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Abstract. It is shown that the shear flow present in the magnetopause current
layer can destabilize the tearing modes depending upon the Mach number profiles.
Using a variational ])nn(:lple an heuristic stability criterion based on the form of
the Mach number profile is obtained. This criterion could be used as a handy tool
to search for tearing mode instability of a given magnetopause equilibrium with
shear flow. The Doppler shifted magnetic structures produced by the tearing modes

would be observable at ultralow frequencies in the range of ~ 5 -

satellite frame of reference.
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1. Introduction

Low-frequency electromagnetic fluctuations at the
magnetopause are believed to play an important role
in the processes related to energy transfer from the
solar wind to the magnetosphere [Paschmann et al,
1978; Therne and Tsurutani, 1991; Seng et al, 1993;
Lakhina et al., 1993]. Shear flow can affect the stabil-
ity of the magnetopause current sheet in two important
ways. First, excitation of tearing modes may be influ-
enced, and second, Kelvin-Helmholtz type instabilities
may be excited. Kelvin-Helmholtz instabilities driven
by the shear flow in the magnetopause current layer
have been suggested as a possible candidate for excit-
ing the low-frequency turbulence at the magnetopause |
Miura and Pritchett, 1982; Rajaram et al., 1991; Parh:
and Lakhina, 1993]. The presence of shear flow can
also affect the excitation of tearing mode instability
at the magnetopause [Lakhina and Schindler, 1983a,b].
Tearing mode instability can induce large-scale topo-
logical changes in the magnetic field configuration, and
thereby it may control mass and energy transfer from
the solar wind to the magnetosphere, for example, by
exciting time dependent reconnection and flux transfer
events (FTEs). Tearing-produced magnetic structures
convected with the plasma bulk flow are likely to be
manifested as some kind of ULF waves [Greenly and
Sonnerup, 1981; Lakhina and Schindler, 1983a,b].

There are several studies of tearing modes relevant
to the magnetopause boundary layer [ Drake and Lee,
1977; Galeev el al., 1986; Quest and Coroniti, 1981a,b].
Above studies did not take into account the presence
of shear flow in the magnetopause boundary layer. Re-
cently, there have been several studies on the effects of
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shear flow on the resistive tearing modes [Hoffmann,
1975; Paris and Sy, 1983; Pu et al., 1990; Chen and
Morrison, 1990] as well as on collisionless tearing modes
[ Lakhina and Schindler, 1983ab; Greenly and Son-
nerup, 1981; Wang and Ashour-Abdalla, 1992; Kuznelso-
va el al., 1994]. However, conflicting results regarding
the effects of shear flow on the tearing modes have been
reported. For example, the shear flow was found to
have a destabilizing effect [Paris and Sy, 1983; Lakhina
and Schindler, 1983a; Pu et al., 1990], a stabilizing ef-
fect [Greenly and Sonnerup, 1981; Wang and Ashour-
Abdalla, 1992; Kuznetsova et al., 1994], and either a sta-
bilizing or a destabilizing effect [ Hoffman, 1975, Chen
and Morrison, 1990] on the tearing mode instability.

We investigate the excitation of the tearing modes in
the presence of shear flow in the magnetopause bound-
ary layer. We consider the neutral point tearing, that
is, the case of B, =0, where By is the y (or dawn-dusk
) component of the magnetic field By. We show that
Mach number profile, and not the velocity profile alone,
decides the effect of shear flow on the tearing maodes.
This study, thus, resolves the confusion about the ef-
fect of shear flow on the tearing modes. We find that
the magnetic structures produced by the tearing modes
would be Doppler shifted by the flow in the range of
ULF wave frequencies.

2. The Model for Tearing Modes

We treat the magnetopause as a plane collisionless
current sheet [Harris, 1962]. The sheet current flows
along the y axis and produces a magnetic field:

Bo(z) = Botanhz/L x, (1)

where L is the half thickness of the sheet, and x denotes
the unit vector in the 2 direction. The magnetopause
current sheet contains the sheared bulk flow parallel to
magnetic field:

Vg(z) = I/o(z) x. (2)
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Following Drake and Lee [1977] and Lakhina and Schind-
ler [1983a], we use MHD in the “outer region” (i.e.,
z > &), and a kinetic approach in the “inner region”
(i.e., z < 6.). Here §; = (p; L)V/?, where p; = Vir; /€Y
1s the Larmor radius, d; = eBy/mjc 1s the cyclotron
frequency, and vp; = (Tj/nzjjlﬂ is the thermal speed
of the jth species, with j= e for electrons, and i for the
ions.

For the linear stability analysis we take every per-
turbed gquantity g as:

(3

Then, the eigenmode equation for the perturbed vector
potential A = A7 , in the external region can be writ-
ten [Lakhina and Schindler, 1983a; Wang and Ashour-
Abdalla, 1992] as,

g=g(z) exp[—iwt + 1 kal.

d d - 1 d2By(2)
(= M) A (R Rt
dé( )di ( ) ( J Bo(z) dz?

doog 4 =
where 7 = z/L, k = Lk, etc., and we have defined

the Alfvén Mach number M = Vp(2)/Va(z) , where
Va(z) = Ba(2)[4mpa(2)] 71/ ? is the Alfvén speed.
We consider the Mach nurmber profile:

M=l — 8 peshie AT (B ) (5)

where 0 < ¢ < L. For this Mach number profile, (4)
has an exact analytic solution [Lakhina and Schindler,
1983a) for the external region which satisfies the bound-
ary condition A(Z — oco) = 0, namely,

_ CiT(v+ o+ 1)P77(tanh 2) cosh™(2)

A=
I'(vr—o+1)cosonm ! (6)
where v = {14+ m), o = (k% + m?}'/2, and C, is:a
constant.

In the inner region (2 < &), the particle orbits can be
treated as essentially unmagnetized and the bulk flow
velocity may be taken as approximately constant, that
is, Vp(z) = ux. However, our special choice of the
above Mach number profile would correspond to taking
u = 0. Then, the eigenmode equation for A in the inner
mode is found to be,

dz?

72 =
[ IR (&% — 25661125)] A

2 9
w L?sech”z

. 7
= )= -
\/; kvpep2(1+ T /T:)

Taking sech®z = 1, the inner region solution satisfying
the boudary condition that A(z = 0) = Ay and A’(z =
0) = 0, can be written as,

A. (7)

A = Agcosh o Z,

(8)

5 =5 L wiL?
=k —2—4/= : 9
% [ V8 kvpp2(1 + ﬂ/Ta)] )

TEARING MODES AT THE MAGNETOPAUSE

The dispersion relation for the tearing mode is ob-
tained by matching the inner region and the outer re-
gion solution for A at z = é.. Then, equating A’/A
from the inner and outer solutions at z = &, we get the
tearing mode dispersion relation:

Gt == =200

(10)

L (§)% (%) kvnet + /T2

™

[(1+ 2m — )EZ)AI — QTTLSBAQ] 1)
[Ag + 8. (12 — 02)Aq] : (

where,

Ar = T(6/2 % v/2) Tlo/2— v/2+1/2),
Ao =2T(o/2+v/24+1/2)T(c/2 —v/24+1). (12)

For m = 0, the dispersion relation becomes identical

with the case of no shear flow [Copp: el al, 1966].

Figure 1 shows normalized growth rate +/8; versus
normalized wavenumber k& = & L. It is clear that both
the growth rate and the range of unstable wave number
increase with the increase of shear flow index m (cf.
curves 1 to 4 ). For negative values of m ( cf. curve 5
which is for m = -1 ) the mode is stabilized.

The Mach number profile considered here mplies
Vo(z) = Va(z) > | for |z] > 1. According to the
Harris sheet model, this would lead to flow velocity at-
taining unphysically large values at large z. Lakhina
and Schindler [1983a] showed that for sufficiently large

m=3

Normalized Growth Rate

Normalized WaveNumber

Figure 1. Normalized growth rate /2 versus normal-
ized wavenumber kL for the tearing mode instability at
the magnetopause for different values of the shear flow
index m. Other parameters of the magnetopause cur-
rent layer are: T, = 25 eV, T; = 200 eV, p. = 0.34 kin,
and L = 100 km. For all the curves in this as well as in
Figure 2, the value of the parameter € is chosen small
(~ 0.01 or less) such that M? = 0 for atleast |z]| ~ 3.
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k, the solution for A attains a peak for Z ~ 1 and then it
decays to reasonably small values at distances of |Z] ~ 3.
As the flow velocity is also expected to remain suffi-
ciently small at such distances, the results based on the
Mach number profile given by (5) would not be seriously
affected. Further, in the Harris sheet model of the mag-
netopause, all of the particles are essentially “trapped”
in the sense that they are “isolated” from the magne-
tosheath and magnetospheric plasmas. By considering
either a uniform background cold plasma component,
or the particle accessibility as described by Whipple el
al. [1984], this “isolation” effect, and in turn the diver-
gence in V4(2Z) or Vg(z) at |Z] = 1, can be removed.
Furthermore, for negative values of e in (5), one must
choose € ta be sufficiently small so that M? remains
positive for sufficiently large z, or at least for |z| ~ 3,
or so as heyond this distance the contribution from the
shear flow becomes unimportant for A as well as 01
(defined in the next section).

Equation V- B = 0 predicts that the tearing pertur-

~—bations in B, and B, are out of phase by w/2. Ther

magnitudes are related by:

kB,
dB./dz

= (13)

B
By

’:}cL 2 (Lo Traih®,

for all z except at |Z|=0 and d, where d is the distance
at which B, has a maximum. It is clear that in the
presence of shear flow, the ratio |B,/B,| can be either
less than or greater than unity. For the case of no shear
flow, (13) predicts the |B,/B.| to be always less than
unity which agrees with the interpretation of Greenly
and Sonnerup [1981].

It 1s interesting to note that the convection of mag-
netic tearing structures along the magnetopause could
make the tearing modes observable from a single satel-
lite crossing the magnetopause. Following Greenly and
Sonnerup [1981], the Doppler-shifted frequencies can be
calculated from the relation fu. = &V cos 8/27, where
Ve 1s the convection velocity, and @ is the angle between

— the convection velocity vector, and the z axis which is

the direction of the wave vector k. For the convection
flow speed of about 200 km s™!, relative velocity he-
tween a satellite and the magnetopanuse ~ 5 - 10 km
s™! and unstable wavenumber k& ~ (02 =-2:0), L=
100 km, and @ = 10° — 85°, the tearing mode prodiced
magnetic structures would be Doppler-shifted to pro-
duce ULF turbulence in the frequency range of 5 - 650
mHz.

3. Energy Principle

We would like to emphasise that the results shown
in Figure I are for the specific Mach number profile
considered here. To resolve the ambiguity regarding
the effects of shear flow on the tearing modes, we take
recourse to the energy principle.

When the outer region can be treated by incompress-
ible MIID, the eigenmode equations (4) and (7) for A,
the perturbed vector potential of the tearing modes, can
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be cast into the variational form [ Wang end Ashour-
Abdalla, 1992]:

oa b 5
7/ dz_‘{;_rf_iff_lfgj?:—[6W1+5W2+6W3], (14)

2 ko,

[a's]
sW, -:/ dz (L —= MHTA%, (15)
oo a? By
W :/ dz (1 — M?)l};;’ |42, (16)
be o =1y

dBy

o . .
o finEi s A, 2y dz 2
5 W /_w dz (1 - MY)Z= AR, (17)

It is clear from (14) - (17) that for M=0, 6Wa=0,
8Wy = 0 (i.e., a stabilizing term), and hence the only
free energy source for the tearing mode instability is the
Wy term [Schindler, 1966]. For the case of M £ 0, it
is rather difficult to make a definitive statement about
the effect of shear flow on the tearing modes as all the
three terms involving M ? have different signs. However,
the structure of (15) - (17) suggests two main possibili-
ties. First, if W, and § Wy are affected by the (1 — M?2)
term by nearly the samne amount, that is, whereas the
stabilizing term §W), is reduced by the shear flow, the
destabilizing term 65 is also reduced by the shearflow
from its value when the flow was absent, then the sign
of §Ws term would decide the net effect of the shear
flow. Second, if the sum of (01 + ¢Ws) > 0, that
1s, the destabilizing term 6W; decreases faster than the
stabilizing term 81/ in the presence of shear flow, then
&Ws must necessarily be negative for the tearing mode
instability. Therefore we expect that the sign of the
&Ws3 term would decide the overall stability or instabil-
ity of the tearing modes in the presence of shear flow
with 6Ws > 0 corresponding to a stabilizing effect and
dWy <2 0 to a destabilizing situation. It is clear from
our arguments that this is not a strict criterion in the
mathematical sense. It may, however, be useful as an
heuristic principle in the search for instability profiles
of a given equilibrium with sheared bulk flow properly.

In Figures 2a-2d, we have shown some results ob-
tained by computing (6W, + §Ws) (dotted curves in
Figure 2), § Wy (dash-dot dash curves in Figure 2), and
W = (6W, 4+ 6Ws + 6Ws) (solid curves in Figure 2)

“from (15) - (17) using the solution given by (6) for A,

and the Mach number profile given by (5). It is clear
from Figures 2a-2¢, which correspond, respectively, to
the case of shear flow index m= 1, 2, and 3, that unsta-
ble situation 6 W < 0 1s assoclated with W5 < 0. From
Figure 2d for m = - 1, we notice that §Ws > 0 and 1t
corresponds to stability, that 1s, 8WW > 0 in this case.
We may emphasize that §W5 < 0 is only the necessary
condition for instability as can be seen from Figures
2a-2d.

For the case of Vy(z) = Vitanh 7, and for the Har-
ris equilibrium, as considered by Wang and Ashour-
Abdalla [1992] and others, the Mach number profile is:

M? = Misech?z. (18)
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Figure 2. Variations of normalized (6W1 + 6W2) (dotted curves), §Wy (dash-dot-dash curves),
and 6W = (§W) + W, + 81W3) (solid curves) versus normalized wavenumbers, k£ L. Figures 2a

—2d correspond respectively to

The Mach number profile given by (18) yields 6Wy > 0
as seen from (17). This leads to a stabilizing effect of the
shear flow on the tearing modes as concluded by these
authors. The above situation ( i.e., §Wy > 0 } appears
similar to the case m = -1 of Figure 2d for which §W,
is also positive.

For the case considered here (i.e., the Mach number
profile given by (5)), we see from Figures 2a-2¢ that
the term 6W3 < 0 for m= 1, 2, and 3 (in general for
any positive number), and the shear flow effects on the
tearing modes are destabilizing [Lakhina and Schindler,
1983a; Hoffmann, 1975].

In general, we expect that the shear flow would have
a destabilizing (stabilizing) effect on the tearing mode
instability when the Mach number profiles has a min-
imum (maximum) at =0 and it increases (decreases)
away from the neutral axis.

We would like to point out that our analysis is strictly
valid for the case where plasma and field distributions
inside the singular layer are naot significantly modified
by the shear flow. Therefore the conclusions based on
our model are expected to remain valid for the thin ki-
netic layers typical of the magnetopaue (L < 10p:) |
Berchem and Russell, 1982a]. In our analysis, the ex-

the case of shear flow index m = 1, 2, 3, and -1.

ternal region is modelled by incompressible MHD equa-
tions. This assumption can be justified because the field
lines in this region remain frozen into the plasma as in
the kink mode. The kinetic effects like Landau reso-
nances are not expected to be important as both the
electrons and the ions behave essentially as magnetized
and their orbits are of “nonaxis-crossing” type. The cy-
clotron resonances would not be impaortant as the modes
have low frequencies. Wang and Ashour-Abdalla [1992]
used the drift kinetic formalism for the external region.
Although in their case the shear flow has a damping
effect because dWs > 0 as discussed above, these au-
thors did suggest the possibility of destabilization of
the tearing modes for some other kinds of equilibria.
Kuznetsova et al. [1994] used the kinetic formalism ta
investigate the case where the shear flow modifies the
plasma and field structure in the singular layer. It is
interesting to note that our equations for the external
region, for example, (4), right hand side of (14), and
(15) - (17), remain valid even for B,(z) # 0 provided
that &, = 0. However, the left hand side of (14) is
modified, to the leading order, with the replacernent of
k by ky = kL/L;, where L, = BL(0)/B,(0) is the mag-
netic shear scale length. This effect would lead to the
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reduction of the growth rate v [Drake and Lee, 1977,
Kuznetsova et al., 1994]. Hence except for the thick
magnetopause conditions [Berchem and Russell, 1982b]
where the shear flow can possibly affect L., our conclu-
sions based on the simple model are expected to remain
valid.

4. Conclusions

We have considered a rather idealized magnetopause
equilibrium maodel with zero electric field and syminet-
rical plasma and field parameters on both sides of the
current layer. Further, we considered the case where
the presence of shear flow does not affect the assumed
equilibrium. Therefore the model should apply to thin
magnetopause layers.

We have argued, based upon our analytical dispersion
relations (10)-(11) and the numerical results from the
energy principle (14)-(17), that the tearing modes are
destabilized (stabilized) when the Alfvén Mach number

~ profile has a minimum (maximum) at the neutral axis
(1.e., the axis where the magnetic field vanishes). This
can explain naturally the seemingly conflicting results
regarding the effects of shear flow on the tearing mode
instability at the magnetopause.

Magnetic structures produced by tearing modes would
be Doppler shifted because of plasma flows, and thus
manifest as ULF turbulence with frequencies ~ 5 -650
mHz. The results are expected to be useful in identify-
ing some of the ultralow-frequency modes observed at
the magnetopause.
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