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Abstract

The problem of estimation of the precession frequency of the proton magnetometer has been
addressed here. The precession frequency has to be determined from the successive zero crossings
of the sinusoidal output signal induced in the coil by the proton rich fluid immersed in the earth’s
magnetic field. The dependence of the accuracy of the signal to noise ratio and decay of the signal
is discussed. Least square methods and the robust median fit methods are used to estimate the
signal period. It is found that the signal processing method using a robust technique gives superior
performance when higher sampling is needed or the environmental conditions degrade the
available signal to noise ration. For a five second sampling under ideal observatory conditions,
even the least square technique provides a 0.1 nT accuracy.

Introduction:

The proton precession magnetometer (PPM) is being used for measuring the geomagnetic field for
many years now (Wienert, 1970). It involves measuring the sinusoidal oscillation frequency
induced in the sensor coil by the precession of protons in the ambient geomagnetic field. The
typical frequency for the magnetic field of the earth ranges from 1 kHz to 4 kHz. The protons are
first polarized in a chosen direction with the help of a relatively large polarizing current. When the
polarization current is withdrawn the proton’s precession around the earth’s magnetic field is
initiated. The signal amplitude decays with spin-phase memory time constant T,. This time
constant depends on the liquid in which the sensor is immersed and on the gradient of the magnetic
field across the sensor. Even in a uniform field, this time rarely exceeds two seconds. Initial signal
amplitude at the sensor output is a few microvolts peak-peak. The task of the electronic circuitry
along with its-accompanying signal processing algorithms is to derive the period of precession
" frequency accurately with a measuring time of less than one second.

First generation magnetometers achieved this by using phase lock loop techniques. A phase lock
loop locks on to the incoming signal and at the same time multiplies its frequency by a suitable
factor. This process filters out the noise in the proton signal apart from reducing the measuring
time. This method has its limitations. Apart from the fact that the phase lock loop takes a finite
time to lock on to the incoming signal, the multiplying factor in the phase lock loop cannot be
increased indefinitely to achieve an increase in measurement accuracy.

An accuracy of 1 nT (nano Tesla) can be achieved for a typical requirement of sampling period of
5 seconds but to attain greater precision a different approach has to be adopted. Sophisticated
methods also become essential even for 1 nT accuracy when the sampling rates are around 1
second or less and the number of cycles available becomes too small to effectively weed out the
errors generated by the noise component. In what follows, we discuss numerical data processing
techniques that can be used to achieve such an objective. Two independent algorithms that can be
used with the proton magnetometer output signal are discussed in detail. The numerical results
focus on the typical output of a standard proton magnetometer but the same techniques are equally
applicable to the Overhauser magnetometer as well. These include the standard least square signal
for linear fit to the time progression of the zero crossings technique and the robust median
technique.
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Definition of the problem

The relation between the geomagnetic field and proton precession frequency is given by

B =gF, )
Where B — Geomagnetic field in nT

g — constant — 23.4874

Fo — Proton Precession frequency
The period Ty, is estimated from the number of cycles of a higher frequency signal F; measured
~during N number of signal cycles Fo. This involves recording the times of zero crossings of the
signal voltage. If C is the total count of high frequency cycles of F;, the period Ty is given by

C
= 2
0=, @
Substituting this value in (1) gives
g :
B=£nF, @)

We have tacitly assumed that the signal is pure and free from noise so that the zero crossings can
be identified unambiguously. In reality we do have a noise component n(t). We can describe the
signal Voltage V as (Hancke, 1990)

V =SSin(wt) + n(t)

Where S is the signal amplitude and n(t) is the noise component already defined. In principle any
threshold level Av can be used to estimate the period Ty but as we shall see soon, the zero crossings
are the most appropriate points for such estimations.

Let the signal S crosses the threshold level Av at time t;. Then
Av =SSin mtl + n(tl)

and
t, = — sin™! 220
(0]
Let us assume that the pure sine wave would have crossed the threshold Av at time t,.
Av=S.Sinat 5
t, =Lsin~ &Y
o S
The error AT introduced by the noise is then given by :
- & 2 2 3
Ach, :i[sm—' BYI ﬁ] e O B
o] S ol S S S S

We get a minimum value for AT when Av = 0 i.e. at the zero crossing point. This is not surprising
as the slope of the sine wave attains its largest value at its zero crossings.

Thus to the lowest order we get
1
A= 4
e )

S . z ! .
Where R =— is the signal to noise ratio.

n .
Thus measured period Ty is accompanied by an error AT at every zero crossing of the signal. In
addition to the error due to the noise, there is one more source error. The frequency Fr that is
assumed to be a constant may not be so.

Taking into consideration these two sources of error we can use equation (3) to re-write the error in
AB as
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AB =B it + JE?£ 5)
F T
The error caused by uncertainties in the reference frequency Fr can be taken care of by calibrating
the crystal. But error arising from the fluctuations of the zero crossings generated by the noise
component has to be treated using special techniques. This error can be minimized with different

processing techniques.

r

In the real life situation the signal decays due to loss of coherence of the precession of the protons_
in the different parts of the sensor volume. The signal decay with time can be expressed through
the degeneration of the signal to noise ratio R as

R =Roe"2. ©)

Here Ry is the signal to noise ratio at time zero.

We note from the second term in equation (5) that the larger the value of T, the less will be the
error in B. This would imply that the larger the value of N, the larger the accuracy in the magnetic
field determination provided AT remains constant. We note form equation (4), that AT is inversely
proportional to R and this error will manifest itself as we increase the number of cycles N. There
should be an optimum N. To get this N, we substitute R from equation (6) into equation (4) to get
AT and use this value of AT in equation (5) to get the error in B. This is differentiated with respect
to N and put equal to zero. We get
_5 ’
T, 0

N gives the optimum number of cycles for which the error in the estimated field is a minimum. But
in practice the number of cycles available may be less and one has to make do with a smaller value
of N.

Processing techniques

Two techniques that are used for processing the signal are described here. Both the methods
attempt to retrieve the exact period of the wave from the N measured crossing. The period has to be

" determined from N values tp (p=0 , N) of observed times of the zero crossings each having a
variance of G,. As the signal amplitude decays, the variance increases, though in most practical
applications it is often neglected. We retain this feature in the basic formalism although we present
numerical results with the simplified scenario. If T, is the exact time period then

to+pTc=t, )

Wherep=0,1,2............ N and tp is the uncertainty in the timing of the first crossing.

The techniques used derive T, in such a way that its variance is as small as possible.

The standard technique used attempts to minimize the mean square difference of the actual zero
crossing times and those computed from the estimated fit. This is referred to as the least square
method here. We shall note that the least square technique, with suitably chosen algorithms, has the
advantage that it requires a relatively smaller number of computations and with suitably defined
algorithms it can be used in real time. However, the method is susceptible to strong biases
generated by outliers. A median fit becomes more reliable and may be a preferred method with
smaller samples. We describe both the methods in some detail here.

(1) Least square method — In this method time is measured from the first zero crossing of the signal

up to N number of zero crossings. s, the sum of the square of the difference between the observed
time and fitted value of the zero crossings is given by
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(tO +pTc ~tp)2

2
UP

Differentiating the above expression, with respect to T, and putting the result equal to zero we get
N Np2 N
tox o+ TSP _SPP g
0 op 0o, 00,
A similar operation with-respeet to ty gives == &

N
s2=Y
0

P
T can be obtained from the two equations given above and can be written as
S S.-S_S
S S.-S
A'C "B
Where
.
A P =0012)
N
p
S, =2X—
e
N n2
P
S .= 2 ~—~
C pz=:0 o’
N
Sy =2 2;
p=00,
g - Xptp
E- 2o
p=0 O,
The variance of T, is given by
S
0'(’]" ): _—A__
* Vs sZ
aSc ~SB

The expressions provided by Hancke (1990) can be: retrieved if it is assumed that the variance in
the estimates of the time of zero crossings remains constant right through the measurement cycle.
After some manipulations it is possible to express T, in the form

N
Te=3% ot ®
0

Where
pS, —S
o= A B

G: (SpASc— S;)

(10)
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The form given in equation (10) is more convenient to implement in real time micro-controller
computations. If we ignore the variation of the signal-amplitude with time, o, is independent of p
and can be replaced by some typical value oo and o, takes a simple form
= 6.2p 21 N) an

N.(N* =1
This is identical to the expression provided by Farrel et. al. (1965) using a somewhat different
approach. o, can be stored in a suitable array to enable quick real time computations.
(2) Robust estimation using the median fit: It can be shown (Press et al, 1992) that the median
value of a given set of numbers is a truly representative value of the sample as the sum of its
absolute difference from the set of points is the minimum. This property can be used to obtain a
robust estimate of the linear fit (cf. Press et. al.,, 1992). We use this technique estimate period.
Following the reference cited above, we use the least square estimate as a starting value to get the
median of the distribution. This method minimizes the effect of outliers in a distribution. As we
shall note later the use of robust technique is not recommended when large number of cycles are
available for the estimation of the time period, as the computational overheads are not justified by
the corresponding accuracies in the estimation. For smaller samples however, the robust estimate
- provides more reliable values.

Results

The least square algorithms have been implemented both in a PC based system as well as in a
micro-controller based instrument. The micro-controller-based PPM was taken to the Xth IAGA
workshop on instrumentation at Hermanus for inter-comparison and calibration and shown to
generate field values accurate to 0.1 nT. We present here some results obtained using the PC-based
system to demonstrate its sensitivity. The instrument was operated at the Alibag observatory and
the results were compared with a standard fluxgate magnetometer developed by the Danish
Meteorological Observatory with 0.1 nT accuracy. Figures 1 and 2 provide a good account of the
sensitivity of the PPM.
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Fig 1. Plot of F, the total magnetic field variation at Alibag from the PPM and the corresponding
value derived from fluxgate magnetometer developed by the Danish Meteorological Observatory
with 0.1 nT . The offset in the figures is because of different location of the instruments.
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Fig 2. Same as Figure 1 but confined to a shorter period to demonstrate the authenticity of the short
period variations of the PPM.

" These plots show field variations at Alibag (18.64° N, 72.87° E geographic co-ordinates). Here the
plotted values are one minute values that are averages of 60 samples in case of the Digital Fluxgate
Magnetometer (DFM) and 12 samples in case’ of the PPM. The number of signal cycles of the
proton precession utilized was 1000. The signal to noise ratio was 10 in the beginning and the
signal decay time T, was around 1.5 seconds ensuring that over the entire measurement period the
signal to noise ratio was above 6. The remarkable similarity in the long period variations and
trends (Figure 1) and in the short data segment (Figure 2) brings out very effectively the authentic
response of the PPM to changes even of the order of 0.1 nT. A DC offset between the two
instruments is due to the different locations.

Very often a PPM output is required with a sampling rate of one per second or higher. In such
cases the number of cycles available could be as low as 300. The signal to noise ratio also may not
be as high. We therefore examine how the two methods described in the last section perform when
only short periods of a signal output is available and the signal to noise ratio is also weaker. A
standard signal source of very high stability with a frequency corresponding to 46974.3 nT was
used to simulate the proton output. The signal to noise ratio was maintained at around 4 and the
utilized measuring time for the data was varied to examine how the number of cycles used, controls
the reliability of the measurement. Sixty independent samples were taken and using 300, 600 and
1000 cycles, the ‘field” was computed for each of the sixty samples. The standard deviation and the
probabilities of the computed field deviating (a) by more than 1 nT and (b) by more than 0.1 nT
was estimated. The results of the computations are presented in. Table 1
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Number - | Least Square estimates Robust Estimates-

of % Points outside % Points outside
samples o(Tc) 0.1nT 1nT o(T¢) 0.1 nT 1nT
300 1.286 98 13 0.357 58 1
600 1.116 96 18 0.206 41 0
1000 0.021 0 0 0.027 0 0

‘Table 1. Performance summary for the least square and robust techniques.

We note that when 1000 cycles are available, the least square estimates lie within 0.1nT of the
expected values and no advantage is gained by using the more time consuming but robust median
fit. The variance is also not significantly different between the two methods. But the situation is
dramatically different when a smaller number of cycles are used. The variance in the estimated
periods is drastically less when a robust estimation is used.

When only 600 cycles are used, only 4% of the observations lies within a 0.1 nT window for the
least square estimate and as many as 18% of the estimates lies outside 1 nT. On the other hand 59%
of the points lie within the 0.1 nT window, and all the estimates are accurate to better than 1 nT.
When 300 points are used, only 2% of the least square estimates lies within 0.1 nT while 42% of
the robust estimates lies within this window. 87 % of the least square estimates lies within 1 nT
while in the case of the robust estimates 99% of the observations lies within 1 nT.

Conclusion

Using sophisticated numerical techniques; the accuracy and the sensitivity of the PPM
measurements can be enhanced. For 5 second sampling, the PPM estimates based on least square
algorithms can generate values reliable up to less than 0.1 nT. However, when a higher sampling
rate is desired or when the signal to noise ratio is less due to the environmental conditions, the
robust median fit is the right choice and can provide more reliable and accurate values.
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