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Abstract

Frequent observations of ion beams moving out from Saturn’s plasma environment hints at the generation of ion
Bernstein—Greene—Kruskal (BGK) modes. As the plasma environments of Saturn and its moon Enceladus are
characterized by the ubiquitous presence of massive negatively charged dust particles, the existing BGK theory for
electron-ion plasma models cannot address this scenario. This manuscript develops a theoretical model for
studying ion BGK modes in dusty plasmas. The analysis reveals that the presence of dust in the plasma enhances
the stability of BGK modes. As the dust density increases, the effect of other parameters on stability, such as the
electron temperature, becomes negligible. The model is developed by assuming that electrons and ions follow a
kappa distribution, featuring a long tail trend in the superthermal component, in agreement with observations.
Different scenarios with either electrons or ions obeying a Maxwell or kappa distribution function have been
considered. A thorough analysis of the trapped ion distribution function considering various combinations
indicates that a plasma where electrons are in thermal equilibrium and ions follow kappa distribution is the least
favorable system for the generation of BGK modes.

Unified Astronomy Thesaurus concepts: Saturn (1426)

1. Introduction

Coherent bipolar electric field structures are ubiquitously
observed in space and other astrophysical environments
(Matsumoto et al. 1994; Franz et al. 1998; McFadden et al.
2003; Kakad et al. 2016; Wang et al. 2020; Singh et al. 2021;
Kakad et al. 2022; Singh et al. 2022). In the kinetic framework,
these structures are effectively modeled as Bernstein—Greene—
Kruskal (BGK) modes (Bernstein et al. 1957). As there is an
electrostatic monopolar potential associated with these bipolar
electric fields, depending on the polarity of the potential, either
electrons or ions with suitable energy will become trapped
inside the potential. So, physically, BGK modes represent an
equilibrium between trapped particles passing particles and the
background plasma parameters (Krasovsky et al. 2003). From a
theoretical perspective, these structures have a low density at
the center and a high density at the rim in phase space. Hence
these structures are also called electron or ion holes depending
on the charge of the trapped particle (Eliasson &
Shukla 2006b). Omura et al. (1996) established that streaming
instabilities are the reason behind the generation of BGK
modes. Interestingly, a series of experimental investigations of
ion holes by Pécseli et al. (1981, 1984) showed that ion holes
may be excited by an ion two-stream instability in laboratory
plasma. Subsequent laboratory studies focused on three-
dimensional ion BGK modes triggered in the laboratory,
studying their generation and dynamic evolution (Pécseli 1987;
Franck et al. 2001) Recently, Wang et al. (2020) showed that
ion streaming instabilities favor the generation of ion holes
using the observations from the Earth’s bow shock region.
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As regards the modeling of BGK modes, there are two main
theoretical approaches: the integral solution or BGK methodol-
ogy and the differential (or Schamel) technique. In the former
method (BGK), one assumes that the initial particle distribution
function and the electrostatic potential profiles are known, so
these are substituted into the Poisson equation and the integral
equation is solved to obtain the trapped particle distribution
function (Bernstein et al. 1957; Aravindakshan et al.
2018a, 2018b, and the references therein). In Schamel’s
approach, the form of the trapped particle distribution function
and of the passing (i.e., free, nontrapped) particle distribution
function is assumed and substituted in Poisson’s equation,
leading to a differential equation that is then solved to obtain
the form of the potential (Schamel 1986; Luque & Scha-
mel 2005, and the references therein). A distinguishing factor
in the former (BGK) approach is that it involves a condition in
the form of an inequality to be satisfied by the potential
parameters (width and amplitude) in order for a BGK mode to
be sustained. The BGK approach will be adopted in this work.
The above models tacitly assume a collisionless electron-ion
plasma. These assumptions are acceptable in the Earth’s
magnetosphere. However, as we move farther from near-Earth
plasma environments, the presence of charged dust in the
plasma cannot be neglected. In the case of Saturn, there are
observations of streaming ions by the Cassini spacecraft
(Badman et al. 2012a, 2012b). We know that these streaming
ion flows can lead to the generation of ion holes. Electrostatic
solitary waves have been observed in Saturn’s magnetosphere
(Williams et al. 2006) and in the dusty environment near its
moon Enceladus (Pickett et al. 2015). Williams et al. (2006)
reported observations of solitary structures in the vicinity of
Saturn’s magnetosphere. They detected a series of bipolar
pulses and speculated that these could be either electron holes
or ion holes (Williams et al. 2006). Later on, Pickett et al.
(2015) observed solitary wave pulses within 10 Rs (Rs is the
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Figure 1. The width-amplitude relation for various Havnes parameters (H) is shown. Here . and k; are the superthermal indices of electrons and ions, respectively.
The blue line shows the case where both species are superthermal. The dotted green line denotes the case of thermal ions and superthermal electrons. The dashed red
line indicates the case of superthermal ions and thermal electrons. The dot-dashed magenta line depicts the case of thermal electrons and ions. The area marked by the
curves indicates the allowed region, and the area below the marked region indicates the restricted region. Here, the ion-to-electron temperature ratio (7;) is 0.5.

Saturn radius) and near Enceladus. Near the Enceladus plume,
they discussed how dust impacts affected the observed solitary
waves. In fact, Pickett et al. (2015) pointed out that some of the
bipolar electric field pulses associated with the solitary waves
observed had an inverse polarity (i.e., a positive pulse first,
followed by a negative pulse in a short time period) and
suggested that this might be due to either an inverse direction
of propagation or to a true inverse potential pulse polarity
(sign). Moreover, Farrell et al. (2017) examined the conditions

that allow low-energy ions, such as those produced in the
Enceladus plume, to be attracted and trapped within the sheath
of negatively charged dust grains. Using particle-in-cell
simulations, they showed that with dust in the system, the
large electric field from the grain charge disrupts pickup and
leads to ion trapping. Their simulation results also reveal that
the bipolar pulses reported in the Enceladus plume by Williams
et al. (2006) and Pickett et al. (2015) could most probably be
ion holes. In the light of the above information, we may suggest
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Figure 2. The width-amplitude relation for various Havnes parameters (H) is shown. Here «, and k; are the superthermal indices of electrons and ions, respectively.
The blue line shows the case where both species are superthermal. The dashed red line indicates the case of superthermal ions and thermal electrons. The dotted green
line denotes the case of thermal ions and superthermal electrons. The dot-dashed magenta line depicts the case of thermal electrons and ions. The area marked by the
curves indicates the allowed region, and the area below the marked region indicates the restricted region. Here, the ion-to-electron temperature ratio (7)) is 3.

that the formation of ion holes is highly likely in the dusty
plasma of environments such as the one found in Saturn.
Importantly, the instrument on board Cassini, the Radio Plasma
Wave Science instrument, does not have the ability to
determine the polarity of the electric fields associated with
the ESWs observed with 100% certainty as it lacks the ability
to perform interferometry (Williams et al. 2006).

Eliasson & Shukla (2006a) developed a theoretical model for
the interaction of Langmuir envelope solitons with dust
acoustic, dust ion acoustic, and ion hole-type excitations. They
have included the effect of the dust on ion hole excitations and
how it affects the relation between Langmuir wave envelopes
and the electric potential. However, the role of dust in the
generation of ion holes and how the dust affects the stability
and characteristics of ion holes was not addressed in these
studies. Because the Havnes parameter in Saturn’s magneto-
sphere and its moon varies from 10~ to as high a value as 0.7
(Yaroshenko et al. 2007; Yaroshenko & Liihr 2016), it is
important to understand how dust affects the characteristics of
ion holes. We recall that the Havnes parameter represents the
ratio of the dust charge density to the ion charge density. The
presence of dust in considerable density brings up a different
nature to the plasma, and existing theories do not address ion-
hole formation in these plasma environments (unless the dust
component is explicitly taken into account, that is).

The aim of the present work is to develop a theoretical model
that describes ion holes formed in dusty plasmas. The paper is
organized as follows. In Section 2 we discuss the mathematical
(kinetic) modeling aspects and establish a new framework for
dust-ion BGK type excitations (holes). A parametric analysis is

carried out, and the results are presented and discussed in
Section 3. Finally, our findings are summarized in Section 4.

2. Theoretical Modeling

We consider a one-dimensional collisionless electrostatic
plasma system consisting of electrons, ions with charge state Z;,
and negatively charged dust with charge state Z; (assumed
constant). As the dust particles are extremely heavy, the density
of the dust is assumed to be constant. Taking into account three
charged species, the Poisson equation is given by

V2% =~ (Zin;

€0

— Ne — Zdnd) (1)

.Here ¢ is the electrostatic wave potential, 7;, is the ion density,
n, is the electron density, and n, is the dust density. For the
sake of analytical tractability and ease of presentation, it is
appropriate to consider rescaling the above equation. We use
the plasma period—i.e., the inverse of the ion plasma

~1/2
— nioZ2e? . . .
frequency w,! = (225 —to normalize the time vari-
pit eom;

\1/2
able; the velocity variable is normalized by (ZI:TBT) ; the
electrostatic potential is normalized by %, and the space

kTieo |/
nioZte? ’

The density variables n;, n, , and n, are normalized by Zn; .

variable is normalized over the ion Debye length, (
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Figure 3. The width-amplitude plot is shown in the case where the Havnes parameter is kept at H = 0, i.e., in the absence of dust (electron-ion plasma), as depicted in
the ion-hole theory developed by Aravindakshan et al. (2020) while taking 7, = 3, considering various kappa index values. Here «, and ; denote the superthermal
indices of electrons and ions, respectively. The blue region is the allowed region, and the other region is the restricted region. If the potential has the width and
amplitude of the blue region, it can support a physically plausible ion hole. It does not support the existence of ion holes if this condition is not met.

Poisson’s equation thus takes the dimensionless form

2
M=(1—H)ne—n,»+H. 2)
dx?
Here, H = % is the Havnes parameter (Shukla & Mamun
ini,0
2015).

It is by now established that space and astrophysical plasmas
are not in thermal equilibrium, but present a strong energetic
particle presence in the superthermal region of the velocity

distribution. Such plasmas can be effectively modeled by kappa
distribution function given by Equation (4). Hence, we assume
the electrons and ions to follow a kappa distribution. Taking the
first moment of the electron distribution function, we obtain the
electron density, given by

I —ke

3)
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Figure 4. The width-amplitude plot is shown in the case where the Havnes parameter is kept at H = 0.1, while T, = 3, considering various kappa index values. Here
k. and «; denote the superthermal indices of electrons and ions, respectively. The blue region is the allowed region, and the other region is the restricted region. If the
potential has the width and amplitude of the blue region, it can support a physically plausible ion hole. It does not support the existence of ion holes if this condition is

not met.

Here, we have defined T,=T,/T,, while k, denotes the
superthermal index of adiabatic electron. As mentioned above,
the ions follow a superthermal distribution (Livadiotis &
McComas 2013; Hellberg et al. 2009; Hapgood et al. 2011) of
the form

D(ki + 1) o
TR Dk — 1/2) (ki — 3/2 (m,—3/2 ) ’
“)

) =

where [' denotes the Gamma function. Note that the ion and
electron distribution functions are characterized by different
values of the respective spectral index, k., &; in agreement
with existing observations and as actually intuitively expected
(given the large mass disparity between these two particles and
thus the difference in the two populations’ response to
thermalization mechanisms). Note that k., and k; always
assume values greater than 3/2 to preserve the reality of all
state variables.
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Figure S. The variation in the trapped ion distribution function is plotted against the total energy w for various kappa index combinations. Here, the Havnes parameter
H is set to 0.1, while ¢» = 2 and § = 20. The different subpanels show the variation of the trapped ion distribution function for various values of the temperature ratio.
Here red, yellow, violet, magenta, and green lines shows the cases of superthermal electrons and ions, thermal ions and superthermal electrons, superthermal ions and
thermal electrons, thermal electrons and ions, and electrons and ions that follow a Maxwellian distribution other than the approximated values, respectively.

Following the original BGK kinetic-theoretical scheme
(Bernstein et al. 1957), we transform the above equations to
the energy frame, defined as

1
w = E(V2 + @). 5)
In the energy frame, the ion distribution transforms into
(k) 2w )"
(W) = 1+ s
i Tk — 3/2T (ki — 1/2)( niS/Z)
(6)
where
e, vydv = fwydw/ 2w — ¢. €

Here, the total energy (w) is normalized with mvt%,i, ie., 2kgT;.
As the ions encounter a negative potential well (a pulse),
depending on their respective velocities, some of them will
become trapped and some of them will pass through. Hence two
types of population exist: a trapped population, and a passing
population. We assume the passing populations to follow the
initial distribution function - a kappa distribution function. In
addition, we also assume the form of the potential in which

particles are trapped to be prescribed. Spacecraft observations
show that wave potential structures of Gaussian form are
common in space and astrophysical plasmas (Matsumoto et al.
1994; Williams et al. 2006). A negative wave potential well acts
as a perturbation capable of trapping ions in it. We assume this
potential well to have Gaussian form, given by

2
x) = —vexp| ——|, 8
o) =~y exp| 7 ®)
where ¥ (>0) denotes the amplitude, and 6 is the width of the
perturbation, respectively. More precisely, ¢ is actually the
distance where the potential decreases to 0.6065 times the
maximum amplitude of . The FWHM of the perturbation is
actually given by A =2.356. The net charge density can thus
be expressed as
d2
L0 (1 = Hyne — mip — me + H, ©)
dx
where n; , is the passing ion density, and n; i, is the trapped ion
density. Particles with suitable velocities falling in the potential

range [—./—¢@, ++/—¢] will become trapped, and the rest will
pass through. Thus, the range of integration for both passing
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Figure 6. As in the previous figure, but with higher H (stronger dust concentration): the variation in the trapped ion distribution function is plotted against the total
energy w for various kappa index combinations. Here, the Havnes parameter H is set to 0.5, while ¢ = 2 and § = 20. The different subpanels shows the variation of
the trapped ion distribution function for various values of the temperature ratio. Here red, yellow, violet, magenta, and green lines show the cases of superthermal
electrons and ions, thermal ions and superthermal electrons, superthermal ions and thermal electrons, thermal electrons and ions, and electrons and ions that follow a

Maxwellian distribution other than the approximated values, respectively.

and trapped ion distributions is given by
= 00
Rip me 1 (x, v)dv +~[+JT¢ [, (x, vydv. (10)

As the passing ions follow the kappa distribution, we obtain the
passing ion density as
nip=1— 22 73 2Rl 1/2.3/2; 6/B]
Lp \/E 2147 19 ’ b ]
where ,F is the hypergeometric function of the first kind. Now
that we have obtained the passing ion density, we move on to
the derivation of the trapped ion density. In terms of
distribution function, the trapped ion density is given by

1)

12)

Riy = er/_: S (x, v)dv.

We may now derive the trapped ion density by rearranging
Equation (9) as

d2
niyy =0 - H)n, — n;p — _q25 + H. (13)

Substituting from Equation (11) and differentiating the
potential in Equation (8) twice, in Equation (13), we obtain
the trapped electron density as

]; 0.5 —k,
e = (1 = H>(1 - ﬁ)
2wioe(-)
+ T + ﬁ
24
g i [—¢ >Filki 1/2,3/2:+ ¢/B] + H.

(14)

For convenience, we make a transformation — ¢ = |¢| — p,
(>0), and we obtain the trapped ion density as

Ke £
2plog (v)
-

0.5 —
pT;

2A
—%—%%EﬁJMMMW%wm+H(m

niy = (1 — H) + 1
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Figure 7. As in the latter two figures, but with an even higher H (stronger dust concentration): the variation in the trapped ion distribution function is plotted against
the total energy w for various kappa index combinations. Here, the Havnes parameter H is set to 0.7, while ¢ = 2 and § = 20. The different subpanels show the
variation of the trapped ion distribution function for various values of the temperature ratio. Here red, yellow, violet, magenta, and green lines show the cases of
superthermal electrons and ions, thermal ions and superthermal electrons, superthermal ions and thermal electrons, thermal electrons and ions, and electrons and ions
that follow a Maxwellian distribution other than the approximated values, respectively.

The trapped ion density can be written as an integral of the
trapped ion distribution function following Equation (12). Thus
the trapped ion density can be represented as

0.5 —ke

2A
+— Filki, 1/2,3/2; —p /Bl + H. 16
N JP 2Filki 1/2,3/ P/ ] (16)
In the w frame, the above equation can be represented as
0 Jor W)
B e () (17)
/2 2w + p

Here g(p) is the right-hand side (RHS) of Equation (16).
To solve the above integral equation, we have adopted the
method described in Aravindakshan et al. (2018a). The trapped

ion distribution function was thus found to be

fow) =—=(1 — H)

0.9k, — 1/2) T zFl(l, Fet 1/2; 2 ;?g)
8 ke — 3/2

A 2F1(%, ki 1 %W) 4V2y=w (IOg(*%) - 2)

VB B 762

6ﬁ«/—w

_ V2w 18
— (13)

The RHS of Equation (18) represents the trapped ion
distribution function for the BGK modes formed in dusty
plasmas. A close look at the distribution function reveals that
the first term stems from the electron density part, and the
Havnes parameter is attached to this term. The distribution
function should be positive in order to represent a physically
plausible scenario. It should be noted that the contribution of
the electrons is regulated by the dust-related coefficient 1 — H
and in fact disappears if H=1 (total electron depletion, a
scenario encountered, e.g., in cometary environments). It is
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Figure 8. The structure of the trapped ion distribution function is depicted here. The Havnes parameter H is set to 0.1. Here 7, = 0.5, and the different panels show the
trapped ion distribution function for various kappa indices. These combinations of kappa indices essentially constitute different space plasma scenarios. At the bottom,

the contour plot of the passing distribution function is also given.

evident that the dust parameter H contributes toward maintain-
ing the positive nature of the distribution function. The third
and fourth terms in the above expression, stemming from the
total charge density and the electron parameter, adversely affect
the generation of an ion-hole equilibrium.

As mentioned above, this model can also be used to study
BGK modes that formed in plasma configurations where either
(or both) of the species is (are) in thermal equilibrium. The
details of BGK modes (ion holes) in thermal (Maxwellian)
dusty plasma is given in the Appendix. We draw the conclusion
that this is a widely applicable model capable of addressing
different space and astrophysical situations.

3. Parametric Analysis and Discussion

As mentioned above, the trapped ion distribution function
must be positive so that it represents a physically acceptable
state. Imposing this requirement, we arrive at an inequality
between the amplitude () and the width (6) of the potential.

This width-amplitude relation (inequality) must be satisfied in
order for the ion-hole excitations (BGK modes) predicted by
the model to be physically meaningful. Figures 1-4 show the
width-amplitude relations for different parameters. The area
enclosed by the curves for a given range of ¢ and ¢ represents
potential parameters that can support a physically plausible
BGK equilibrium. Figure 1 represents the case when the
temperature ratio is 0.5 and Figure 2 represents the case when
the temperature ratio is 3. It is interesting to note that for a
vanishing value of the Havnes parameter that is in the limit
H =0, our theoretical results essentially recover the results of
Aravindakshan et al. (2020, 2021). Figure 1 (bottom right
panel) and Figure 3 depict the width-amplitude relation for ion
holes generated in an electron-ion (i.e., nondusty) plasma
(H=0) for temperature ratios 0.5 and 3, respectively. In
Figures 1-4, we have depicted the width-amplitude relation for
different values of the temperature ratios and of the Havnes
parameter. The inequality is satisfied (and thus ion holes may
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Figure 9. The structure of the trapped ion distribution function is depicted here. The Havnes parameter H is set to 0.1. Here 7, = 3, and different panels show the
trapped ion distribution function for various kappa indices. At the bottom, the contour plot of the passing distribution function is also given.

exist) in the blue region or in the area marked by the curves in
these region plots.

Figure 1 depicts the width-amplitude relation for an
indicative ion-to-electron temperature ratio of 7, = (.5. Differ-
ent subpanels correspond to different values of the Havnes
parameter. The kappa distribution is an efficient tool in
modeling particle distribution deviating from thermal (Max-
well-Boltzmann) equilibrium, as observed in space; see, e.g.,
Livadiotis & McComas (2013) and Livadiotis (2015). It can be
inferred from these diagrams—see Figure 1 (in comparison to
the traditional picture represented in magenta, where both
components practically follow a Maxwellian distribution)—
that when the ions and/or the electrons follow the kappa
distribution, the range of values of ¢ and 6 that can BGK
modes is strongly modified. Recalling that low kappa values
physically reflect the existence of highly energetic (accelerated)
particles in the superthermal part of the distribution (while high
kappa values, e.g., above 10, practically recover the Maxwel-
lian behavior), we note that the occurrence of accelerated
electrons results in a significant enlargement of the existence
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region (see the green curve in Figure 1). Suprathermal electrons
thus favor larger amplitude ion-holes—with similar impact
expected in the associated bipolar electric field forms. The
inverse effect is witnessed when suprathermal ions and quasi-
Maxwellian electrons are considered (see the red curve in
Figure 1) when the existence region for BGK modes actually
shrinks slightly (predicting smaller amplitude ion-holes for a
given width, e.g.), in comparison with the bottom right panel
(where both species are assumed to be Maxwellian).
Interestingly, when a higher ion-to-electron temperature ratio
is considered, a forbidden band (a gap) appears, dividing the
existence region into two parts, as shown in Figures 3 and 4
(note, for reference, the bottom right panel in Figure 3 in the
quasi-Maxwellian large kappa case, to begin with). When both
species follow a quasi-Maxwellian distribution (large kappa),
as depicted in the bottom right panel, large amplitude solutions
are preferred. The same trend is followed when the ions are
thermal and electrons are nonthermal (bottom left panel).
However, when the ions are nonthermal, only small-amplitude
solutions are preferred (see the top panels of the Figure 3).
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Figure 10. The structure of the trapped ion distribution function is depicted here. The Havnes parameter H is set to 0.5. Here 7, = 0.5, and different panels show the
trapped ion distribution function for various kappa indices. At the bottom, the contour plot of the passing distribution function is also given.

In the case of Figure 4, it appears that small-amplitude or/
and small-width solutions are excluded in this case, except for a
thick region of ultra-small amplitude (but arbitrary width),
which shrinks substantially for small electron kappa (dominant
superthermal electron component)—see the top left and bottom
left panels in Figure 4—but is slightly extended if the ions are
kappa-distributed (with low kappa) instead—see the top right
panel in the same figure.

It can be seen that when the dust density increases, the effect
of the temperature ratio fades, while the forbidden region
disappears, as is evident in Figures 1 and 2 (see the subpanels
for H=0.3 and 0.7). It is clear that for different values of the
spectral index, there is a slight change in the permitted region,
but the effect of the background plasma distribution is rather
negligible.

The effect of the dust is further validated in Figures 5, 6 and
7, where we have tried to analyze the behavior of the trapped
ion distribution function in terms of the total energy w. The
differently colored lines in each panel illustrate the spectral
index effect, while a comparison of the successive subpanels
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shows that the curve completely overlaps with the curve
derived from the actual formulas for the Maxwellian case. This
indicates that our model, as formulated algebraically, ade-
quately addresses BGK modes that formed in thermal
(Maxwellian) plasmas as well, as expected. Figure 5 shows
the case when the Havnes parameter is 0.1. As we can see, as
we increase the temperature ratio, a small nondifferentiable part
(i.e., with a discontinuity in the slope) appears in the curve in
the region corresponding to the forbidden gap. This shows that
the interaction between electrons and ions is intensified with an
increase in the ion temperature. Physically speaking, when ions
with a very high temperature become trapped inside the
potential, they will oscillate with a very high amplitude. As a
result, a small perturbation from the electrons might help the
ions to overcome the trap and thus contribute to the free
(passing) component. This also accounts for the presence of the
forbidden gap in the width-amplitude relation, as shown in
Figures 3 and 4. However, as expected, Figures 6 and 7 consist
of smooth curves, indicating that the effect of dust in the
physical plausibility of ion BGK modes. If we focus on the



THE ASTROPHYSICAL JOURNAL, 936:102 (14pp), 2022 September 10

Ki=Ke=2

T=

Aravindakshan et al.

Kki=200 k=2

0 0.2

Ke=200 k=2

0.6 0.8 1.0

Ke=200 ;=200

4

fir(x

0.2

Figure 11. The structure of the trapped ion distribution function is depicted here. The Havnes parameter H is set to 0.5. Here 7, = 3, and different panels show the
trapped ion distribution function for various kappa indices. At the bottom, the contour plot of passing distribution function is also given.

case where the electrons are thermally distributed (i.e., for very
high values of x,) while the ions are kappa-distributed (i.e., for
low k;), we can see that there is a tendency for the trapped
distribution function to become negative. This indicates a
physically unacceptable analytical solution, suggesting that
BGK hole formation is not possible in this case. This is
intuitively expected because electrons are easily energized and
thus tend to deviate from thermal equilibrium, so that this
scenario is not realistic. The role of the background plasma
distribution function is well described here. At closer look, this
effect is also evident in the case of significant dust density, as
shown in Figure 7. This fact suggests that superthermal nature
of the ions tends to prevent the generation of BGK modes,
hence the presence of dust particles suppresses these predicted
effects, thus favoring the generation of ion holes.

To gain insight into the qualitative impact of the relevant
plasma configurational parameters, it may be appropriate to
look at the behavior of the trapped ion distribution function as
it appears in phase-space {x, v}. Figures 8 and 9 represent the
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phase-space description of the trapped ion distribution
function in a low dust density scenario. It can be seen from
Figure 8 that when the plasma is entirely nonthermal, they
form deeper and denser holes. As the spectral indices
increase, they form shallow holes with a lower density for a
lower temperature ratio. However, when the temperature ratio
is higher, as given in Figure 9, there exists a strong interaction
between the trapped ions and passing electrons, and as a
result, the width and depth of the trapped distribution function
is significantly affected around the center. Thus it can be
inferred that due to the interaction of electrons with the
trapped ions, a bunching of ions occurs at the center of the
potential. It should be noted that as we move to higher dust
density, as shown in Figures 10 and 11, even the higher
temperature ratios cannot even modify the trapped distribution
structure. In Figures 8—11, we have also given the contour
plot of the passing particles. As expected, the passing ion
density shows a dip at the center of the hole, and as we move
away, the passing density increases.



THE ASTROPHYSICAL JOURNAL, 936:102 (14pp), 2022 September 10

4. Conclusions

In this paper, we have presented a theoretical model for ion
BGK modes in a dusty plasma environment. As the model is
developed assuming that the electrons and ions follow a
superthermal distribution, this model can be used to predict and
study the ion-hole structures that formed in the space/
astrophysical plasmas. We have focused on various combina-
tions of plasma systems in the current study, showing that this
model can be applied to a wide variety of space/astrophysical
environments. The observations of electrostatic solitary waves
from the Saturn magnetosphere confirm that solitary wave
structures are greatly affected by the dust present in the system
(Pickett et al. 2015). Additionally, the presence of ion beams in
the magnetospheres of Saturn and its moons suggests the
possibility that ion BGK modes are generated (Holmberg et al.
2012, 2017). Thus, a BGK model that considers the effect of
dust on the characteristics of ion BGK modes is imperative, and
this study satiates this need. The theory revealed that the ion
BGK modes are more physically plausible in a dusty plasma
environment than in the typical plasma environment. The
behavior of the width-amplitude relation and trapped distribu-
tion function for various dust densities revealed that the dust
particles control the interaction of electrons with the formed
potential.

Our analysis showed that dust-ion BGK modes are more
physically plausible when the electron temperature is higher
than the ion temperature. However, these effects become less
significant when the dust density is higher. Interestingly, a
forbidden band (a gap) appears in the width-amplitude plot
when the temperature of the ions is higher than that of the
electrons. Nevertheless, when we increase the dust density, this
forbidden gap disappears. Moreover, the analysis of the trapped
ion distribution function signals that the plasma system where
electrons are in thermal equilibrium and the ions follow the
kappa distribution is the least preferred system for generating
ion BGK modes. It should be noted that all the values that we
used in the numerical analysis are actually observed in the
magnetospheres of Saturn and its moon, hence the results
mentioned in the paper may provide the prediction of the
characteristics of ion holes (BGK modes) generated in the
Saturn magnetosphere.

In our model, we have assumed that the ion holes that
formed in dusty plasmas are stationary. However, these
structures move with finite velocities. Earlier, Bujarbarua &
Schamel (1981), and more recently, computational studies
(Jenab et al. 2021), have provided approximate ion-hole
solutions moving at a certain speed uo. An extension of the
theory presented here that takes into account a finite hole
propagation speed forms the part of future planned work.
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Appendix
Bernstein—-Greene—Kruskal Ion Modes in Thermal Dusty
Plasma

Let us assume that both electrons and ions follow the
Maxwell-Boltzmann distribution function. Taking the first
moment of the distribution function, we obtain the electron
density given by

ne = exp (1, ¢).

Here, we have defined the temperature ratio 7,=T;/T,. As
mentioned above, the ions follow a thermal distribution,

(AL)

1 2
“(v) = —exp(—v?). A2
VAW N p(—=v9) (A2)
Following the BGK scheme, we assume a frame in which both
the potential pulse and the ion distribution are in a self-
consistent steady state. Working in this frame, we write the ion
distribution function in terms of the normalized total energy of
the particles as
1 o
w = E(v + 9). (A3)
Now we change the variable [(x, v) — w], that is, we move to
the energy frame w. Thus, the normalized distribution function
transforms as

Fw) = %exp(—m, (A4)

where

Fx vydv =fwydw/ 2w — ¢.

As mentioned above, let us assume the electrostatic potential in
the Gaussian form given by

2

o) = —1) exp( ; 52)’ (AS)
where 1) is the amplitude, and 6 is the width of the perturbation,
respectively. 0 is a distance at which the potential decreases to
0.6065 times the maximum amplitude of 7). The FWHM of the
perturbation is given by A =2.356. Similarly as mentioned
above, the passing particle distribution function is denoted by
fp» and the trapped particle is denoted by f;,. Equation (2) can be
written as

4% _

= = (L= Hne = nip = nig + H. (A6)

The passing ion density is given by

= %
Ny = f_ R ACTE L = hndy A

—¢

Exploiting the symmetry of the Maxwell-Boltzmann distribu-
tion (i.e., a pair function of the velocity argument), we can
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write n, as
00 o0 J=9
nip, = 2L,JT¢ fpdv = z(fo fpdv — fo fpdv), (A8)
Now Equation (A8) can be expanded as
nip =1 —erf(=¢), (A9)

where erf(x) denotes the error function. Now that we have
obtained the passing ion density, we can derive the trapped ion
density by rearranging Equation (A6).We obtain the trapped
electron density as

2¢log(—%)
nie =1 — Hyexp(T¢) + —
— 1 —erf(y—¢) + H.

For convenience, we make a transformation — ¢ — p and
obtain the trapped ion density as

e

(A10)

wiels)
nie =00 —H)exp(=Tp) + 1 — — g

— 1+ erf[ 7] + H. (A11)

Following the same method as in the above section, we obtain
the trapped ion distribution function for Maxwellian plasmas,

T =w e erf (V2 JT,w)

N Y;W

frin)=—(1 — H)

4 exp(w)lo(w)

N
8w
4ﬁq/fw (10g<747) — 2) 6\/§\Tw
— — (A12)
62 w62
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