) and (b) Electrostatic potential and (c) and (d) corresponding electric field profiles associated with IASWs (runs 1–5) and EASWs (runs 6–8) during their stability
are shown. Here, x ¼ 0 represents the position of peak in potential structures for each profile associated with the IASWs and EASWs.
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For both EASWs and IASWs, the phase speed of these solitary
waves is found to be proportional to the ratio of ion thermal velocity
to electron thermal velocity, i.e., Vs / Vthi/Vthe. It is seen that the peak
amplitude of potential associated with the EASWs (IASWs) increases
(decreases) with an increase in the ion thermal velocity. When Vthi/
Vthe < 1, IASWs are formed in the plasma, and as this ratio starts
approaching values closer to one, the IA mode amplitude decreases
drastically. When the ratio Vthi/Vthe exceeds one, there is a transition
from IASWs to EASWs. For the case of Ti < Te, the condition Vthi/
Vthe< 1 is automatically satisfied. Such plasma systems are well exam-
ined through fluid simulations,6 and they always support the genera-
tion of IASWs in addition to Langmuir waves. Thus, to summarize,
we can say that the condition (i) Vthi < Vthe supports the IASWs, and
(ii) Vthi> Vthe supports the EASWs.

The fluid simulations presented in this paper give the details of
evolution of IASWs and EASWs generated in plasma having Ti> Te. It
is noted that most of the early studies of modeling EASWs are based
on the Sagdeev pseudopotential method that predicts only the station-
ary EA solitary wave solutions, where the soliton conditions are accom-
plished. It does not provide information about the transition process
through which the stable EA solitons are generated in the electron-ion
plasma. The present simulation uses the standard initial perturbation
in equilibrium electron and ion densities, which evolves into either
EASWs or IASWs in the plasma. The Langmuir wave mode is also gen-
erated in the system; however, the higher wave number Langmuir wave
modes are found to be heavily damped. One additional feature revealed
by this simulation study is that the electrostatic potential associated
with the IASWs (EASWs) generated in such plasma is associated with
an additional smaller amplitude dips (humps) at the edges of these soli-
tary structures. Such humps or dips are not seen in the stable solitary
structures commonly termed as solitons. The presence of such humps
or dips is not present in the solitary wave profiles obtained from the
Sagdeev pseudopotential theory for such plasma systems. We find that
the presence of these smaller amplitude humps or dips at the edges of
EASWs or IASWs does not affect the stability of these solitary struc-
tures. We speculate from the density profiles of the solitary waves that
the humps and dips around the outer edges of their potential pulse are
developed due to the accumulation of the electron and ion fluid in
those regions. Such humps and dips are also seen in the solitary waves
captured by a spacecraft in the Earth’s magnetosphere.12,43

Generally, the localized perturbations in plasma are produced in a
laboratory by very high laser powers and are known to be responsible
for the generation of solitary waves in plasmas. In space, the density
perturbations can originate in the Earth’s magnetospheric regions, such
as bow shock, magnetopause, and magnetosheath driven by solar wind
variations. These regions of the magnetosphere support electrons and
ions with R < 1 and R > 1, which is favourable for the generation of
both EASWs and IASWs. In this context, the present simulations will
be helpful to model spacecraft observations of EASWs and IASWs in
the Earth’s magnetosphere.
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